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Identifying the multiple dysregulated oncoproteins that 
contribute to tumorigenesis in a given patient is crucial for 
developing personalized treatment plans. However, accurate 
inference of aberrant protein activity in biological samples 
is still challenging as genetic alterations are only partially 
predictive and direct measurements of protein activity are 
generally not feasible. To address this problem we introduce 
and experimentally validate a new algorithm, virtual inference 
of protein activity by enriched regulon analysis (VIPER), 	
for accurate assessment of protein activity from gene 
expression data. We used VIPER to evaluate the functional 
relevance of genetic alterations in regulatory proteins across 
all samples in The Cancer Genome Atlas (TCGA). In addition 
to accurately infer aberrant protein activity induced by 
established mutations, we also identified a fraction of tumors 
with aberrant activity of druggable oncoproteins despite a 
lack of mutations, and vice versa. In vitro assays confirmed 
that VIPER-inferred protein activity outperformed mutational 
analysis in predicting sensitivity to targeted inhibitors.

Cancer initiation and progression are driven by aberrant activity 
of oncoproteins working in concert to regulate critical tumor hall-
mark programs1. Pharmacological inhibition of aberrantly activated 
oncoproteins can elicit oncogene dependency2, which motivates  
the development and use of targeted inhibitors in precision cancer 
medicine. Activating genetic alterations have thus emerged as impor-
tant candidate drug targets. Yet activating mutations represent only 
one of many possible ways to dysregulate the activity of an onco-
protein. Genetic and epigenetic events in cognate binding partners3, 
competitive endogenous RNAs4 and upstream regulators5 can all  

contribute to aberrant activity of oncoproteins. Thus, although cells 
with activating mutations in a specific oncogene are generally more 
sensitive to corresponding targeted inhibitors, cells lacking these 
mutations may also present equivalent sensitivity6,7. Conversely, an 
activating mutation is not guaranteed to induce aberrant protein activ-
ity, due to autoregulatory mechanisms and epigenetic allele silencing. 
A more universal and systematic methodology for the accurate and 
reproducible assessment of protein activity would complement our 
ability to identify targeted therapy responders based on mutational 
analysis, especially because most cancer patients have no actionable 
oncogene mutations8.

While gene expression data are ubiquitous in cancer research9–12, 
methods for the genome-wide assessment of protein activity are still 
elusive. Existing methods to measure protein abundance based on 
arrays13 or mass spectrometry technologies14 are still labor-intensive, 
costly, and either cover a small fraction of the proteomic landscape 
or require large amounts of tissue. More importantly, these methods 
provide only an indirect measure of protein activity, because the lat-
ter is determined by a complex cascade of events, including protein 
synthesis, degradation, post-translational modification, complex for-
mation and subcellular localization15 (Fig. 1a). It is ultimately unclear 
whether protein activity may be directly and systematically assessed 
by any individual assay.

We propose that the expression of the transcriptional targets of a 
protein, collectively referred to as its regulon, represent an optimal 
multiplexed reporter of its activity (Fig. 1a). Although this concept 
is not new and was initially proposed for transcription factors16, it 
has not been successfully demonstrated in mammalian cells. There 
are currently no experimentally validated methods to accurately 
assess the activity of arbitrary proteins in individual samples based 
on the expression of their regulon genes. Reasons for this include 
a lack of accurate and context-specific protein regulon models, the 
largely pleiotropic nature of transcriptional regulation, and a lack of 
methodologies to assess statistical significance from single samples. 
This severely limits the ability to understand the functional effect 
of mutations on protein activity and to identify candidate respond-
ers to targeted inhibitors based on aberrant protein activity rather  
than mutations.

We have previously shown that regulon analysis, using the master 
regulator inference algorithm (MARINa), can help identify aberrantly 
activated tumor drivers17–21. However, this requires multiple samples 
representing the same tumor phenotype and cannot be used to assess 
aberrant protein activity from individual samples. To address this 
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challenge, we introduce a new regulatory-network based approach 
to infer protein activity from single gene expression profiles (VIPER; 
Supplementary Table 1). We first discuss development, optimization 
and validation of VIPER. Then we introduce a statistical framework 
to allow single-sample analysis, without loss of robustness or general-
ity. Finally, we describe the use of VIPER to evaluate all non-silent 
somatic mutations in TCGA samples and report the aberrant activity  
of all oncogenes listed in the Catalogue Of Somatic Mutations In 
Cancer (COSMIC)22 on an individual sample basis. VIPER can be 
used to systematically assess aberrant activity of oncoproteins for 
which high-affinity inhibitors are available, independent of their 
mutational state, thus establishing them as valuable therapeutic tar-
gets on an individual patient basis. The analysis is fully general and 
may be trivially extended to study the role of germ-line variants in 
dysregulating protein activity. We implemented VIPER as an R-system 
package available through Bioconductor.

RESULTS
The algorithm
VIPER infers protein activity by systematically analyzing expression 
of the protein’s regulon, which is strongly tumor-context-dependent20 
(Fig. 1b). We used the algorithm for the reconstruction of accurate 
cellular networks (ARACNe23; Online Methods) to systematically 
infer regulons from tissue-specific gene expression data (Fig. 1b and  
Table 1). Although any algorithm or experimental assay providing 
accurate, tissue-specific assessments of protein regulons should be 
equally effective, we found that ARACNe outperformed competing 
algorithms that derive regulons from genome-wide chromatin immu-
noprecipitation (ChIP) databases, including ChIP enrichment analysis  
(ChEA)24 and Encyclopedia of DNA Elements (ENCODE)25 and  

literature curated Ingenuity networks26 (see below). We extended 
ARACNe to detect maximum information path targets (Online 
Methods), as originally proposed in ref. 21, to allow identification of 
regulons that report on the activity of proteins representing indirect regu-
lators of transcriptional target expression, such as signaling proteins.

VIPER is based on a probabilistic framework that directly  
integrates target ‘mode of regulation’, that is, whether targets are 
activated or repressed (Fig. 1b and Supplementary Figs. 1 and 2), 
statistical confidence in regulator-target interactions (Fig. 1b) and 
target overlap between different regulators (pleiotropy) (Fig. 1d) 
to compute the enrichment of a protein’s regulon in differentially 
expressed genes (Online Methods). Several methods exist for gene 
enrichment analysis, including the Fisher’s exact test27, T-profiler28 
and gene set enrichment analysis (GSEA)27,29–31. In all these methods, 
the contribution of individual genes to signature enrichment is binary 
(i.e., 0 or 1). In contrast, VIPER uses a fully probabilistic yet efficient 
enrichment analysis framework, supporting seamless integration of 
genes with different likelihoods of representing activated, repressed 
or undetermined targets, and probabilistic weighting of low vs.  
high-likelihood protein targets. To achieve this, we introduce analytic 
rank-based enrichment analysis (aREA) a statistical analysis based on 
the mean of ranks (Fig. 1c and Online Methods). Differential protein 
activity is quantitatively inferred as the normalized enrichment score 
computed by aREA.

