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Superstatistical analysis and modelling
of heterogeneous random walks
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Stochastic time series are ubiquitous in nature. In particular, random walks with time-varying

statistical properties are found in many scientific disciplines. Here we present a super-

statistical approach to analyse and model such heterogeneous random walks. The time-

dependent statistical parameters can be extracted from measured random walk trajectories

with a Bayesian method of sequential inference. The distributions and correlations of

these parameters reveal subtle features of the random process that are not captured by

conventional measures, such as the mean-squared displacement or the step width

distribution. We apply our new approach to migration trajectories of tumour cells in two and

three dimensions, and demonstrate the superior ability of the superstatistical method to

discriminate cell migration strategies in different environments. Finally, we show how the

resulting insights can be used to design simple and meaningful models of the underlying

random processes.
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S
tochastic time series, here used synonymously with random
walks, play an important role in earth- and life sciences,
technology, medicine and economics. Most of these

disciplines deal with complex systems in which multiple
hierarchical processes are interacting at different timescales.
Systems with this level of complexity are likely to change their
statistical properties as a function of time, resulting in hetero-
geneous time series. It is therefore surprising that only few tools
are available for the analysis and characterization of such time-
varying random walks. Some of these tools are used in finance1–3,
mainly with the goal of forecasting. In science, heterogeneous
time series have been successfully described by Hidden Markov
models4. However, systems with continuously time-varying
statistics cannot be adequately modelled by a few discrete
hidden states.

Owing to this lack of appropriate tools, many studies are still
relying on conventional evaluation methods that were designed
for simple physical systems. The most frequently used statistical
measures for random walks, in particular the step width
distribution (SWD), the mean-squared displacement (MSD)
and the velocity autocorrelation function, are implicitly assuming
that the stochastic process can be globally described by a few
characteristic parameters, such as a constant variance and a
constant correlation time.

We demonstrate in this paper that the application of these
conventional methods to heterogeneous random walks generates
‘anomalous’ results, such as non-Gaussian SWDs or power-law
MSDs with fractional exponents5–7. These anomalies emerge
inevitably from the temporal averaging over changing local
statistics during the evaluation period (Supplementary Note 1),
and therefore do not provide meaningful insights into the
random walk apart from its heterogeneous nature. Moreover,
these temporally averaging measures may remain unchanged
even if the experimental conditions are significantly altered. This
lack of sensitivity points to a fundamental limitation of
conventional statistical methods for analysing heterogeneous
processes. SWD, MSD and autocorrelation function average over
the successive statistical parameters of the heterogeneous random
walk, instead of using the parameter dynamics as a rich additional
source of information.

In this study, we propose a superstatistical framework for
modelling and analysing heterogeneous random walks. The term
superstatistics refers to the superposition of several different
stochastic processes8–11. Accordingly, we describe the time series
locally by a homogeneous random walk model with a minimum
number of statistical parameters. In the case of cell migration, we
use an autoregressive process of first order (AR-1) with a
persistence parameter q and an activity parameter a. These
parameters (qt,at) are allowed to change with every time step of
the random walk. By this way, heterogeneous time series of
arbitrary complexity can be described (Supplementary Note 2).

We provide a new sequential Bayesian method to infer the
time-dependent parameters from measured random walk trajec-
tories. In contrast to conventional maximum likelihood para-
meter estimation within a sliding time window, our method can
handle both gradual and abrupt changes of the parameters. As a
Bayesian method, it provides not only point estimates but also
their confidence intervals. After extraction of (qt,at) from the
measurements, the statistical properties of the time-dependent
parameters can be subsequently analysed by computing the
temporally averaged joint posterior distribution p(q,a), the
temporal auto-correlations Cqq(Dt) and Caa(Dt), and the cross-
correlations Cqa(Dt).

In this paper, we use the migration of individual tumour cells
as a case study of superstatistical analysis. Cell migration plays an
essential role in many fundamental biological processes, such as

embryogenesis, tissue repair or cancer development12–14.
Anomalous features of cellular random walks have been
reported by several groups, and a variety of models have been
proposed in the literature to account for those anomalies5,7,15–18.

