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Seven New Loci Associated with Age-Related Macular
Degeneration

The AMD Gene Consortium

Abstract

Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To
accelerate understanding of AMD biology and help design new therapies, we executed a
collaborative genomewide association study, examining >17,100 advanced AMD cases and
>60,000 controls of European and Asian ancestry. We identified 19 genomic loci associated with
AMD with p<5x1078 and enriched for genes involved in regulation of complement activity, lipid
metabolism, extracellular matrix remodeling and angiogenesis. Our results include 7 loci reaching
p<5x1078 for the first time, near the genes COL8AL/FILIPIL, IER3/DDR1, SLC16A8, TGFBR1,
RAD51B, ADAMTSO/MIR548A2, and B3GALTL. A genetic risk score combining SNPs from all
loci displayed similar good ability to distinguish cases and controls in all samples examined. Our
findings provide new directions for biological, genetic and therapeutic studies of AMD.

AMD is a highly heritable progressive neurodegenerative disease that leads to loss of central
vision through death of photoreceptors!:2. In developed countries, AMD is the leading cause
of blindness in those >65 years3. Genes in the complement pathway*-11 and a region of
chromosome 10 1213 have now been implicated as the major genetic contributors to disease.
Association has also been demonstrated with several additional locil4-20, each providing an
entry-point into AMD biology and potential therapeutic targets.

To accelerate the pace of discovery in macular degeneration genetics, 18 research groups
from across the world formed the AMD Gene Consortium in early 2010, with support from
the National Eye Institute (Table 1, Supplementary Table 1, Supplementary Note). To
extend the catalog of disease associated common variants, we first organized a meta-analysis
of genomewide association scans (GWAS) — combining data for >7,600 cases with
advanced disease (geographic atrophy, neovascularization, or both) and >50,000 controls.
Each study was first subject to GWAS quality control filters (customized taking into account
study specific features?! as detailed in Supplementary Table 2) and standardized to the
HapMap reference panel and statistical genotype imputation?2-25, Results were combined
through meta-analysis2® and thirty-two variants representing loci with promising evidence of
association were genotyped in an additional >9,500 cases and >8,200 controls
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(Supplementary Tables 1-3; summary meta-analysis results available online). Our overall
analysis of the most promising variants thus included >17,100 cases and >60,000 controls.

Our meta-analysis evaluated evidence for association at 2,442,884 SNPs (Figure 1).
Inspection of Q-Q plots (Supplementary Figure 1) and the genomic control value
(Asc=1.06) suggest that unmodeled population stratification does not significantly impact
our findings (Supplementary Table 4 for details). Joint analysis of discovery and follow-up
studies?’ resulted in 19 loci reaching p<5x10~8 (Figure 1, Table 2, Supplementary Table 5).
These 19 loci include all susceptibility loci previously reaching p<5x1078, except the 4g12
gene cluster for which association was reported in a Japanese population. In addition, the set
includes seven loci reaching p<5x108 for the first time.

We evaluated heterogeneity between studies using the 12 statistic, which compares
variability in effect size estimates between studies to chance expectations?8. We observed
significant (p<.05/19) heterogeneity only for loci near ARMS2 (12=75.7%, p<1x10%) and
near CFH (12=85.4%, p<1x1075). Although these two loci were significantly associated in
every sample examined, the magnitude of association varied more than expected. To explore
sources of heterogeneity, we carried out a series of sub-analyses: we repeated the
genomewide meta-analysis adding an age-adjustment, separating neovascular (NV) and
geographic atrophy (GA) cases, in men and women, and in European- and Asian-ancestry
samples separately (Figure 3, Supplementary Figure 2). These sub-analyses of the full
GWAS dataset did not uncover additional loci reaching p<5x1078; furthermore
heterogeneity near CFH and ARMS2 remained significant in all sub-analyses (12>65%, p <.
001). Consistent with previous reports!?:29:30 separate analysis of NV and GA cases showed
ARMS risk alleles preferentially associated with risk of NV (ORny=2.97, ORga=2.50,
Pgifference=-0008) whereas CFH risk alleles preferentially associated with risk of GA
(ORNv=2.34, ORgA=2.80, pgitference=-0006). We also observed large differences in effect
sizes when stratifying by ethnicity, with variants near CFH exhibiting stronger evidence for
association among Europeans (p=.0000001) and those near TNFRSF10A among East Asians
(p=.002). Potential explanations include differences in linkage disequilibrium between
populations or differences in environmental or diagnostic factors that modify genetic effects.