Systematic assessment of VIPER’s performance
We first tested VIPER’s ability to correctly infer loss of protein  
activity following RNA interference (RNAi)-mediated silencing of a 
gene. MEF2B32, FOXM1 (ref. 17), MYB17 and BCL6, were silenced in lym-
phoma cells and STAT3 (ref. 18) in glioblastoma cells by RNAi-mediated  
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Figure 1  Overview of the VIPER method. (a) Schematic of molecular layers profiled: transcriptomics, used to measure steady-state mRNA levels; 
proteomics, used to quantify protein levels, including some defined post-translational isoforms; and VIPER, used to infer protein activity based on the 
protein’s regulon, reflecting the abundance of the active protein isoform, including post-translational modifications, proper subcellular localization 
and interaction with co-factors. (b) VIPER workflow in which a regulatory model is generated from ARACNe-inferred context-specific interactome and 
mode of regulation (MoR) is computed from the correlation between regulator and target genes. Single-sample gene expression signatures (GES) are 
computed from genome-wide expression data, and transformed into regulatory protein activity profiles by the aREA algorithm. |GES|, absolute value of 
GES. NES, normalized enrichment score. (c) Three possible scenarios for the aREA analysis are increased, decreased or no change in activity for three 
regulatory proteins (R1, R2 and R3). GES and |GES| are indicated by color scale bars; induced and repressed target genes according to the regulatory 
model are indicated by blue and red vertical lines. (d) Pleiotropy correction, performed by evaluating whether the enrichment of a given regulon (R4) is 
driven by genes coregulated by a second regulator (R1). (e) Accuracy (relative rank for the silenced protein) and specificity (fraction of proteins inferred 
as differentially active at P < 0.05) for the six benchmark experiments (Table 2) with VIPER based on multiple-sample gene expression signatures 
(msVIPER) and single-sample gene expression signatures (VIPER). Colors indicate implementations of the aREA algorithm: two-tail (2T) and three-tail 
(3T), interaction confidence (IC) and pleiotropy correction (PC).
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silencing (Table 2). We included multiple cell lines and distinct RNAi 
silencing protocols and profiling platforms to avoid bias associated 
with these variables. We used these data to benchmark different  
regulatory model attributes and enrichment methods.

We assessed three metrics: (i) the P-value-based rank of the 
silenced gene (accuracy), (ii) the total number of statistically sig-
nificant regulators inferred by VIPER (specificity), and (iii) the over-
all P value of the silenced gene. The enrichment analysis methods 

Table 1  Interactomes and the data sets used to reverse-engineer them
Data set Interactome

Tissue type Samples Platform  Reference Regulator Targets Interactions

B cell 254 HG-U95Av2  23 633 (TFs) 6,403 173,539

B cell 264 HG-U133plus2  34 1,223 (TFs) 13,007 327,837

Glioblastoma 176 HG-U133A  48 835 (TFs)   8,263 256,965

Bladder carcinoma 241 RNA-seq TCGA 1,813 (TFs) 20,006 245,871

666 (co-TFs) 18,739 181,730

3,455 (Sig) 20,441 317,127

Breast carcinoma 1,037 RNA-seq TCGA 1,813 (TFs) 20,428 249,501

666 (co-TFs) 20,220 217,916

3,455 (Sig) 20,515 366,924

Colon adenocarcinoma 434 RNA-seq TCGA 1,813 (TFs) 20,462 294,725

666 (co-TFs) 19,742 204,682

3,456 (Sig) 20,492 369,870

Head and neck squamous cell carcinoma 424 RNA-seq TCGA 1,813 (TFs) 20,452 319,799

666 (co-TFs) 19,874 212,214

3,456 (Sig) 20,520 395,966

Kidney renal clear cell carcinoma 506 RNA-seq TCGA 1,813 (TFs) 20,474 355,932

666 (co-TFs) 20,080 259,151

3,456 (Sig) 20,522 429,651

Lung adenocarcinoma 488 RNA-seq TCGA 1,813 (TFs) 20,405 341,285

666 (co-TFs) 19,832 214,048

3,456 (Sig) 20,528 472,933

Lung squamous cell carcinoma 482 RNA-seq TCGA 1,813 (TFs) 20,426 342,737

666 (co-TFs) 19,948 221,178

3,453 (Sig) 20,498 397,774

Ovarian serous cystadenocarcinoma 262 RNA-seq TCGA 1,813 (TFs) 20,261 247,063

666 (co-TFs) 19,082 150,949

3,456 (Sig) 20,459 334,906

Prostate adenocarcinoma 297 RNA-seq TCGA 1,813 (TFs) 20,215 228,977

666 (co-TFs) 19,599 180,315

3,456 (Sig) 20,466 315,155

Rectum adenocarcinoma 163 RNA-seq TCGA 1,810 (TFs) 18,506 236,899

666 (co-TFs) 16,939 173,579

3,455 (Sig) 19,773 332,088

Stomach adenocarcinoma 238 RNA-seq TCGA 1,808 (TFs) 22,017 267,138

661 (co-TFs) 20,984 194,782

3,442 (Sig) 22,458 438,054

Thyroid carcinoma 498 RNA-seq TCGA 1,813 (TFs) 20,478 333,725

666 (co-TFs) 20,038 225,544

3,369 (Sig) 20,511 408,356

Uterine corpus endometrial carcinoma 517 RNA-seq TCGA 1,813 (TFs) 20,471 350,994

666 (co-TFs) 20,190 237,518

3,456 (Sig) 20,527 501,212

Glioblastoma multiforme 154 RNA-seq TCGA 1,811 (TFs) 18,354 259,025

660 (co-TFs) 16,655 157,230

3,455 (Sig) 19,616 393,595

Low grade glioma 370 RNA-seq TCGA 1,813 (TFs) 20,357 328,373

666 (co-TFs) 19,558 228,634

3,455 (Sig) 20,463 372,802

Skin cutaneous melanoma 374 RNA-seq TCGA 1,813 (TFs) 20,475 281,486

666 (co-TFs) 19,656 177,388

3,453 (Sig) 20,501 418,136

Sarcoma 105 RNA-seq TCGA 1,715 (TFs) 14,262 142,041

620 (co-TFs) 10,920 72,486

3,024 (Sig) 15,552 177,063

TFs, transcription factors; co-TFs, co-transcriptional regulators; Sig, signaling proteins.
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we tested were aREA, Fisher exact test (one-tail FET)18 and one-
tail GSEA. We also tested extensions of FET and GSEA to account 
for the mode of regulation of a target gene (two-tail FET and two-
tail GSEA), which were previously implemented in our MARINa 
algorithm17,18,20. Use of a three-tail aREA (aREA-3T), accounting 
for target mode of regulation, confidence and pleiotropic regula-
tion, systematically outperformed all other approaches (Fig. 1e,  
Supplementary Figs. 3a and 4, Supplementary Table 2 and 
Supplementary Note). Thus, we selected the aREA-3T method as 
the methodology of choice for the VIPER algorithm. The experi-
mentally silenced proteins encoded by MYB, BCL6, STAT3, FOXM1, 
MEF2B and BCL6, were ranked as the 1st, 1st, 1st, 2nd, 3rd and 3rd most 
significantly inactivated proteins among all those tested, respectively 
(Supplementary Fig. 3a and Supplementary Table 2). The small 
number of additional transcription factors inferred by aREA was 
enriched in differentially expressed genes and thus likely represents 
downstream targets of the silenced regulators or RNAi off-target 
effects (Supplementary Fig. 5).