We demonstrate that anomalies of conventional statistical
measures to describe cell migration are attributable to fluctuations
of migration persistence q and activity a. Moreover, the joint
distribution of persistence and activity, p(q,a), and the auto- and
cross-correlations Cij(Dt) of these two parameters provide
characteristic fingerprints of the underlying random walks.
Unlike globally averaging statistical measures, a superstatistical
analysis can clearly resolve the effects of different environments
on cell migration, such as migration in a three-dimensional (3D)
collagen network versus migration on a planar 2D culture dish.
Furthermore, by observing individual cells in microfabricated 1D
channel structures with varying diameter, we demonstrate that
the temporal changes of the (qt,at)-parameters are directly
associated with different local microenvironments that the cells
experience along their migration path. Finally, we show how the
extracted statistical properties of the time-dependent parameters
can be used to construct simplified models that reproduce all key
features of the data, including the non-Gaussian SWD and
power-law MSD. While other types of models have also
successfully reproduced these anomalous features, for example,
using fractional diffusion equations7 or integro-differential
equations with complex memory kernels19, the superstatistical
framework achieves this with the simplest persistent random walk
model (the two-parameter AR-1 process), extended by the
temporal variations of the two parameters (persistence and
activity).

Results
Cell migration in 2D and 3D. We study the migration of the
breast carcinoma cell line MDA-MB-231 in a 3D collagen gel and
on a tissue culture-treated 2D plastic surface, either uncoated
and or coated with the adhesion ligand fibronectin. Three-
dimensional cell positions within the random fibre network of a
collagen gel (Fig. 1a,b) are detected by analysing the characteristic
refraction pattern (Fig. 1b inset) around the cell nucleus. From
the individual cell trajectories (Fig. 1c), we compute momentary
migration properties, such as cell speed versus time (Fig. 1c inset).
Since the gel has a free upper surface and thus a lower effective
stiffness in the z-direction, cells react with a more pronounced
horizontal (x–y direction) alignment and motion, in agreement
with theoretical predications based on active cellular mechan-
osensing mechanisms20. Therefore, only the x–y coordinates are
used for comparing 2D and 3D migration.

Globally averaging statistical measures. For each individual cell
trajectory, we compute the SWD, defined as the probability
p(Dx,Dt) that the cell changes its x-coordinate by Dx within a lag
time interval Dt, as well as the MSD, defined as r2(Dt)¼
h(r(tþDt)� r(t))2it,e, where hit,e indicates temporal and sub-
sequent ensemble averaging over the different individual cells of
the same migration environment.

Regardless of environment, the SWD shows a leptocurtic,
approximately exponential shape (Fig. 5a inset and
Supplementary Note 3). For lag times below 500min, the MSD
can be approximated by power laws (Fig. 5a) with a fractional
exponent of 1.3 in the cases of 3D collagen and uncoated 2D
plastic, but with a larger exponent of 1.7 in the case of
fibronectin-coated 2D plastic. It is remarkable that the SWD
and MSD are practically indistinguishable for migration in 3D
collagen and on uncoated 2D plastic, even though these
environments require different migration strategies.
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Within collagen, cells assume a pronounced elongated shape
and typically form a path-finding long and thin protrusion that
can extend over 4100 mm (Supplementary Movies 1 and 2;
ref. 21). The directionally persistent trajectory of the cells is
mainly defined by the contour of this long protrusion, resembling
the movement of a needle in an array of obstacles22. However,
cells can also pull themselves along bundles of collagen fibres in a
process known as contact guidance23,24. Occasionally, encounters
with obstacles or small pores in the disordered collagen network
can force the cell to withdraw or change directions
(Supplementary Movie 2). On planar surfaces by contrast, the
cells spread and assume a flat, irregular shape. They also polarize
and move preferentially along their polarization axis
(Supplementary Movie 3), but they cannot take advantage of
external cues to keep a persistent migration direction.