Identifying the full spectrum of allelic variation that contributes to disease in each locus will
require sequencing of AMD cases and controls. To conduct an initial evaluation of the
evidence for multiple AMD risk alleles in the nineteen loci described here, we repeated
genomewide association analyses conditioning on the risk alleles listed in Table 2. We then
examined each of the 19 implicated loci for variants with independent association (at p<.
0002, corresponding for an estimate of ~250 independent variants per locus). This analysis
resulted in the identification of the previously well documented independently associated
variants near CFH and C2/CFB®10.31.32 and of additional independent signals near C3,
CETP, LIPC, FRK/COL10A1, IER3/DDR1, RAD51B (Supplementary Table 6). In four of
these loci, the independently associated variants mapped very close (within <60kb) to the
original signal. This shows each locus can harbor multiple susceptibility alleles, encouraging
searches for rare variants that elucidate gene function in these regions33:34,
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To prioritize our search for likely causal variants, we examined each locus in detail (see
LocusZoom3® plots in Supplementary Figure 3) and investigated whether AMD risk alleles
were associated with changes in protein sequence, copy number variation or insertion
deletion polymorphisms. One quarter of associated variants altered protein sequence, either
directly (N=2) or through linkage disequilibrium (r?>.6; N=3) with a nearby non-
synonymous variant (Supplementary Table 7). Some coding variants point to well-studied
genes (ARMS2, C3 and APOE) while others help prioritize nearby genes for further study. In
chromosome 425, index SNP rs4698775 is in strong linkage disequilibrium (r2=.88) with a
potentially protein damaging variant in CCDC109B36, a coiled coil domain containing
protein that may be involved in the regulation of gene expression. In chromosome 6q22,
index SNP rs3812111 is a perfect proxy for a coding variant in COL10A1, a collagen protein
that could be important in maintaining the structure and function of the extra-cellular matrix.
Interestingly, rs1061170 (NP_000177.2[CFH]:p.His402Tyr) was not in disequilibrium with
rs10737680, the most strongly associated SNP in the CFH region but, instead, was tagged
by a secondary and weaker association signal (Supplementary Tables 6&7). This is
consistent with prior haplotype analyses of the locus10:31.32.34.37,

We used publicly available data38-3° to check whether any of our index SNPs might be
proxies for copy number variants or insertion-deletion polymorphisms (indels), which are
hard to directly interrogate with genotyping arrays. This analysis identified a single strong
association (r?=.99), between rs10490924, a coding variant in the ARMS2 gene which is the
peak of association in 10926, and a 3’ UTR indel polymorphism associated with ARMS2
mRNA instability. Since index SNP rs10490924 is also in strong disequilibrium (r2=.90)
with a nearby SNP, rs11200638, that regulates HTRA141, our data does not directly answer
whether HTRA1 or ARMS2 is the causal gene in this locus. Although a common deletion of
the CFHR1 and CFHR3 genes has been proposed#243, there was only modest signal in this
study which is likely due to linkage disequilibrium with our most significantly associated
variants in the locus (r2=.31 between rs10737680 and 1000 Genomes Project
MERGED_DEL_2_6731) as previously suggested34.

Using RNA-sequencing**, we examined mRNA levels of 85 genes within 100 kb of our
index SNPs in post-mortem human retina (Supplementary Table 8). Of 19 independent risk
loci, three had no genes with expressed transcripts in either old or young retina. Two genes
showed differential expression between post-mortem retina of young (ages 17-35) and
elderly (ages 75 and 77) individuals: CFH (p=.009) and VEGFA (p=.003), both with
increased expression in older individuals. Using previously published data*®, we also
examined the expression of associated genes in fetal and adult retinal pigment epithelium
(RPE). This revealed increased C3 expression in adult RPE compared to fetal RPE (p=.
0008). CFH, VEGFA and C3 are thus up-regulated with aging, and their role in AMD may
indicate an accelerated aging process. In addition to C3 and CFH, all the complement genes
with detectable expression in the retina or RPE experiments showed higher expression levels
in older tissue.