To evaluate suitability of ARACNe-inferred 
regulons for use in VIPER, we benchmarked 
VIPER performance with non-context- 
specific regulons, as assembled from ChIP-
sequencing (ChIP-seq) data in ChEA24 and 
in ENCODE25. We also benchmarked VIPER 
against the upstream regulator module of 
Ingenuity Pathway Analysis26. ARACNe-
based VIPER outperformed these approaches 
(Supplementary Fig. 3c and Supplementary 

Note). The alternative methods/models correctly assessed protein 
activity decrease only for FOXM1 following its silencing. Among the 
five tested transcription factors, FOXM1 was the only one represent-
ing a core cell cycle regulator, whose regulon is strongly conserved 
across multiple tissue contexts (Supplementary Fig. 3d), thus not 
requiring use of context-specific regulatory models.

From each experiment we generated signatures using the control-
sample-based Z transformation (Online Methods) to allow analysis of 
individual samples (Table 2). Results from single-sample analyses were 
virtually identical to those obtained with the multisample version of 
VIPER (Fig. 1e, Supplementary Fig. 3b and Supplementary Table 3),  
suggesting that single-sample analysis produces robust and highly 
reproducible results. We then performed several additional bench-
marks to assess the specific improvements owing to the aREA probabi-
listic analysis, compared to GSEA, and to assess the overall ability of the 
algorithm to correctly identify proteins whose activity was modulated 
by RNAi and small-molecule perturbations, or whose abundance was 
quantified by reverse-phase protein arrays (Supplementary Figs. 6–9,  

Table 2  Benchmark experiments
Cell line Knockdown gene Technology Replicates Profile platform DEGa at P < 0.01

P3HR1 (lymphoma) MEF2B shRNAb 5 HG-U95Av2 960

ST486 (lymphoma) FOXM1 shRNAb 3 HG-U95Av2 276

MYB shRNAb 3 HG-U95Av2 469

OCI-Ly7 (lymphoma) BCL6 siRNAc 3 HG-U133p2 646

Pfeiffer (lymphoma) BCL6 siRNAc 3 HG-U133p2 1,311

SNB19 (glioma) STAT3 siRNAc 6 Illumina HT12v3 501
aDifferentially expressed genes. bShort hairpin RNA. cSmall interfering RNA.
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Supplementary Tables 4–6 and Supplementary Note). Based on our 
benchmarking results, we generated a comprehensive map of pro-
tein activity dysregulation in response to short-term pharmacologic 
perturbations. We selected 166 compounds in CMAP33 that induced 
reproducible perturbation profiles across replicates (FDR < 0.05, 
Supplementary Note) and report their effect on the activity of 2,956 
regulatory proteins in Supplementary Table 7.

Algorithm robustness
Poor reproducibility across biological replicates is a critical reason 
why gene expression analysis has not been broadly adopted in clinical 
tests. We thus rigorously assessed the reproducibility of the VIPER 
inferences as a result of multiple sources of technical and biological 
noise (Fig. 2).

Regulons were degraded by progressively randomizing regulatory 
interactions while maintaining network topology. Although VIPER’s 
performance depends on availability of tissue-specific regulons (Fig. 2a),  
it tolerates a high fraction of false positive interactions, with notice-
able performance degradation observed only when >60% of regulon 
interactions were randomized (Fig. 2b). Assuming ~30% false posi-
tive rate by ARACNe34,35, this suggests that as long as >28% of genes  
in a regulon represent bona fide regulatory interactions, protein  
differential activity can be accurately inferred.

VIPER assessment of protein activity was robust to reduced regulon 
representation, as confirmed by the analysis of the library of integrated 
network-based cellular signatures (LINCS) data (Supplementary Fig. 7  
and Supplementary Note). Progressive target removal starting with 
those with lowest mutual information further increased accuracy, 
with optimal accuracy achieved at n = 50 targets and only modest 
degradation down to n = 25 targets (Fig. 2c). Regulons of fewer than 
25 targets showed a dramatic decrease in accuracy (Fig. 2c).

VIPER was also highly insensitive to gene expression signature 
degradation, as seen by adding zero-centered Gaussian noise with 
increasing variance (comparable to benchmark data sets variance) 
(Fig. 2d). This makes it well-suited for assessment of protein activity 
from noisy single-sample gene expression profiles, where the variance 
of VIPER-inferred activity is much smaller than the variance of gene 
expression (Fig. 3a,b and Supplementary Fig. 10). For instance, con-
sidering a B cell phenotype, VIPER-based protein activity signatures 
were significantly more correlated than gene expression signatures  
(P < 10−15, Wilcoxon signed-rank test; Fig. 3a and Supplementary  
Fig. 10a). Addition of Gaussian noise decreased expression-based  
sample-sample correlation with only a minimal effect on VIPER-
inferred activity correlation (Supplementary Fig. 10b). VIPER activity 
was highly resilient to reduced transcriptome representation, showing  

minimal accuracy decrease when up to 90% of the genes in the signature 
were removed from the analysis (Fig. 2e) or when RNA-seq profiles 
where subsampled from 30 million (M) reads to 0.5 M reads (Fig. 2f),  
making VIPER appropriate for the analysis of low-depth RNA-seq 
profiles. This was further evidenced when comparing protein activity 
profiles inferred from fresh-frozen vs. matched formalin-fixed paraf-
fin-embedded (FFPE) samples (Fig. 3c and Supplementary Fig. 10c). 
The reproducibility of the results from FFPE samples represents a 
critical prerequisite for precision medicine applications.

To assess the effect of biological variability, we computed VIPER 
activity signatures for 173 TCGA basal breast carcinomas. VIPER-
inferred activity signatures were significantly more correlated across 
samples (P < 10−15 by Wilcoxon signed-rank test for the correlation 
coefficients, Supplementary Fig. 10d) and top-ranking aberrantly 
activated proteins were more conserved across samples based on 
differential activity than on differential expression of the associated 
gene (Fig. 3b). Overall sample-to-sample variance was reduced more 
than 250-fold compared to gene expression (Fig. 3b). Thus, VIPER-
inferred differentially activated proteins are much more conserved 
than differentially expressed genes or differentially abundant proteins 
(based on RPPA measurements) across different samples representing 
the same tumor subtype (Fig. 3b).

