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Abstract

Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To 

accelerate understanding of AMD biology and help design new therapies, we executed a 

collaborative genomewide association study, examining >17,100 advanced AMD cases and 

>60,000 controls of European and Asian ancestry. We identified 19 genomic loci associated with 

AMD with p<5×10−8 and enriched for genes involved in regulation of complement activity, lipid 

metabolism, extracellular matrix remodeling and angiogenesis. Our results include 7 loci reaching 

p<5×10−8 for the first time, near the genes COL8A1/FILIP1L, IER3/DDR1, SLC16A8, TGFBR1, 

RAD51B, ADAMTS9/MIR548A2, and B3GALTL. A genetic risk score combining SNPs from all 

loci displayed similar good ability to distinguish cases and controls in all samples examined. Our 

findings provide new directions for biological, genetic and therapeutic studies of AMD.

AMD is a highly heritable progressive neurodegenerative disease that leads to loss of central 

vision through death of photoreceptors1,2. In developed countries, AMD is the leading cause 

of blindness in those >65 years3. Genes in the complement pathway4–11 and a region of 

chromosome 10 12,13 have now been implicated as the major genetic contributors to disease. 

Association has also been demonstrated with several additional loci14–20, each providing an 

entry-point into AMD biology and potential therapeutic targets.

To accelerate the pace of discovery in macular degeneration genetics, 18 research groups 

from across the world formed the AMD Gene Consortium in early 2010, with support from 

the National Eye Institute (Table 1, Supplementary Table 1, Supplementary Note). To 

extend the catalog of disease associated common variants, we first organized a meta-analysis 

of genomewide association scans (GWAS) – combining data for >7,600 cases with 

advanced disease (geographic atrophy, neovascularization, or both) and >50,000 controls. 

Each study was first subject to GWAS quality control filters (customized taking into account 

study specific features21 as detailed in Supplementary Table 2) and standardized to the 

HapMap reference panel and statistical genotype imputation22–25. Results were combined 

through meta-analysis26 and thirty-two variants representing loci with promising evidence of 

association were genotyped in an additional >9,500 cases and >8,200 controls 
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(Supplementary Tables 1–3; summary meta-analysis results available online). Our overall 

analysis of the most promising variants thus included >17,100 cases and >60,000 controls.

Our meta-analysis evaluated evidence for association at 2,442,884 SNPs (Figure 1). 

Inspection of Q-Q plots (Supplementary Figure 1) and the genomic control value 

(λGC=1.06) suggest that unmodeled population stratification does not significantly impact 

our findings (Supplementary Table 4 for details). Joint analysis of discovery and follow-up 

studies27 resulted in 19 loci reaching p<5×10−8 (Figure 1, Table 2, Supplementary Table 5). 

These 19 loci include all susceptibility loci previously reaching p<5×10−8, except the 4q12 

gene cluster for which association was reported in a Japanese population. In addition, the set 

includes seven loci reaching p<5×10−8 for the first time.

We evaluated heterogeneity between studies using the I2 statistic, which compares 

variability in effect size estimates between studies to chance expectations28. We observed 

significant (p<.05/19) heterogeneity only for loci near ARMS2 (I2=75.7%, p<1×10−6) and 

near CFH (I2=85.4%, p<1×10−6). Although these two loci were significantly associated in 

every sample examined, the magnitude of association varied more than expected. To explore 

sources of heterogeneity, we carried out a series of sub-analyses: we repeated the 

genomewide meta-analysis adding an age-adjustment, separating neovascular (NV) and 

geographic atrophy (GA) cases, in men and women, and in European- and Asian-ancestry 

samples separately (Figure 3, Supplementary Figure 2). These sub-analyses of the full 

GWAS dataset did not uncover additional loci reaching p<5×10−8; furthermore 

heterogeneity near CFH and ARMS2 remained significant in all sub-analyses (I2>65%, p <.

001). Consistent with previous reports17,29,30, separate analysis of NV and GA cases showed 

ARMS2 risk alleles preferentially associated with risk of NV (ORNV=2.97, ORGA=2.50, 

pdifference=.0008) whereas CFH risk alleles preferentially associated with risk of GA 

(ORNV=2.34, ORGA=2.80, pdifference=.0006). We also observed large differences in effect 

sizes when stratifying by ethnicity, with variants near CFH exhibiting stronger evidence for 

association among Europeans (p=.0000001) and those near TNFRSF10A among East Asians 

(p=.002). Potential explanations include differences in linkage disequilibrium between 

populations or differences in environmental or diagnostic factors that modify genetic effects.