To identify biological relationships among our genetic association signals, we catalogued
the genes within 100kb of the variants in each association peak (r2>0.8 with the index SNP
listed in Table 1). Ingenuity Pathway Analysis (Ingenuity Systems, Redwood, CA)
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highlighted several biological pathways, particularly the complement system and
atherosclerotic signaling, to be enriched in the resulting set of 90 genes (Table 3,
Supplementary Table 9). To account for features of genomewide association studies (such as
the different number of SNPs in each gene), we carried out two additional analyses. First,
we repeated our analysis for 50 sets of 19 control loci drawn from the NHGRI GWAS
catalog8. In these 50 control sets, Ingenuity enrichment p-values for the complement
system and for atherosclerosis signaling genes were exceeded 16% and 32% of the time
respectively (although these two specific pathways were never implicated in a control
dataset). We also repeated our enrichment analyses using the INRICH tool*’, which is
specifically designed for the analysis of genomewide association studies — but accesses a
more limited set of annotations. The INRICH analyses showed enrichment for genes
encoding collagen and extra-cellular region proteins (both with p=10~° and after adjustment
for multiple testing pagjust=-0006), complement and coagulation cascades (p=.0002, pagjust=-
03), lipoprotein metabolism (p=.0003, pagjust=-04), and regulation of apoptosis (p=.0009,
Padjust=-09) (Supplementary Table 10).

To explore the connections between our genetic association signals, we tested for interaction
between pairs of risk alleles — looking for situations where joint risk was different than
expected based on marginal effects. This analysis resulted in 171 tests of interaction, of
which 9 were nominally significant (p<.05, see Supplementary Table 11), consistent with
chance expectations. The strongest observed interaction involved risk alleles at rs10737680
(near CFH) and rs429608 (near C2/CFB), the only association that remained significant
after adjusting for multiple testing (p=.000052, <0.05/171=.00029). Individuals carrying risk
alleles at both these loci where at slightly higher risk of disease than expected.

The proportion of the variability in the risk of AMD that is due to genes, or heritability, has
been estimated at 45-70% 2. Estimating the proportion of disease risk explained by the
susceptibility loci identified 48 depends greatly on the disease prevalence - which is difficult
to estimate in our sample, as it includes cases and controls of different ages and collected
through a variety of ascertainment schemes. Using a model that assumes an underlying
normally distributed but unobserved disease risk score or liability#?, the nineteen loci
described here account for between 10% (if AMD prevalence is close to 1%) and 30% (if
AMD prevalence is closer to 10%) of the variability in disease risk (corresponding to 15—
65% of the total genetic contribution to AMD). The variants representing the peak of
association at loci previously reaching genomewide significance account for the bulk of this
variability: the new loci identified here account for 0.5-1.0% of the total heritability of
AMD whereas secondary signals at novel and known loci account for 1.5-3.0% of the total
heritability.

We report here the most comprehensive genetic association study of macular degeneration
yet conducted, involving 18 international research groups, and a large set of cases and
controls. Our data reveal 19 susceptibility loci, including 7 loci reaching p<5x1078 for the
first time, nearly doubling the number of known AMD loci outside the complement
pathway. Our results show some susceptibility alleles exhibit different association across
ethnic groups and may be preferentially associated with specific subtypes of disease. As
with other GWAS meta-analysis, differences in genotyping methods, quality control steps
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and imputation strategies between samples might have a minor effect in our results — future
studies may document that more uniform approaches across larger sample sizes might
uncover more signals. A conundrum of macular degeneration genetics remains that the loci
identified to date contribute to both GA and NV, two different phenotypes of advanced
disease. In our sample, subtype specific GWAS analyses considering GA or NV cases only
did not identify additional loci. Consistent with observations for other complex diseases3,
the majority of common disease susceptibility alleles do not alter protein sequences and are
not associated with insertions or deletions of coding sequence or with copy number
variation. We expect that the loci identified here will provide an ideal starting point for
studies of rare variation33:34,

In contrast to most other complex diseases, a risk score combining information across our 19
loci, can distinguish cases and controls relatively well (Figure 4, area under the ROC curve
[AUC]=.52 including only new loci or AUC=.74 including new and previously reported
loci; Supplementary Figure 4). It may be possible to use similar scores to identify and
prioritize at risk individuals so they receive preventative treatment prior to the onset of
disease®. Monotherapies are increasingly utilized to manage neovascular disease, but offer
only a limited repertoire of treatment options to patients. ldentification of novel genes and
pathways enables us to pursue a larger range of disease-specific targets for development of
new therapeutic interventions. We expect that future therapies directed at earlier stages of
the disease process will allow patients to retain visual function for longer periods, improving
the quality of life for individuals with AMD.