Despite these diverging migration modes, the net spatial
advancement of MDA-MB-231 cells over time is similar in both
environments. Therefore, the SWD and MSD for migration in 3D
collagen and on uncoated 2D plastic are nearly identical. On
fibronectin-coated 2D plastic, the cells migrate more slowly but
with a higher directional persistence (Supplementary Movie 4).
Over time, this leads to a larger net spatial advancement
compared with uncoated plastic. Accordingly, the MSD shows a
higher fractional exponent of 1.7, and the SWD broadens
(Fig. 5a).

Bayesian inference of time-dependent parameters. For the
superstatistical analysis of the data, we first compute for each cell
trajectory {rt¼ (xt,yt)} the vectorial displacements ut¼ rt� rt� 1

for each measurement time step dt¼ 5min. The statistical
relationship between two successive displacements is described by

a 2D first-order autoregressive process (AR-1) defined by

ut ¼ qtut� 1 þ atnt : ð1Þ
This process is equivalent to a persistent random walk or a time-
discrete Ornstein–Uhlenbeck process. The parameter qtA[� 1,
þ 1] describes the local persistence of the random walk, with
qt¼ � 1 corresponding to anti-persistent motion, qt¼ 0 to non-
persistent diffusive motion and qt¼ þ 1 to persistent motion.
The parameter atA[0,N] describes the local activity (noise
amplitude) and sets the spatial scale of the random walk. Toge-
ther, the two parameters determine the variance of the displace-
ments according to var(u)¼ a2/(1� q2). The vector nt¼ (nxt,nyt)
is normally distributed, uncorrelated random noise with unit
variance.

To extract the time-dependent joint probability density P(qt,at)
of the parameters qt and at from a sequence of displacements ut,
we use sequential Bayesian updating. We start at time t¼ 0 with a
flat prior distribution P0(q,a) (see P0 in Fig. 2), which can be
interpreted as a ‘first guess’ about the parameter values. From the
measured successive displacements u0 and u1, we compute the
likelihood distribution L1(q,a) (see L1 in Fig. 2), which provides a
first information about probable parameter values.

The prior distribution P0 and the likelihood distribution L1 are
multiplied to obtain the posterior distribution P0L1, which
updates our guess of the parameter values for the next time step.
In the case of a temporally homogeneous process with constant
parameters, iterative multiplication of the posterior distributions
with the likelihood distributions, Pt¼Pt� 1Lt (Fig. 2), would yield
an increasingly accurate estimate of the parameter values. For
heterogeneous processes, however, the possibility of changing
parameters has to be taken into account. This is achieved by a
transformation K of the posterior distribution, Pt¼K(Pt� 1Lt).
The transformation K (blurring and preventing the posterior
distribution to fall below a small cutoff value) is chosen such that
both gradual and abrupt parameter changes can be identified (see
Methods section). Finally, we perform the same sequential
parameter inference in the reverse time direction (not shown in
Fig. 2) and combine both distributions.

We validate this method by simulating random walk
trajectories from prescribed stepwise (Fig. 3a) or gradually
(Fig. 3c) changing parameter sequences {(qt,at)}. We then
reconstruct the parameter sequences from the simulated
trajectories by sequential Bayesian inference. The mean values
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Figure 1 | Tracking and analysis of cells migrating in 3D collagen

networks. (a) Confocal image of a collagen gel. (b) Bright-field image of an

MDA-MB-231 breast carcinoma cell that has migrated into the bulk of the

collagen to a depth of 200 mm. Scale bars, 20mm. Inset: the characteristic

light intensity profile (z–x plane) around the cell nucleus is used to track the

cell position within the gel with an accuracy of 2 mm (r.m.s.). (c) Example of

a 3D cell trajectory, sampled at 2.5min time intervals. Inset: momentary

speed as a function of time.
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of the posterior distributions fluctuate around the ‘true’
parameter values, but follow the prescribed time evolution
closely, both for abrupt (Fig. 3a) and gradual (Fig. 3c) parameter
changes. We also find that the Bayesian method is superior to a
maximum likelihood estimation with a sliding time window. The
maximum likelihood estimation method cannot handle abrupt
and gradual parameter changes equally well, and the user must
find a compromise between long time windows that wash out
sudden parameter jumps and short windows that lead to noisy
results (Supplementary Note 4).