Functionalizing the somatic mutational landscape of cancer
Based on these benchmarks, we used VIPER to systematically test the 
effect of recurrent mutations on corresponding protein activity. We 
considered a pan-cancer set of 3,912 TCGA samples, representing 
14 tumor types, for which exome data are available (Supplementary 
Table 8). We first computed the VIPER-inferred activity of each  
transcription factor and signaling protein in each of the analyzed 
samples and tested whether samples harboring recurrent mutations 
were enriched in those with high VIPER-inferred differential activity  
of the affected protein. From 150 recurrently mutated genes in 
COSMIC, we selected 89 that were mutated in at least 10 samples in 
at least one tumor type and for which a matching regulatory model 
was available (Supplementary Table 8). This identified a total of 342 
pairs (for example, EGFR in glioblastoma multiforme, GBM) where a 
specific oncoprotein could be tested in a specific tumor cohort.
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Figure 3  Reproducibility of VIPER results. (a) Distribution of correlation 
coefficients computed between all possible pairs of gene expression 
signatures (yellow) or VIPER protein activity signatures (cyan) for samples 
of the same B cell phenotype, including normal (indicated by asterisks: 
GC, germinal center reaction; M, memory and N, peripheral blood B cell) 
and pathologic (B-CLL, B cell chronic lymphocytic leukemia; BL, Burkitt 
lymphoma; HCL, hairy cell leukemia; PEL, primary effusion lymphoma; 
MCL, mantle cell lymphoma; FL, follicular lymphoma) phenotypes.  
The number of samples per phenotype is indicated on top. (b) Probability 
density for the relative rank position of the most upregulated gene 
(mRNA), relatively abundant protein (RPPA) or activated protein (VIPER), 
identified in each profiled basal breast carcinoma sample, across all 
the remaining profiled samples. The horizontal line and number under 
it indicates the distribution mode. (c) Probability density for the relative 
rank position of the top ten most upregulated genes (yellow) or VIPER-
inferred activated proteins (cyan), identified from fresh-frozen samples  
on the corresponding FFPE samples.
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As protein activity may depend on either total protein abundance 
or on the abundance of specific, differentially active isoforms, we 
estimated both global VIPER activity and the residual post-trans-
lational (RPT) VIPER activity (the component of activity that can-
not be accounted for by differential expression) by removing the 
transcriptional variance component (Online Methods). By defini-
tion, RPT activity is statistically independent of gene expression 
and should account for the purely post-translational contribution to 
protein activity. Almost 30% of subtype-specific variation-harboring 
proteins (92/342) were associated with statistically significant dif-
ferential protein activity, as assessed by VIPER (P < 0.05): 65/342 
(19%) by global activity analysis and 51/342 (15%) by RPT activity 
analysis, respectively (Supplementary Fig. 11). This included the vast 
majority of established oncogenes and tumor suppressors (Fig. 4 and 
Supplementary Fig. 11a,b), suggesting that this integrative analysis 
provides an effective means to capture mutation-dependent dysregu-
lation of oncogene and tumor suppressor activity (Supplementary 
Fig. 11). VIPER-inferred RPT activity effectively eliminates the 
effect of feedback loops on the corresponding gene’s expression, thus 
identifying mutations resulting only in post-translational effects 
(Supplementary Fig. 11a,b). We observed that 45% of mutations asso-
ciated with VIPER-inferred differential activity (41/92) induced no 
significant differential expression of the corresponding gene (Fig. 4a  
and Supplementary Fig. 11a), including mutations in established 
oncogenes and tumor suppressors, such as TP53, PTEN, NFE2L2, 
ARID1A, CARD11, BRCA2, CTNNB1, MLH1, VHL and SMAD4, 
among others (Fig. 4a and Supplementary Fig. 11a).

To assess whether a pharmacologically targetable protein may be 
aberrantly activated in a tumor sample, independent of the sample’s 
mutational state, we define a sample’s mutant phenotype score (MPS). 
This represents the probability of observing mutations in samples 
with equal or higher total VIPER activity (Supplementary Fig. 12). 
This is computed as the fraction of mutated vs. wild-type (WT) sam-
ples for the specific protein and tumor type. We thus ranked samples 
based on their MPS for each of the 92 protein/tumor-type pairs for 
which mutated samples were enriched in differentially activated pro-
teins based on our previous analysis (Online Methods). Although the 
majority of mutated samples had a high MPS, a few had a low MPS, 
comparable to WT samples, suggesting nonfunctional mutations, or 
subclonal mutations or regulatory compensation of their effect (Fig. 5a  
and Supplementary Fig. 12), including samples harboring activating 

mutations in actionable proteins, such as those encoded by EGFR, 
ERBB2, BRAF and PI3K, with MPSs ≤ −0.5 (i.e., threefold more likely 
to have WT activity) (Fig. 5a), suggesting subpar response to targeted 
inhibitors. Many WT samples had MPSs ≥ 0.5 (i.e., threefold more 
likely to have mutated activity) (Fig. 5a), suggesting they may respond 
to targeted inhibitors.

Validating drug sensitivity
To assess whether the MPS is a good predictor of drug sensitivity, we 
performed EGFR-specific MPS analysis of 79 lung adenocarcinoma 
cell lines, for which gene expression profiles, EGFR status and chemo-
sensitivity to EGFR inhibitors were available from the Cancer Cell Line 
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Figure 4  Detecting changes in protein activity induced by nonsilent 
somatic mutations. (a−c) Changes associated with protein activity only 
(a), protein activity and mRNA expression (b), and mRNA expression 
only (c) for GBM, COAD, breast carcinoma (BRCA), lung squamous 
carcinoma (LUSC), head and neck squamous carcinoma (HNSC), stomach 
adenocarcinoma (STAD), lung adenocarcinoma (LUAD), kidney renal clear 
cell carcinoma (KIRC), uterine corpus endometrial carcinoma (UCEC), 
bladder carcinoma (BLCA), and prostate adenocarcinoma (PRAD).  
The complete list of evaluated proteins is available in Supplementary 
Figure 11. For each indicated gene harboring nonsilent somatic 
mutations, the proportion of mutated samples from that tumor type is 
indicated. Violin plots indicate the distribution density for the mutated 
samples on all samples rank-sorted by mRNA expression (yellow) and 
VIPER-inferred protein activity (cyan); background color gradient 
indicates both expression and VIPER-inferred protein activity signatures: 
downregulated genes and inactivated proteins (blue) and overexpressed 
genes and activated proteins (red). Bar plots show significance for  
the association computed by the aREA algorithm. Blue and red bars 
indicate enrichment of the mutated samples among low expression  
or protein activity, and among high levels of expression or protein  
activity, respectively. 
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Encyclopedia7, including saracatinib (AZD0530), erlotinib and lapat-
inib. Of the cell lines with low EGFR MPS (< −0.5) that yet harbored 
EGFR mutations, 0/2, 1/2 and 1/2 were sensitive to AZD0530, erlo-
tinib and lapatinib, respectively. Conversely, 5/6, 5/6 and 4/6 of those 
with MPS > 0.5, were sensitive to those drugs, respectively (Fig. 5b),  
suggesting a strong association between MPS and chemosensitivity in 
EGFR-mutated cell lines. Moreover, considering only EGFR WT cell 
lines, the fraction responding to EGFR inhibitors was higher among 
those with MPS > 0.5 (50% vs. 33% for AZD0530, 43% vs. 33% for 
erlotinib and 36% vs. 27% for lapatinib, respectively) compared to 
those with MPS < −0.5 (Fig. 5b). MPS was significantly associated 
with chemosensitivity, regardless of EGFR mutation status, by Pearson 
correlation analysis (P < 10−5 for each of the three drugs; Fig. 5b), 
and by comparing sensitivity of cells with MPS > 0.5 and MPS < −0.5 
by Student’s t-test (P < 0.01 and P < 0.05 for AZD0530 and erlotinib, 
respectively Fig. 5b).