Identifying the full spectrum of allelic variation that contributes to disease in each locus will 

require sequencing of AMD cases and controls. To conduct an initial evaluation of the 

evidence for multiple AMD risk alleles in the nineteen loci described here, we repeated 

genomewide association analyses conditioning on the risk alleles listed in Table 2. We then 

examined each of the 19 implicated loci for variants with independent association (at p<.

0002, corresponding for an estimate of ~250 independent variants per locus). This analysis 

resulted in the identification of the previously well documented independently associated 

variants near CFH and C2/CFB8,10,31,32 and of additional independent signals near C3, 

CETP, LIPC, FRK/COL10A1, IER3/DDR1, RAD51B (Supplementary Table 6). In four of 

these loci, the independently associated variants mapped very close (within <60kb) to the 

original signal. This shows each locus can harbor multiple susceptibility alleles, encouraging 

searches for rare variants that elucidate gene function in these regions33,34.
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To prioritize our search for likely causal variants, we examined each locus in detail (see 

LocusZoom35 plots in Supplementary Figure 3) and investigated whether AMD risk alleles 

were associated with changes in protein sequence, copy number variation or insertion 

deletion polymorphisms. One quarter of associated variants altered protein sequence, either 

directly (N=2) or through linkage disequilibrium (r2>.6; N=3) with a nearby non-

synonymous variant (Supplementary Table 7). Some coding variants point to well-studied 

genes (ARMS2, C3 and APOE) while others help prioritize nearby genes for further study. In 

chromosome 4q25, index SNP rs4698775 is in strong linkage disequilibrium (r2=.88) with a 

potentially protein damaging variant in CCDC109B36, a coiled coil domain containing 

protein that may be involved in the regulation of gene expression. In chromosome 6q22, 

index SNP rs3812111 is a perfect proxy for a coding variant in COL10A1, a collagen protein 

that could be important in maintaining the structure and function of the extra-cellular matrix. 

Interestingly, rs1061170 (NP_000177.2[CFH]:p.His402Tyr) was not in disequilibrium with 

rs10737680, the most strongly associated SNP in the CFH region but, instead, was tagged 

by a secondary and weaker association signal (Supplementary Tables 6&7). This is 

consistent with prior haplotype analyses of the locus10,31,32,34,37.

We used publicly available data38,39 to check whether any of our index SNPs might be 

proxies for copy number variants or insertion-deletion polymorphisms (indels), which are 

hard to directly interrogate with genotyping arrays. This analysis identified a single strong 

association (r2=.99), between rs10490924, a coding variant in the ARMS2 gene which is the 

peak of association in 10q26, and a 3′ UTR indel polymorphism associated with ARMS2 

mRNA instability40. Since index SNP rs10490924 is also in strong disequilibrium (r2=.90) 

with a nearby SNP, rs11200638, that regulates HTRA141, our data does not directly answer 

whether HTRA1 or ARMS2 is the causal gene in this locus. Although a common deletion of 

the CFHR1 and CFHR3 genes has been proposed42,43, there was only modest signal in this 

study which is likely due to linkage disequilibrium with our most significantly associated 

variants in the locus (r2=.31 between rs10737680 and 1000 Genomes Project 

MERGED_DEL_2_6731) as previously suggested34.

Using RNA-sequencing44, we examined mRNA levels of 85 genes within 100 kb of our 

index SNPs in post-mortem human retina (Supplementary Table 8). Of 19 independent risk 

loci, three had no genes with expressed transcripts in either old or young retina. Two genes 

showed differential expression between post-mortem retina of young (ages 17–35) and 

elderly (ages 75 and 77) individuals: CFH (p=.009) and VEGFA (p=.003), both with 

increased expression in older individuals. Using previously published data45, we also 

examined the expression of associated genes in fetal and adult retinal pigment epithelium 

(RPE). This revealed increased C3 expression in adult RPE compared to fetal RPE (p=.

0008). CFH, VEGFA and C3 are thus up-regulated with aging, and their role in AMD may 

indicate an accelerated aging process. In addition to C3 and CFH, all the complement genes 

with detectable expression in the retina or RPE experiments showed higher expression levels 

in older tissue.