Heterogeneity of measured random walks. We next apply the
Bayesian inference method to measured cell trajectories. An
example for the parameter evolution of a cell migrating on
uncoated 2D plastic is shown in Fig. 4. We find large variations of
cell behaviour, both with time (Fig. 4a,b) and between individual
cells (Fig. 4c). By plotting the cell activity versus persistence for all
time points, we further find that individual cells can occupy
different regions of the (q,a) parameter plane (Fig. 4c). Some cells
remain in a small compact region of the (q,a)-plane during the
entire measurement period (brown), whereas others jump
between disjunct subregions (green) or continuously change their
parameters over time (Fig. 4c).

Superstatistical data evaluation. Joint probability distributions.
We average the posterior distributions p(q,a) for all time points
and all cells measured in the same environment (Fig. 5b). In
contrast to MSD and SWD, the ensemble-averaged posterior
distributions show large differences between all three environ-
ments. The peak position of the distribution shows the lowest
persistence and highest activity for collagen, and the highest
persistence and lowest activity for fibronectin-coated plastic.
Moreover, the spread of the distributions indicates that migration
in collagen gels is more heterogeneous compared with migration
on plastic. The p(q,a) distributions thus provide characteristic
‘fingerprints’ of the migration environments that can be used for
automatic trajectory classification. In a ‘leave-one-out’ cross-
validation, we were able to assign B90% of the cell trajectories to
the correct environment (see Methods section).

Parameter correlations. The auto- and cross-correlations of the
time-dependent parameters qt and at reveal even larger
differences between migration strategies in 2D versus 3D
environments. Auto-correlation times are noticeably longer in a
3D environment (Fig. 5c), where the local biopolymer fibre
configuration provides a guiding or trapping microstructure that
influences a given migration mode for long time periods. Large
differences between different environments are also visible in the
cross-correlations of the time-dependent parameters (Fig. 5d). On
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fibronectin-coated plastic, persistence and activity are negatively
correlated for up to 100min. This is consistent with the long-
known observation that on highly adhesive surfaces, cells
maintain persistent motion by performing sequences of small
steps along the same direction25. The continuous gliding motion
is not seen on less adhesive, uncoated plastic surfaces. Instead, we
observe a weakly positive cross-correlations between qt and at. In
collagen, we find strong positive correlations between qt and at,
consistent with the observation that cells intermittently cover
large distances with high directional persistence guided by long
protrusions (Supplementary Movies 1 and 2).

Note that the activity parameter at should not be interpreted
literally as the momentary cell speed ut, but as a scale parameter
that—together with qt—determines the most probable value of
the cell speed. To clarify this point, we also investigate the
correlation between persistence qt and momentary cell speed ut.
For migration on coated and uncoated plastic surfaces, we find a
positive correlation between qt and ut (Supplementary Note 6). A
similar relationship has been reported for a variety of different
cell types migrating on fibronectin-coated surfaces26. In collagen,
however, persistence and cell migration speed are uncorrelated
(Supplementary Note 6).

Effect of local microenvironment. In the previous section, we
have tacitly assumed that the local microenvironment has an
immediate effect on migration persistence and activity. To test
this assumption, we use a microstructured environment and
measure cell migration through a linear (1D) array of sequentially
narrowing channels and wider chambers. After extracting the
time-dependent parameters qt and at from individual cell
trajectories (Fig. 6a), we plot qx (Fig. 6b) and ax (Fig. 6c) versus
the x-position.