Assessing the role of site-specific mutations
In the previous analysis, all mutations in a gene were considered 
equivalent. We next tested whether VIPER could also be used to assess 
differential activity associated with mutations at specific protein sites. 
This could be instrumental in elucidating the functional effect of rare 
or private mutations. Specifically, we tested whether different muta-
tions in the same gene (for example, p.Gly12Val vs. p.Gly12Asp changes 
for the KRAS product) may produce quantitatively distinct effects on 
protein activity. We assessed all mutations affecting COSMIC genes 
that were detected in at least two samples of the same tumor type, 
based on four quantitative measurements: (i) their VIPER-inferred 
global activity, (ii) their VIPER-inferred RPT activity, (iii) their dif-
ferential gene expression, and (iv) their MPS (for mutations affecting 
at least 10 samples). In total, we analyzed 648 locus-specific mutations 
in 49 distinct genes, across 12 tumor types (Supplementary Fig. 13). 
In Figure 6 we summarized the cases with adequate statistical power. 
Careful examination showed that functional impact of these muta-
tions was both variant-specific (for example, KRAS: p.Gly12Val vs. 
p.Gly12Asp in colon adenocarcinoma (COAD); Fig. 6a) and tumor 
specific (for example, KRAS: p.Gly12Ala in COAD vs. lung adeno-
carcinoma (LUAD); Fig. 6a). In addition, although some mutations 
induce effects equivalent to differential expression, others produce 
exquisitely post-translational effects that can only be predicted by RTP 
activity (for example, KRAS: p.Gly12Val in LUAD vs. p.Gly13Asp in 
COAD; Fig. 6a and Supplementary Fig. 13).

Although different mutations may have similar impact on protein 
activity (for example, all TP53 functional variants were associated 
with reduction in inferred TP53 protein activity), their effects on 
gene expression were highly heterogeneous. For instance, nonsense 
and frame-shift mutations in TP53 invariably reduced mRNA levels  
(Fig. 6a), likely due to nonsense and nonstop-mediated mRNA 
decay36. In contrast, missense mutations were consistently associated 
with increased mRNA levels, likely due to feedback loops attempting  
to compensate for mutation-induced loss of TP53 protein activity  
(Fig. 6a)37. Such dichotomy in TP53 somatic variant effect may 
explain the lack of association between mutations and gene expression,  
when all variants are considered together (Fig. 4a).

To compensate for the lack of statistical power due to the poten-
tially small number of samples harboring locus-specific mutations 
(Supplementary Fig. 13), we performed integrated analysis across 
all tumor types. We accounted for heterogeneity among tumor types 
by aggregating the samples at the protein activity level, originally 
inferred using tissue-matched interactomes. This yielded a pan-can-
cer repertoire of functionally relevant somatic variants, based on 
the analysis of 3,343 samples across 12 tumor types, for which we 
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Figure 5  Mutant phenotype score and its association with drug sensitivity. 
(a) Probability density for the nonmutated (salmon) and mutated (green) 
samples based on MPS for six actionable mutations (complete list in 
Supplementary Fig. 12). Right plots show MPS (y axis) for all samples 
rank-sorted by MPS; green vertical lines indicate the mutated samples. 
MPS-defined WT and mutant phenotypes (likelihood ratio > 3) are 
highlighted in salmon and green. (b) MPS analysis for EGFR on lung 
carcinoma cell lines. Scatter plots show drug sensitivity, quantified by 
the area under the titration curves (AUC), for EGFR-targeting drugs as a 
function of MPS (expressed as likelihood ratio). Cell lines resembling an 
EGFR mutated and WT phenotypes are highlighted in green (likelihood 
ratio > 3) and salmon boxes, respectively. Green dots indicate cell lines 
harboring nonsilent mutations. Solid and doted horizontal lines indicate 
the mean and 2.33 s.d. over the mean of the chemoresistant cell lines, 
respectively. The association between drug sensitivity and MPS is shown 
on top of each plot by the Pearson’s correlation coefficient (R) and 
associated P value. Violin plots show the probability density for drug 
sensitivity (AUC) of the cell lines showing an EGFR WT (green) or mutant 
(brown) phenotype according to MPS; horizontal lines indicate distribution 
means, which were contrasted by Student t-test (P values in insets).
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Figure 6  Effect of specific nonsilent somatic mutation variants on VIPER-inferred protein activity. (a) Association of nonsilent somatic mutation variants 
with VIPER-inferred protein activity and mRNA expression. Violin plots indicate the probability density for the mutated samples on all samples rank-
sorted by coding gene mRNA levels (yellow) or VIPER-inferred protein activity (cyan). Background color gradient indicates both expression and VIPER-
inferred protein activity signatures from decreased (blue) to increased (orange). Statistical level for the association, as estimated by aREA (bar plot), 
with color indicating association with increased (red) or decreased (blue) expression or protein activity. Rightmost bar plot shows the significance level 
for the association of mutation variants and the MPS-defined mutant phenotype (likelihood ratio > 3, light-green box). The MPS-defined WT phenotype 
(likelihood ratio > 3) is indicated by the light-salmon box. Missense mutations are indicated as p.XnY where X stands for 1-letter amino acid in position 
n that was mutated to Y. *, nonsense mutations; frameshift mutations are indicated as p.Xnfs. Vertical lines crossing the bars indicate the P-value 
threshold of 0.05. (b) Effect of nonsilent variants integrated across different tumor types. MPS was integrated for all 12 tumor types (3,343 samples) 
and is shown as the x axis in the left side of the plot, while the enrichment of each variant among the samples with at least threefold likelihood of 
mutation vs. the WT samples (likelihood-ratio > 3), is indicated as −log10(P) by the bar plots. Dashed line indicates the P-value threshold of 0.05.
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report the statistical association between each locus-specific mutation 
and its MPS, as well as the pan-cancer VIPER P value (Fig. 6b and 
Supplementary Fig. 14).

DISCUSSION
Precision cancer medicine currently relies on the identification of 
actionable mutations. These can be reproducibly identified from 
whole-genome and exome analysis of tumor tissue and have demon-
strated clinical relevance. However, only ~25% of adult cancer patients 
present with potentially actionable mutations8. Thus, methodologies, 
such as VIPER, for inferring aberrant protein activity, independent 
of mutational state, may complement and greatly extend available 
genomic approaches. Indeed, genetic mutations are neither necessary 
nor sufficient to induce aberrant activity and tumor essentiality of 
protein isoforms. An increasing catalog of non-oncogene dependen-
cies has emerged in recent years5,18,20,21,38,39, whose aberrant activity 
depends on indirect genetic alterations, such as those in upstream 
pathways and cognate binding proteins. It is not surprising that many 
tumor cells respond to inhibitors targeting established oncoproteins, 
such as EGFR, even in the absence of activating mutations, as shown 
by large-scale dose-response studies in the cancer cell line encyclo-
pedia6,7 and by recent analysis of pathways upstream of functional 
tumor drivers5.

VIPER has three critical roles. First, it helps elucidate aberrant  
protein activity resulting either from direct or pathway-mediated 
mutations. Second, it can help prioritize the functional relevance of 
rare and private nonsynonymous mutations as hypomorph, hyper-
morph or neutral events. Systematic analysis of TCGA cohorts 
showed that 27% of nonsynonymous mutations induced aberrant 
VIPER-inferred protein activity. This is a substantial fraction, espe-
cially considering that not all mutations substantially affect protein 
activity on canonical targets, including those resulting in entirely new 
protein functions (neopmorphs), and that mutation clonality was not 
accounted for in these studies. Third, VIPER can help distinguish 
between transcriptionally and post-translationally mediated muta-
tional effects (Figs. 4a–c and 6).