To identify biological relationships among our genetic association signals, we catalogued 

the genes within 100kb of the variants in each association peak (r2>0.8 with the index SNP 

listed in Table 1). Ingenuity Pathway Analysis (Ingenuity Systems, Redwood, CA) 
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highlighted several biological pathways, particularly the complement system and 

atherosclerotic signaling, to be enriched in the resulting set of 90 genes (Table 3, 

Supplementary Table 9). To account for features of genomewide association studies (such as 

the different number of SNPs in each gene), we carried out two additional analyses. First, 

we repeated our analysis for 50 sets of 19 control loci drawn from the NHGRI GWAS 

catalog46. In these 50 control sets, Ingenuity enrichment p-values for the complement 

system and for atherosclerosis signaling genes were exceeded 16% and 32% of the time 

respectively (although these two specific pathways were never implicated in a control 

dataset). We also repeated our enrichment analyses using the INRICH tool47, which is 

specifically designed for the analysis of genomewide association studies – but accesses a 

more limited set of annotations. The INRICH analyses showed enrichment for genes 

encoding collagen and extra-cellular region proteins (both with p=10−5 and after adjustment 

for multiple testing padjust=.0006), complement and coagulation cascades (p=.0002, padjust=.

03), lipoprotein metabolism (p=.0003, padjust=.04), and regulation of apoptosis (p=.0009, 

padjust=.09) (Supplementary Table 10).

To explore the connections between our genetic association signals, we tested for interaction 

between pairs of risk alleles – looking for situations where joint risk was different than 

expected based on marginal effects. This analysis resulted in 171 tests of interaction, of 

which 9 were nominally significant (p<.05, see Supplementary Table 11), consistent with 

chance expectations. The strongest observed interaction involved risk alleles at rs10737680 

(near CFH) and rs429608 (near C2/CFB), the only association that remained significant 

after adjusting for multiple testing (p=.000052, <0.05/171=.00029). Individuals carrying risk 

alleles at both these loci where at slightly higher risk of disease than expected.

The proportion of the variability in the risk of AMD that is due to genes, or heritability, has 

been estimated at 45–70% 2. Estimating the proportion of disease risk explained by the 

susceptibility loci identified 48 depends greatly on the disease prevalence - which is difficult 

to estimate in our sample, as it includes cases and controls of different ages and collected 

through a variety of ascertainment schemes. Using a model that assumes an underlying 

normally distributed but unobserved disease risk score or liability49, the nineteen loci 

described here account for between 10% (if AMD prevalence is close to 1%) and 30% (if 

AMD prevalence is closer to 10%) of the variability in disease risk (corresponding to 15–

65% of the total genetic contribution to AMD). The variants representing the peak of 

association at loci previously reaching genomewide significance account for the bulk of this 

variability: the new loci identified here account for 0.5–1.0% of the total heritability of 

AMD whereas secondary signals at novel and known loci account for 1.5–3.0% of the total 

heritability.

We report here the most comprehensive genetic association study of macular degeneration 

yet conducted, involving 18 international research groups, and a large set of cases and 

controls. Our data reveal 19 susceptibility loci, including 7 loci reaching p<5×10−8 for the 

first time, nearly doubling the number of known AMD loci outside the complement 

pathway. Our results show some susceptibility alleles exhibit different association across 

ethnic groups and may be preferentially associated with specific subtypes of disease. As 

with other GWAS meta-analysis, differences in genotyping methods, quality control steps 
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and imputation strategies between samples might have a minor effect in our results – future 

studies may document that more uniform approaches across larger sample sizes might 

uncover more signals. A conundrum of macular degeneration genetics remains that the loci 

identified to date contribute to both GA and NV, two different phenotypes of advanced 

disease. In our sample, subtype specific GWAS analyses considering GA or NV cases only 

did not identify additional loci. Consistent with observations for other complex diseases39, 

the majority of common disease susceptibility alleles do not alter protein sequences and are 

not associated with insertions or deletions of coding sequence or with copy number 

variation. We expect that the loci identified here will provide an ideal starting point for 

studies of rare variation33,34.

In contrast to most other complex diseases, a risk score combining information across our 19 

loci, can distinguish cases and controls relatively well (Figure 4, area under the ROC curve 

[AUC]=.52 including only new loci or AUC=.74 including new and previously reported 

loci; Supplementary Figure 4). It may be possible to use similar scores to identify and 

prioritize at risk individuals so they receive preventative treatment prior to the onset of 

disease50. Monotherapies are increasingly utilized to manage neovascular disease, but offer 

only a limited repertoire of treatment options to patients. Identification of novel genes and 

pathways enables us to pursue a larger range of disease-specific targets for development of 

new therapeutic interventions. We expect that future therapies directed at earlier stages of 

the disease process will allow patients to retain visual function for longer periods, improving 

the quality of life for individuals with AMD.