The precise migration mechanism of different cell types
through such environments is not well understood and may
involve integrin-mediated adhesion-dependent27 or adhesion-
independent28 strategies. Regardless of the migration mechanism,
our microstructured environment forces the cells to adapt to
different degrees of confinement in rapid succession. A cell that
enters a channel first has to polarize and deform its nucleus. It
can then transit the channel with high persistence and activity.
When the cell nucleus exits the narrow channel and enters the
wider chamber, persistence and activity decrease markedly. Thus,
the superstatistical migration parameters are strongly correlated
with the local properties of the environment.

Superstatistical modelling. We construct a series of simple
models of cell migration that approximate the statistical proper-
ties of qt and at found in the data. All models are based on an AR-
1 process. The superstatistical parameters qt and at switch to new
values, drawn from fixed distribution pmodel(q,a), after exponen-
tially distributed time intervals with mean value Tmodel. This
regime-switching approach leads to exponentially decaying auto-
correlations of the parameters with correlation time Tmodel. We
choose Tmodel¼ 200min taken from migration experiments in
collagen (Fig. 5c). The parameter distribution pmodel(q,a) is
modelled as a bivariate Gaussian, centred at the main peak of the
experimentally observed distribution p(q,a) (Fig. 5b).

We first consider the limit of zero variance for p(q,a), which
corresponds to a homogeneous correlated random walk with
constant q and a. In this case, the MSD is crossing over from a
ballistic (slope 2) to a diffusive (slope 1) behaviour at a specific lag
time that depends only on the persistence q. Increasing the
variance of q generates a continuous mixture of crossover times,
and the MSD starts to resemble a power law (Supplementary
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Note 1). In addition, the SWD becomes leptocurtic, but it does
not show the exponential distribution found in the experiments.
Finally, using an asymmetric bivariate normal distribution with
positive correlations between q and a (Fig. 5b, dashed grey
ellipse), the SWD, MSD and correlation functions match the
measured data nearly perfectly (Fig. 5a,c,d, dashed grey line).

This example demonstrates how superstatistics can recapitulate
the anomalous features of heterogeneous random walks by
mapping the complexity of the system into a suitable distribution
of parameter values pmodel(q,a), while keeping the underlying
stochastic process simple.

Discussion
In this study, we have applied the superstatistical framework to
the specific example of tumour cell migration in environments
with different dimensionality. The same approach, including
the particular choice of the AR-1 process as a local model,
can be used for many other heterogeneous random walks in life
sciences. For this purpose, we provide a Python implementation
of the Bayesian algorithm for inferring the time-dependent
parameters qt and at from random walk trajectories
(Supplementary Software 1).

In principle, a sequential, grid-based inference of super-
statistical parameters can also be performed by a Markov Chain
Monte Carlo approach. In this case, the vector of model
parameters to be inferred consists of the full set {(qt,at)} of
superstatistical parameters for all time points. In the past, Markov
Chain Monte Carlo methods, mostly based on the Metropolis
Hastings algorithm, exhibited serious convergence problems
when applied to such high-dimensional parameter spaces. Only
recently, a novel sampling method based on Hamiltonian
Monte Carlo has markedly improved the convergence29.
Our preliminary tests demonstrate that this new sampling
algorithm can indeed find the parameter vector of a
hierarchical superstatistical model, however, with a considerably
longer computation time.

Our superstatistical framework can be readily adapted to more
complex types of stochastic systems. In particular, the AR-1
process can be replaced by any parameterized model with a
defined likelihood function. For example, fluorescent beads
attached to the cytoskeleton of living cells show fluctuations that
can be described by a particle diffusing in a harmonic potential
well30,31. Due to cytoskeletal remodelling, the centre position of
the potential well is changing on longer timescales. Together, this
process can be modelled with an inhomogeneous random walk of
the centre position, superposed with a harmonic overdamped
oscillator32. As a final example, recordings of neural spike trains
are frequently modelled as inhomogeneous Poisson processes
with a time-dependent spike rate. In this case, sequential Bayesian
inference can be used to extract the local spike rates from the time
series of measured interspike intervals.