Systematic VIPER of TCGA samples (Fig. 5a) showed that 
although genetic alterations strongly co-segregated with aberrant 
VIPER-inferred oncoprotein activity, many WT samples had VIPER-
inferred activity comparable to and even greater than those harbor-
ing actionable mutations. This is critically relevant for alterations 
in pharmacologically actionable oncogenes, such as BRAF, EGFR, 
ERBB2 and FGFR3, among others, suggesting that VIPER may be 
used to identify additional patients who may benefit from targeted 
therapy. Similarly, VIPER identified samples with actionable muta-
tions presenting no aberrant activity of the corresponding oncopro-
tein. Validation of the predictive value of VIPER-inferred activity to 
infer targeted inhibitor response, using the cancer cell line encyclo-
pedia, suggests that the algorithm may provide valuable insight in 
precision cancer medicine.

Several approaches have been proposed to estimate pathway activ-
ity40,41, co-regulation of gene expression modules42 or activity of 
selected proteins43 from gene expression signatures. These, however, 
do not predict activity of arbitrary proteins, lack tumor specificity 
and cannot be used to analyze individual samples. Other approaches 
developed for yeast44 and other model organisms44–47 have never been 
extended to mammalian cells. Earlier attempts based on transcription 
factor targets inferred from promoter sequence analysis16 or from 
proprietary, literature-based networks26 have not been systematically 
validated. As a result, with the exception of VIPER, to our knowledge 
there are currently no validated methods to systematically predict the 

activity of all signal transduction and transcription factors proteins 
in individual samples.

VIPER leverages protein regulons reverse-engineered from primary 
tumor sample data to quantitatively assess differential protein activ-
ity in individual samples, without any manual annotation or curated 
gene sets. Critically, VIPER’s performance is extremely robust and 
resilient to signature noise, regulon subsampling and sample quality. 
Indeed, VIPER accurately inferred protein activity for ~50% of all 
regulatory proteins using <1,000 genes from LINCS perturbational 
signatures (Supplementary Fig. 7). Furthermore, inference of dif-
ferentially active proteins from fresh-frozen or FFPE samples from 
the same tissue was highly correlated, even though correlation of 
the corresponding gene expression data was low. VIPER predictions 
were remarkably reproducible across samples belonging to the same 
molecular tumor subtype. This is critically important for precision 
medicine applications.

Tissue specificity of protein-target is a critical element of our analy-
sis. Genes with expression affected by changes in protein activity are 
highly context-specific35, owing to lineage-specific chromatin remod-
eling, combinatorial regulation by multiple transcription factors and 
post-translational modification. This is supported by the fact that 
inference of protein activity using the incorrect regulatory model 
produced substantially degraded results (Fig. 2a).

VIPER constitutes only a partial contribution toward the ultimate 
goal of accurately measuring protein activity in mammalian samples. 
Yet our data suggest that improvements in the accuracy and coverage 
of regulatory models could further increase the quality and breadth 
of these predictions, thus helping determine which proteins drive key 
pathophysiological phenotypes. We illustrated the potential applica-
tion of VIPER to mine existing data sets, including expression profiles 
in TCGA and LINCS. Finally, VIPER has the power to infer relative 
protein activity as an extra layer of information, providing additional 
evidence over classical genetics and functional genomics data to assess 
the effect of nonsilent mutations.

URLs. VIPER package for the R system is available from Bioconductor 
at http://www.bioconductor.org/packages/release/bioc/html/viper.html. 
VIPER package vignette, http://bioconductor.org/packages/release/bioc/
vignettes/viper/inst/doc/viper.pdf; The Cancer Genome Atlas, http://
cancergenome.nih.gov/; ChEA database, http://amp.pharm.mssm.edu/
Enrichr/#stats; CMAP, https://www.broadinstitute.org/cmap/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Affymetrix array data for the BCL6 knockdown 
experiments described in the paper have been deposited at the Gene 
Expression Omnibus (GEO) under accession number GSE45838.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

Acknowledgments
We thank G. Riekhof for critical insight and help with drafting the manuscript. 
This work was supported by the National Institutes of Health (NIH) Roadmap 
National Centers for Biomedical Computing (5U54CA121852), the NIH Library 
of Integrated Network-based Cellular Signatures program (1U01CA164184), 
the National Cancer Institute (NCI) Cancer Target Discovery and Development 
program (1U01CA168426), and the NIH instrumentation grants (S10OD012351 
and S10OD021764). Additional support was from NIH (R01CA85573)  
to B.H.Y. and a fellowship grant from the Lauri Strauss Leukemia Foundation  
to B.B.D. The results published here are in whole or part based upon data  

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.
np

g
©

 2
01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.bioconductor.org/packages/release/bioc/html/viper.html
http://bioconductor.org/packages/release/bioc/vignettes/viper/inst/doc/viper.pdf
http://bioconductor.org/packages/release/bioc/vignettes/viper/inst/doc/viper.pdf
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://amp.pharm.mssm.edu/Enrichr/#stats
http://amp.pharm.mssm.edu/Enrichr/#stats
https://www.broadinstitute.org/cmap/
http://dx.doi.org/10.1038/ng.3593
http://dx.doi.org/10.1038/ng.3593
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45838
http://dx.doi.org/10.1038/ng.3593


Nature Genetics  VOLUME 48 | NUMBER 8 | AUGUST 2016	 847

a n a ly s i s

generated by The Cancer Genome Atlas pilot project established by the NCI and 
NHGRI as of January 2011.
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ONLINE METHODS
Regulatory networks. The regulatory networks were reverse engineered by 
ARACNe49 from 20 different data sets: two B-cell context data sets profiled 
on Affymetrix HG-U95Av2 and HG-U133plus2 platforms, respectively; a 
high-grade glioma data set profiled on Affymetrix HG-U133A arrays; and 17 
human cancer tissue data sets profiled by RNA-seq from TCGA (Table 1). The 
Affymetrix platform data sets were summarized by MAS5 (affy R package50,51) 
using probe clusters generated by the ‘cleaner’ algorithm52. Cleaner generates 
‘informative’ probe-clusters by analyzing the correlation structure between 
probes mapping to the same gene and discarding noncorrelated probes, which 
might represent poorly hybridizing or cross-hybridizing probes52. The RNA-
seq level 3 data were downloaded from TCGA data portal, raw counts were 
normalized to account for different library size, and the variance was stabilized 
by fitting the dispersion to a negative-binomial distribution as implemented 
in the DESeq R package53 (Bioconductor54). ARACNe was run with 100 boot-
strap iterations using all probe clusters mapping to a set of 1,813 transcrip-
tion factors (genes annotated in Gene Ontology molecular function database 
(GO)55 as GO:0003700, ‘transcription factor activity’, or as GO:0004677, ‘DNA 
binding’, and GO:0030528, ‘transcription regulator activity’, or as GO:0004677 
and GO: 0045449, ‘regulation of transcription’), 969 transcriptional cofactors 
(a manually curated list, not overlapping with the transcription factor list, 
built upon genes annotated as GO:0003712, ‘transcription cofactor activity’, or 
GO:0030528 or GO:0045449) or 3,370 signaling pathway related genes (anno-
tated in GO Biological Process database as GO:0007165 ‘signal transduction’ 
and in GO cellular component database as GO:0005622, ‘intracellular’, or 
GO:0005886, ‘plasma membrane’) as candidate regulators. Parameters were 
set to 0 DPI (data processing inequality) tolerance and MI (mutual informa-
tion) P-value threshold of 10−8.