ONLINE METHODS
GENOME-WIDE SCAN FOR LATE AMD ASSOCIATION INCLUDING FOLLOW-UP

Study-specific association analysis for discovery—Genotyping was performed on
a variety of different platforms summarized in Supplementary Table 2. Each group
submitted results from association tests using genotyped and imputed data where the allelic
dosages were computed with either MACH25, IMPUTE?23, BEAGLE24, or snpStats®? using
the HapMap?2 reference panels. The CEU panel was used as a reference for imputation-
based analyses for most samples (predominantly of European ancestry), with two
exceptions: for the JAREDS samples (predominantly of East Asian ancestry), the CHB+JPT
panel was used as a reference; for the VRF samples (predominantly of South Asian
ancestry) the combined CEU and CHB+JPT panels were used?253, For most data sets
association tests were run under a logistic regression model using either Plink®4,
Mach2dat2>, ProbABEL5®, or snpStats®2, though for one dataset containing related
individuals the generalized estimating equations algorithm>6 as implemented in R378, In
addition to the primary analysis which tested for SNP associations with advanced AMD
unadjusted for age, an age-adjusted sensitivity analysis was conducted by each group with
available age. Each group also provided stratified results by sex or AMD subtype (GA or
NV) as long as the sample size per stratum exceeded 50 subjects. For all analyses, study-
specific control for population stratification was conducted (Supplementary Table 4).

Study-specific association analysis for follow-up—Genotyping of the selected
SNPs was performed on different platforms; the same models, sensitivity and stratified
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analyses were computed by each follow-up partner, while SNPs with insufficient call rate
were excluded based on study-specific thresholds. If the index SNP could not be genotyped,
a highly correlated proxy was used whenever possible (Supplementary Tables 2&3).

Quality control before meta-analysis—Before meta-analysis, all study-specific files
underwent quality control procedures to check for completeness and plausible descriptive
statistics on all variables as well as for compliance of allele frequencies with HapMap®®. In
addition, we excluded SNP results of a study into meta-analysis (i) for discovery: if
imputation quality measures were too low (MACH & PLINK <0.3; SNPTEST <0.4) or if
effect sizes (|beta|) or standard errors were too extreme (=5) indicating instability of the
estimates, (ii) for follow-up: if Hardy-Weinberg equilibrium was violated (p<0.05/32).

Meta-analyses—~For both discovery and follow-up, we performed meta-analyses using the
inverse variance weighted fixed effect model, which pools the effect size and standard error
of each participated GWAS. Using an alternative weighted z-score method, which is based
on a weighted sum of z-score statistics, we obtained a very similar set of test statistics
(correlation of —log10(p-value) >0.98). All analyses were performed using METAL26 and R.
For the discovery, we applied two rounds of genomic control corrections to each individual
GWAS and the combined meta results, respectively 1. All results were analyzed and
validated among four independent teams.

EXTENDED ANALYSES FOR THE IDENTIFIED AMD LOCI

Extended analyses were conducted on the identified loci and particularly on the top SNP of
each locus.

Second signal analysis—To detect potential independent signals within the identified
AMD loci, each study partner with genotypes for all identified SNPs available re-analyzed
their data for all SNPs in the respective loci (index SNP +1Mb) using a logistic regression
model containing all identified index SNPs. Quality control procedures were performed as
before. The beta estimates for each SNP were meta-analyzed applying the effective sample
size weighted z-score method and two rounds of genomic control correction. The
significance threshold (p<0.05) for an independent association signal within any of the
identified loci was Bonferroni-adjusted using the average effective number of SNPs
involved across the identified loci determined by SNPSpDS0. To this analysis, 13 studies
contributed including 7,489 cases and 51,562 controls.

Interaction analysis—Utilizing a pre-specified R-scripts (see URLS), GWAS partners
performed 171 logistic regression analyses modeling the pair-wise interaction of the 19
index SNPs assuming an additive model for main and interaction effects. Study-specific
covariates were included to the model if required. Per study, quality control included a
check for consistency of SNP main effects between discovery and interaction analysis. SNPs
with low imputation quality measures and pairs with |beta|>5 or standard errors >5 were
excluded before meta-analyzing the interaction effects with the inverse variance weighted
fixed effect model in METAL. To this analysis, 12 studies contributed including 6,645 cases
and 49,410 controls.
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GENETIC RISK SCORE
The meta-analyzed effect sizes, pj, for each of the 19 SNPs were calculated in the meta-

19

analysis described above and normalized: ﬂj:ﬁj/;ﬁk, j=1,...,19. Using these as weights,
each study partner with all 19 SNPs available computed the individuals’ genetic risk score
as a normalized weighted sum of the AMD risk increasing alleles among the identified SNPs

as
Si=>_Bjwij,
i

where ¥ is the genotype of the ith individual at the jth SNP, so § ranges from 0 to 2. This
data was available from 12 studies including 7,195 cases and 49,149 controls.