Methods
Cell culture and migration measurements. For migration experiments in
collagen, on plastic and on fibronectin-coated plastic, we use MDA-MB-231 breast
carcinoma cells (obtained from the American Type Culture Collection (ATCC)).
Cells are cultured in 75 cm2 flasks in Dulbecco s modified Eagle’s medium
(DMEM) (1 g l� 1 D-glucose) and 10% fetal bovine serum, 1% penicillin/strepto-
mycin at 37 �C, 5% CO2 and 95% humidity. Cells are passaged every second day.
Trypsin-ethylenediaminetetraacetic acid (Trypsin-EDTA) is used to detach cells.

To study cell migration on planar surfaces, we use tissue culture-treated plastic
dishes with and without fibronectin coating (69 and 177 cells, respectively). In all
2D experiments, the sample time interval between frames was dt2D¼ 1min.

For 3D experiments, we use reconstituted collagen gels (Fig. 1a) with controlled
material properties as a substitute for biological tissue. At a collagen concentration
of 2.4mgml� 1, these gels have an average pore radius of 1.3mm and a shear
modulus of 108 Pa (ref. 33). Cells are mixed with collagen solution before
polymerization at a concentration of 15,000 cells per ml. The x-, y- and z-position of
the cells within the collagen gel is determined from a characteristic intensity profile
of the refraction pattern around the nucleus of the cell (inset of Fig. 1b). A 3D
deconvolution of the intensity profile then defines the cell position with an accuracy
of 2mm (r.m.s.). Cell tracking is performed automatically in real time, and the cell
position is used to keep the motorized microscope x–y-centred and z-focused onto
the cell at all times. Using a time-sharing mode, we are able to observe and follow up
to 20 individual migrating cells within the same cell culture well over prolonged
time periods (24 h). We record discrete cell positions with a sample time interval of
dt3D¼ 2.5min (Fig. 1c). Cells undergoing cell division during the time of
observation were excluded. The number of analysed cells in collagen was 65.

We also study the migration of primary inflammatory ductal breast cancer cells
(gift from Pamela Strissel and Reiner Strick, Womens Hospital, University Clinics
Erlangen) within a microfabricated channel structure made of polydimethylsiloxan.
The structure has a constant height of 3.7 mm and consists of 15 consecutive
channels with diameters decreasing from 11 to 1.7 mm, separated by 20� 20-mm-
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wide chambers (Fig. 6a). After staining the cell nuclei with Hoechst 33342
(1mgml� 1), the centre positions are tracked with a sample time interval of
dt1D¼ 5min. For superstatistical evaluation, a cell is chosen that passed through
two successive channels within 150min.

Bayesian parameter inference. Since the iterative updating of the parameter
distribution described in this work is not analytically tractable, the presented
algorithm is implemented using discretized probability distributions. Based on
equally spaced parameter values qi and aj (iA{1,2,..,Nq}, jA{1,2,..,Na}), a distribu-
tion p(q,a) can be approximated by a Nq�Na-dimensional matrix: (p(q,a))ij¼
p(q¼ qi,a¼ aj). The multiplication of two distributions is thus reduced to the
element-wise multiplication of two matrices.

The prior distribution Pt¼ p(qtþ 1,atþ 1) holds the preliminary belief about the
latent parameter values for the next time step, before seeing the corresponding data
point. Using the data point utþ 1, we subsequently update the prior distribution by
multiplying it with the likelihood Ltþ 1¼ p(utþ 1|qtþ 1,atþ 1;ut) that describes the
probability of observing a certain measurement utþ 1, given the values of the latent
parameters (and the previous measurement ut).

For the underlying AR-1 process, the likelihood is given by

p utþ 1 qtþ 1; atþ 1; utjð Þ ¼ 1

2pa2tþ 1

� �d=2 exp � utþ 1 � qtþ 1utð Þ2

2a2tþ 1

� �
;

where d states the number of dimension of the velocity vectors (two in this study).
Note that the inference method can also be applied to other underlying stochastic
processes with more complicated likelihood functions. As our approach uses only
the numerical values of the likelihood for discrete points of the (qt,at)-grid, the
likelihood need not be expressed analytically as long as it can be computed
numerically.