The regulatory networks based on ChIP experimental evidence were assem-
bled from ChEA and ENCODE data. The mode of regulation was computed 
based on the correlation between transcription factor and target gene expres-
sion as described below.

Benchmarking experiments. We used gene expression profile data after 
MEF2B32, FOXM1 (ref. 17), MYB17 (GSE17172) and BCL6 (GSE45838) silenc-
ing in human B cells, and STAT3 silencing in the human glioma cell line SNB19 
(ref. 18; GSE19114, Table 2). BCL6 knockdown experiments were performed in 
OCI-Ly7 and Pfeiffer GCB-DLBCL cell lines. Both cell lines were maintained 
in 10% FBS supplemented IMDM and transiently transfected with either a 
BCL6-specific or a nontarget control siRNA oligo in triplicate as described 
previously56. Total RNA was isolated 48 h after transfection, time at which 
knockdown of BCL6 protein was observed (Supplementary Fig. 15a), and gene 
expression was profiled on H-GU133plus2 Affymetrix gene chips following the 
manufacturer protocol (Affymetrix Inc.). All experiments showed a significant 
reduction at the mRNA level for the silenced gene as quantified by expression 
profile (Supplementary Fig. 15b). Gene expression signatures were obtained 
by Student’s t-test analysis of the gene expression profiles; see Table 2.

VIPER. The VIPER algorithm tests for regulon enrichment on gene expres-
sion signatures. The gene expression signature is first obtained by comparing 
two groups of samples representing distinctive phenotypes or treatments. Any 
method that generates a quantitative measurement of difference between the 
groups can be used (fold change, Student’s t-test, Mann-Whitney U test, etc.). 
Alternatively, single-sample-based gene expression signatures can be obtained 
by comparing the expression levels of each feature in each sample against a set 
of reference samples by any suitable method, including for example Student’s 
t-test, Z-score transformation or fold change; or relative to the average expres-
sion level across all samples when clear reference samples are not available. 
Then we compute the enrichment of each regulon on the gene expression 
signature using different implementations of aREA (see below). Finally, we 
estimate the significance, including P value and normalized enrichment score, 
by comparing each regulon enrichment score to a null model generated by 
randomly and uniformly permuting the samples 1,000 times. Alternatively, 
when the number of samples is not enough to support permutation with repo-
sition (at least five samples per group is required), permutation of the genes 
in the gene expression signature or its analytic approximation can be used 
(see below).

Fisher’s exact test. We tested whether the overlap between the subset of 
genes that were differentially expressed following RNAi-mediated silencing 
of each gene (P < 0.01) and the genes in its regulon was statistically significant  
by Fisher’s exact test (FET). The classical FET method considers equally  
all differentially expressed genes, regardless of whether they are up- or 
downregulated and hence, FET cannot infer whether the regulator activity is 
increased or decreased by the perturbation. To address this issue, we modified 
the FET approach to compute independently the enrichment of activated and 
repressed targets of a regulator (positive and negative parts of its regulon) 
on up- and downregulated genes, respectively. Specifically, the genes in each 
regulon were divided into two subsets: (i) transcriptionally activated (R+) and 
(ii) transcriptionally repressed (R−) targets. We used the sign of the Spearman’s 
correlation between the mRNA expression level for the regulator and each of 
the genes in its regulon to classify them as part of R+ or R−. This correlation 
analysis was performed on the same data set used to infer the network by 
ARACNe. Then, FET analysis was performed independently for R+ and R− 
on the two tails of each gene expression signature. Regulators with an increase 
in activity would thus show enrichment of R+ targets in overexpressed genes 
and of R− targets in underexpressed genes, respectively. The opposite would 
be the case for regulators with a decrease in activity. The use of discrete gene 
lists by FET produces enrichments that are often not robust with respect to 
threshold selection (Supplementary Fig. 16).

Gene set enrichment analysis. One-tail GSEA was implemented as described29. 
For two-tail GSEA, we divided the query regulon into two subsets: a positive 
subset containing the genes predicted to be transcriptionally activated by the 
regulator (R+), and a negative subset encompassing the target genes predicted 
to be repressed by the regulator (R−). The target genes were classified as being 
part of the R+ or R− subsets depending on whether their mRNA levels were 
positively or negatively correlated with the regulator mRNA levels (Spearman’s 
correlation). The gene expression signature was then sorted from the most 
upregulated to the most downregulated gene (signature A) and the rank posi-
tions for R+ were computed. The rank positions for R− were then computed 
from the gene expression signature, but this time sorted from the most down-
regulated to the most upregulated gene (signature B). The enrichment score was 
computed as described29, using the computed rank positions for the R+ and R− 
subsets, but taking the weighting score values only from signature A.

Analytic rank-based enrichment analysis. aREA tests for a global shift in 
the positions of each regulon genes when projected on the rank-sorted gene 
expression signature. Following up on the work in refs. 57,58, we used the 
mean of the quantile-transformed rank positions as test statistic (enrichment 
score). The enrichment score is computed twice: first by a one-tail approach, 
based on the absolute value of the gene expression signature (i.e., genes are 
rank-sorted from the less invariant between groups to the most differen-
tially expressed, regardless of the direction of change); and then by a two-tail 
approach, where the positions of the genes whose expression is repressed by 
the regulator (R−) are inverted in the gene expression signature before comput-
ing the enrichment score. The one-tail and two-tail enrichment score estimates 
are integrated while weighting their contribution based on the estimated mode 
of regulation through a procedure we call ‘three-tail’ approach (see below). The 
contribution of each target gene from a given regulon to the enrichment score 
is also weighted based on the regulator-target gene interaction confidence (see 
below). Finally, the statistical significance for the enrichment score is estimated 
by comparison to a null model generated by permuting the samples uniformly 
at random or by an analytic approach equivalent to shuffle the genes in the 
signatures uniformly at random. The arithmetic mean-based enrichment score 
has several desirable properties, both at the algebraic level, by making the 
weighted contribution of the targets to the enrichment score trivial to for-
mulate, as well as at the computational level. Regarding this last point, given 
the linear nature of the mean-based enrichment score, its computation across 
the elevated number of permutations required to generate the null model 
can be performed very efficiently by matrix operations. Moreover, the use of 
the arithmetic mean as enrichment score allows for analytical approaches to 
estimate its statistical significance, which is equivalent to shuffle the genes in 
the signatures uniformly at random. We note, however, that the null hypoth-
eses tested by these two alternative approaches are not equivalent. In the case 
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of sample shuffling, we test whether the calculated enrichment score for a 
given gene expression signature (i.e., for gene expression profiles associated 
with the phenotypes) is significantly higher than the one we can obtain when 
there is no association between the phenotype and the gene expression profile. 
Conversely, gene shuffling (or its analytic approximation) tests whether the 
enrichment score is higher than the one we can obtain when the set of genes to 
test is uniformly distributed in the gene expression signature. Gene shuffling 
can be approximated analytically as follows: according to the central limit 
theorem, the mean of a sufficiently large number of independent random 
variables will be approximately normally distributed. The enrichment score 
of our null hypothesis fulfill this condition, and we ensure a mean of zero and 
variance equal to one for the enrichment score under the null hypothesis by 
applying a quantile transformation based on the normal distribution to the 
rank-transformed gene expression signature before computing the enrichment 
score. Then, under the null hypothesis, the enrichment score will be normally 
distributed with mean equals zero and variance 1/n, where n is the regulon size. 
This definition can be generalized, when the weighted mean is used, by 

s2

1

2=
=
∑
i

n
iw

 

where wi is the weight for target i.