ONLINE METHODS

GENOME-WIDE SCAN FOR LATE AMD ASSOCIATION INCLUDING FOLLOW-UP

Study-specific association analysis for discovery—Genotyping was performed on 

a variety of different platforms summarized in Supplementary Table 2. Each group 

submitted results from association tests using genotyped and imputed data where the allelic 

dosages were computed with either MACH25, IMPUTE23, BEAGLE24, or snpStats52 using 

the HapMap2 reference panels. The CEU panel was used as a reference for imputation-

based analyses for most samples (predominantly of European ancestry), with two 

exceptions: for the JAREDS samples (predominantly of East Asian ancestry), the CHB+JPT 

panel was used as a reference; for the VRF samples (predominantly of South Asian 

ancestry) the combined CEU and CHB+JPT panels were used22,53. For most data sets 

association tests were run under a logistic regression model using either Plink54, 

Mach2dat25, ProbABEL55, or snpStats52, though for one dataset containing related 

individuals the generalized estimating equations algorithm56 as implemented in R57,58. In 

addition to the primary analysis which tested for SNP associations with advanced AMD 

unadjusted for age, an age-adjusted sensitivity analysis was conducted by each group with 

available age. Each group also provided stratified results by sex or AMD subtype (GA or 

NV) as long as the sample size per stratum exceeded 50 subjects. For all analyses, study-

specific control for population stratification was conducted (Supplementary Table 4).

Study-specific association analysis for follow-up—Genotyping of the selected 

SNPs was performed on different platforms; the same models, sensitivity and stratified 
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analyses were computed by each follow-up partner, while SNPs with insufficient call rate 

were excluded based on study-specific thresholds. If the index SNP could not be genotyped, 

a highly correlated proxy was used whenever possible (Supplementary Tables 2&3).

Quality control before meta-analysis—Before meta-analysis, all study-specific files 

underwent quality control procedures to check for completeness and plausible descriptive 

statistics on all variables as well as for compliance of allele frequencies with HapMap59. In 

addition, we excluded SNP results of a study into meta-analysis (i) for discovery: if 

imputation quality measures were too low (MACH & PLINK <0.3; SNPTEST <0.4) or if 

effect sizes (|beta|) or standard errors were too extreme (≥5) indicating instability of the 

estimates, (ii) for follow-up: if Hardy-Weinberg equilibrium was violated (p<0.05/32).

Meta-analyses—For both discovery and follow-up, we performed meta-analyses using the 

inverse variance weighted fixed effect model, which pools the effect size and standard error 

of each participated GWAS. Using an alternative weighted z-score method, which is based 

on a weighted sum of z-score statistics, we obtained a very similar set of test statistics 

(correlation of −log10(p-value) >0.98). All analyses were performed using METAL26 and R. 

For the discovery, we applied two rounds of genomic control corrections to each individual 

GWAS and the combined meta results, respectively 51. All results were analyzed and 

validated among four independent teams.

EXTENDED ANALYSES FOR THE IDENTIFIED AMD LOCI

Extended analyses were conducted on the identified loci and particularly on the top SNP of 

each locus.

Second signal analysis—To detect potential independent signals within the identified 

AMD loci, each study partner with genotypes for all identified SNPs available re-analyzed 

their data for all SNPs in the respective loci (index SNP ±1Mb) using a logistic regression 

model containing all identified index SNPs. Quality control procedures were performed as 

before. The beta estimates for each SNP were meta-analyzed applying the effective sample 

size weighted z-score method and two rounds of genomic control correction. The 

significance threshold (p<0.05) for an independent association signal within any of the 

identified loci was Bonferroni-adjusted using the average effective number of SNPs 

involved across the identified loci determined by SNPSpD60. To this analysis, 13 studies 

contributed including 7,489 cases and 51,562 controls.

Interaction analysis—Utilizing a pre-specified R-scripts (see URLs), GWAS partners 

performed 171 logistic regression analyses modeling the pair-wise interaction of the 19 

index SNPs assuming an additive model for main and interaction effects. Study-specific 

covariates were included to the model if required. Per study, quality control included a 

check for consistency of SNP main effects between discovery and interaction analysis. SNPs 

with low imputation quality measures and pairs with |beta|>5 or standard errors >5 were 

excluded before meta-analyzing the interaction effects with the inverse variance weighted 

fixed effect model in METAL. To this analysis, 12 studies contributed including 6,645 cases 

and 49,410 controls.
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GENETIC RISK SCORE

The meta-analyzed effect sizes, βj, for each of the 19 SNPs were calculated in the meta-

analysis described above and normalized: , j=1,…,19. Using these as weights, 

each study partner with all 19 SNPs available computed the individuals’ genetic risk score 

as a normalized weighted sum of the AMD risk increasing alleles among the identified SNPs 

as

where xij is the genotype of the ith individual at the jth SNP, so Si ranges from 0 to 2. This 

data was available from 12 studies including 7,195 cases and 49,149 controls.