For each study, we used a leave-one-out cross-validation to access the prediction of the risk
score. For the kth subject, we fitted a logistic regression model from all subjects in the study

excluding the kth subjects: log(ﬁ—lyi):aﬂsi, i! =k, aisthe intercept and yis the effect of
the genetic risk score. The fitted probability of the kth subject was then estimated as yy = 1/
(1+e~(@*¥SJ). We sorted the fitted probabilities and calculated sensitivity and specificity by
varying the risk threshold (the value compared with the fitted probability to dichotomize the
subject into case or control) from 0 to 1. These were utilized to compute the area-under-the

curve (AUC) of the receiver-operating-curve (ROC).

IDENTIFICATION OF CORRELATED CODING VARIANTS AND TAGGED NON-SNP
VARIATION

LD estimates were calculated using genotype data of the identified risk loci (index SNPs
+500kb) of individuals with European ancestry from the 1000 Genomes Project (March
2012 release)®! or from HapMap (release #28)%. Variants correlated (r2>0.6) with one of
the GWAS index SNPs were identified using PLINK®4. To filter coding variants, all
correlated variants were mapped against RefSeq transcripts using ANNOVAR®2,

GENE EXPRESSION

We evaluated expression of genes within 100kb of one of the 19 index SNPs, as well as of
several retina-specific, RPE-specific and housekeeping genes unrelated to AMD for
comparison in retina (RNA-sequencing data from three young [17-35 yrs age] and two old
individuals [75 and 77 yrs age]) as well as in fetal and adult retinal pigment epithelium
(RPE; published data in the Gene Expression Omnibus database*?). Expression was
analyzed using previously described protocols** (Supplementary Table 8).

PATHWAY ANALYSES

Functional enrichment analysis was performed using the Ingenuity Pathway Analysis
software (IPA, Ingenuity® Systems). Any gene located within 100kb of a SNP in high LD
(r?>0.8) with one of the index SNPs was considered a potential AMD risk associated gene
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and considered for subsequent pathway enrichment analysis. LD estimates were calculated
as described above. Applying the above inclusion filters, 90 genes appear to be implicated
by our 19 replicated AMD SNPs (Supplementary Table 8). Because genes with related
function sometimes cluster in the same locus, we trimmed gene lists during analysis so that
only one gene per locus was used to evaluate enrichment for each pathway. The P-value of
the association between our implicated gene list and any of the canonical pathways and/or
functional gene sets as annotated by IPA’s Knowledge Base was computed using a one-
sided Fisher’s exact test. The Benjamini-Hochberg method was used to estimate False
Discovery Rates. To evaluate significance of observed enrichment, we repeated our
Ingenuity analysis starting with 50 lists of 19 SNPs randomly drawn from the NHGRI
GWAS catalog*® and, again, using the INRICH tool®3. When using INRICH, we used gene
sets defined in the Broad’s Molecular Signatures database*’ (ver3.0) representing manually
curated canonical pathway, Gene Ontology biological process, cellular component and
molecular function gene sets (C2:CP, C5:BP, C5:CC and C5:MF). We provided INRICH
with our full GWAS SNP list and allowed it to carry out 100,000 permutations, matching
selected loci in terms of gene count, SNP density and total number of SNPs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Summary of genomewide association scan results
Summary of genomewide association scan results in the discovery GWAS sample.

Previously described loci reaching p < 5x1078 are labeled in blue; new loci reaching p <
5x1078 for the first time after follow-up are labeled in green.
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FIGURE 2. Sensitivity analysis

The top left panel compares estimated effect sizes for the original analysis and for an age-
adjusted analysis (where age was included as a covariate and samples of unknown age were
excluded). The top right panel compares analyses stratified by sex. The bottom left panel
evaluates stratification by disease subtype. The bottom right panel evaluates stratification by
ethnicity. The size of each marker reflects confidence intervals (with height reflecting
confidence interval along the Y axis and width reflecting confidence interval along the X
axis). Comparisons reaching p < 0.05 are labeled and colored in red.
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FIGURE 3. Risk score analysis
We calculated a risk score for each individual, defined as the product of the number of risk

alleles at each locus and the associated effect size for each allele (measured on the log-odds
scale). The plot summarizes the ability of these overall genetic risk scores to distinguish
cases and controls.
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