Mode of regulation. The mode of regulation (MoR) is determined based on the 
Spearman’s correlation coefficient (SCC) between the regulator and the target 
expression, computed from the data set used to reverse engineer the network. 
However, for complex non-monotonic dependencies (for example, for con-
text-specific rewiring59–61), assessing the MoR may not be trivial. To address 
this issue, we first model the SCC probability density for all regulator-target 
interactions in the network using a three-Gaussian mixture (Supplementary 
Fig. 1), representing (i) clearly repressed targets (MoR−), (ii) clearly activated 
targets (MoR+), and (iii) non-monotonically regulated targets for which the 
MoR cannot be reliably estimated (MoRNM). The parameters for the three-
Gaussian mixture model were estimated with the ‘mixtools’ R package62. Then, 
rather than defining MoR+ or MoR− targets based on the sign of the SCC, we 
associate each target with three weights (pA, pR, pNM), representing the prob-
ability that, given its SCC, it may be activated, repressed, or non-monotonically 
regulated. These probabilities are computed as the relative likelihood of a given 
regulator-target interaction to be described by any of these three models and 
computed as the difference between the cumulative distribution for activation 
(CDF(G2)) and the CDF for repression (CDF(G1)), divided by the total CDF: 
CDF(G1 upper-tail) + CDF(G2 lower-tail) + CDF(G0 lower-tail for Rho < 0 or 
G0 upper-tail for Rho > 0) (Supplementary Fig. 2a–f).

The aREA-3T approach implemented in VIPER uses MoR to weight  
the contribution of the one-tail- and two-tail-based enrichment scores as:  
ES = |MoR| ES2 + (1-|MoR|) ES1, where ES1 and ES2 are the one-tail aREA and 
two-tail aREA estimations of the enrichment score (Fig. 1c). Such probabilistic 
formulation avoids selection of arbitrary thresholds for determining target 
MoR, reducing parameter choices and thus risk of data overfitting.

aREA-3T behaves remarkable robust to changes in the parameter estimates 
for the three-Gaussian mixed model. We scanned the ‘mean’ parameter space 
on a wide range, from −0.3 to −0.6 for G1 and from 0.3 to 0.6 for G2; and 
found a uniform response of aREA on the estimated normalized enrichment  
score and P values across all benchmarking experiments, with only the rank 
positions being slightly affected (Supplementary Fig. 2g,h).

Regulator-target confidence. We used the mutual information (MI) between 
regulator and target gene mRNA levels as inference of regulator-target interac-
tion confidence. To compute a regulator-target interaction confidence score, 
we first generated a null set of interactions for each regulator by selecting 
target genes at random from all the profiled genes while excluding those in the 
actual regulon (i.e., ARACNe inferred). The number of target genes for the null 
regulon was chosen to match those in the actual regulon. Then we computed 
a CDF for the MI in the ARACNe regulons (CDF1) and null regulons (CDF2), 
and estimated the confidence score for a given regulator-target interaction 
(interaction confidence or IC) as the ratio: IC = CDF1 / (CDF1 + CDF2). IC was 

used to weight the contribution of each target gene to the enrichment score 
(Supplementary Fig. 17).

Pleiotropy. Pleiotropic regulation of gene expression (genes regulated by 
several different transcription factors) can lead to false positive results if a 
non-active regulator shares a significant proportion of its regulon with a bona 
fide active regulator (Fig. 1d and Supplementary Table 9). To account for 
this effect, we extended the shadow analysis procedure originally described 
in ref. 17 to take full advantage of the probabilistic framework used by VIPER. 
Briefly, we first generated all possible pairs of regulators AB satisfying two 
conditions: (i) both A and B regulons are significantly enriched in the gene 
expression signature (P < 0.05), and (ii) they co-regulate (A ∩ B) at least ten 
genes. Then we evaluate whether the regulons in each pair are enriched in the 
gene expression signature mostly due to the co-regulated genes. This is per-
formed by computing the enrichment of the co-regulated genes (A ∩ B) on a 
subset of the gene expression signature representing only the genes in A (pA) 
and in B (pB), where pA and pB represent the estimated P values for the enrich-
ment computed by aREA. Then we compute the pleiotropy differential score as  
PDE = log10(pB) − log10(pA). If pA < pB, we penalize the co-regulated genes for 
A by PDE PI / NT, where pleiotropy index (PI) is a constant and NT is the number 
of test pairs involving the regulon A. Conversely, if pA > pB we penalize the 
co-regulated genes for B by |PDE|PI / NT. VIPER results showed in general to be 
robust to different values for the pleiotropy index (Supplementary Fig. 18). We 
set PI = 20 based on the benchmark data (Table 2), because it was a reasonable 
compromise between accuracy and specificity (Supplementary Fig. 18).

Availability. The VIPER algorithm is available as an R system package from 
Bioconductor. A detailed description of the package functionality and use-case 
examples can be found in the viper package vignette.

Residual post-translational RPT activity. We found a strong association 
between VIPER-inferred protein activity and the coding gene mRNA level 
(Supplementary Fig. 19). We estimated the variance in VIPER-inferred pro-
tein activity owing to the expression level of the coding gene by fitting a lineal 
model to the rank transformed data. Then, the residuals of such fit constitute 
the remaining variance in protein activity after removing the expression effect. 
By definition, this residual post-translational protein activity (RPT activity) 
and the expression level of the coding genes are decoupled.

Association of somatic mutations with protein activity. We estimated  
the association between nonsilent somatic mutations and three quantita-
tive traits: (i) mutated gene mRNA levels, (ii) VIPER-inferred global protein  
activity (G activity), and (iii) VIPER-inferred residual post-translational RPT 
activity, by computing the enrichment of the mutated samples on each of the 
traits using the aREA algorithm. An integrated association was obtained by 
taking the maximum association (minimum P value) among these traits.

The mutant phenotype score was computed by integrating the relative  
likelihoods of mutation for a given G- and RPT-activity level. Distribution 
densities for the mutated and non-mutated (WT) samples, for genes mutated 
in at least ten samples, were estimated by a Gaussian kernel, and the probabili-
ties, computed by the derived cumulative distribution functions, were used to 
compute the relative likelihood for each trait as follows: 

RL x
p x p x
p x p x
M wt

M wt
( )

( ) ( )
( ) ( )

=
−
+  

where pM and pwt are the estimated probabilities for mutant and WT pheno-
types at a given value x of the evaluated trait, either G or RPT activity. MPS 
is then defined as the maximum deviance from zero of RL among the two 
evaluated traits.
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