For each study, we used a leave-one-out cross-validation to access the prediction of the risk 

score. For the kth subject, we fitted a logistic regression model from all subjects in the study 

excluding the kth subjects: , i! = k, α is the intercept and γ is the effect of 

the genetic risk score. The fitted probability of the kth subject was then estimated as ŷk = 1/

(1+e−(α̂+γ̂Sk)). We sorted the fitted probabilities and calculated sensitivity and specificity by 

varying the risk threshold (the value compared with the fitted probability to dichotomize the 

subject into case or control) from 0 to 1. These were utilized to compute the area-under-the 

curve (AUC) of the receiver-operating-curve (ROC).

IDENTIFICATION OF CORRELATED CODING VARIANTS AND TAGGED NON-SNP 
VARIATION

LD estimates were calculated using genotype data of the identified risk loci (index SNPs 

±500kb) of individuals with European ancestry from the 1000 Genomes Project (March 

2012 release)61 or from HapMap (release #28)59. Variants correlated (r²>0.6) with one of 

the GWAS index SNPs were identified using PLINK54. To filter coding variants, all 

correlated variants were mapped against RefSeq transcripts using ANNOVAR62.

GENE EXPRESSION

We evaluated expression of genes within 100kb of one of the 19 index SNPs, as well as of 

several retina-specific, RPE-specific and housekeeping genes unrelated to AMD for 

comparison in retina (RNA-sequencing data from three young [17–35 yrs age] and two old 

individuals [75 and 77 yrs age]) as well as in fetal and adult retinal pigment epithelium 

(RPE; published data in the Gene Expression Omnibus database45). Expression was 

analyzed using previously described protocols44 (Supplementary Table 8).

PATHWAY ANALYSES

Functional enrichment analysis was performed using the Ingenuity Pathway Analysis 

software (IPA, Ingenuity® Systems). Any gene located within 100kb of a SNP in high LD 

(r2>0.8) with one of the index SNPs was considered a potential AMD risk associated gene 
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and considered for subsequent pathway enrichment analysis. LD estimates were calculated 

as described above. Applying the above inclusion filters, 90 genes appear to be implicated 

by our 19 replicated AMD SNPs (Supplementary Table 8). Because genes with related 

function sometimes cluster in the same locus, we trimmed gene lists during analysis so that 

only one gene per locus was used to evaluate enrichment for each pathway. The P-value of 

the association between our implicated gene list and any of the canonical pathways and/or 

functional gene sets as annotated by IPA’s Knowledge Base was computed using a one-

sided Fisher’s exact test. The Benjamini-Hochberg method was used to estimate False 

Discovery Rates. To evaluate significance of observed enrichment, we repeated our 

Ingenuity analysis starting with 50 lists of 19 SNPs randomly drawn from the NHGRI 

GWAS catalog46 and, again, using the INRICH tool63. When using INRICH, we used gene 

sets defined in the Broad’s Molecular Signatures database47 (ver3.0) representing manually 

curated canonical pathway, Gene Ontology biological process, cellular component and 

molecular function gene sets (C2:CP, C5:BP, C5:CC and C5:MF). We provided INRICH 

with our full GWAS SNP list and allowed it to carry out 100,000 permutations, matching 

selected loci in terms of gene count, SNP density and total number of SNPs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Summary of genomewide association scan results
Summary of genomewide association scan results in the discovery GWAS sample. 

Previously described loci reaching p < 5×10−8 are labeled in blue; new loci reaching p < 

5×10−8 for the first time after follow-up are labeled in green.
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FIGURE 2. Sensitivity analysis
The top left panel compares estimated effect sizes for the original analysis and for an age-

adjusted analysis (where age was included as a covariate and samples of unknown age were 

excluded). The top right panel compares analyses stratified by sex. The bottom left panel 

evaluates stratification by disease subtype. The bottom right panel evaluates stratification by 

ethnicity. The size of each marker reflects confidence intervals (with height reflecting 

confidence interval along the Y axis and width reflecting confidence interval along the X 

axis). Comparisons reaching p < 0.05 are labeled and colored in red.
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FIGURE 3. Risk score analysis
We calculated a risk score for each individual, defined as the product of the number of risk 

alleles at each locus and the associated effect size for each allele (measured on the log-odds 

scale). The plot summarizes the ability of these overall genetic risk scores to distinguish 

cases and controls.
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