The next prior Ptþ 1 is computed from the posterior distribution
Ptþ 1¼K(PtLtþ 1), with K being a transformation that accounts for both gradual
and abrupt parameter changes as follows: To allow for abrupt parameter changes,
we set the minimal probability of the posterior distribution to pmin¼ 10� 7

PtLtþ 1 ! max pmin; PtLtþ 1½ �:

To allow for gradual parameter changes, we blur the distribution by convolution
with a box kernel B of radius R¼ 0.03 defined as

B q; að Þ ¼ Y R� qj jð Þ �Y R� aj jð Þ:

Here, Y(x) is the Heaviside step function. The posterior distribution of the
parameters is normalized at every time step, since the transformation K does not
preserve normalization. A systematic procedure to find optimal values for the two
parameters pmin and R is given in the Supplementary Note 5.

Starting with a flat prior P0 and moving forward in time using the iteration
described above, a series of ‘forward’ priors PF

t

� �
t is generated. In the same way,

we can start the iteration at the end of a trajectory, and build a series of ‘backward’
prior distributions PB

t

� �
t . Finally, for each time step t, we multiply the t� 1 and

tþ 1 priors with the likelihood Lt to compute the final posterior distribution of the
parameters (qt,at), so that PF

t� 1 P
B
tþ 1 Lt . Note that the inference algorithm is run in

both directions of time to ensure that for each estimated parameter pair (qt,at), all
measured data points are taken into account and not only those of earlier times
0yt. In principle, however, the algorithm can also be used only in the forward
direction, which may be useful for online analysis of a data stream.

Temporal and ensemble averages. Throughout this paper, the symbol hftit
denotes temporal averaging over all discrete time points. For our data evaluation
(SWD, MSD and auto- and cross-correlations), we have additionally ensemble-
averaged the time-averaged properties over the individual cells of the same
migration environment.

Auto- and cross-correlations. The auto-correlation Cqq(Dt) of the persistence

parameter qt is defined in the standard way as CqqðDtÞ ¼ qt � �qð Þ qtþDt � �qð Þh it
s2q

, where

�q ¼ qth it is the temporal average and s2q ¼ qt � �qð Þ2
� 	

t is the variance of the
parameter. The definition of the activity auto-correlation Caa(Dt) is analogous.
Finally, the cross-correlation Cqa(Dt) between the two parameters is defined as

CqqðDtÞ ¼ qt � �qð Þ atþDt � �að Þh itffiffiffiffi
s2q

p ffiffiffiffi
s2a

p .

Superstatistical modelling of cell migration. To model the statistical properties
of cell trajectories in collagen (Fig. 5, grey dashed lines), we use a superstatistical
regime-switching process with an average switching time of t¼ 200min.
Parameter values (qt,at) are drawn from a bivariate Gaussian distribution,
(qt,at)BN(m,S), centred around the mean l¼ (mq,ma)¼ (� 0.05,0.55). The covar-

iance matrix is � ¼ ð s2 rs2

rs2 s2
Þ with s¼ 0.3 and r¼ 0.65. The 50% credibility

region of the distribution is shown in Fig. 5b as a grey dashed ellipse. The values of
qt are restricted to the interval [� 1,1].

Environment-specific cell classification. For ‘leave-one-out’ cross-validation, we
calculate the squared deviation D between the time-averaged posterior distribution
of a single cell, denoted psingle(q,a), and each of the three ensemble- and time-
averaged distributions penv(q,a) (excluding that one cell). The calculation of the
squared deviation is carried out as a sum over the Nq�Na-grid:

D ¼
XNq

i¼1

XNa

j¼1

psingle q ¼ qi; a ¼ aj
� �

� penv q ¼ qi; a ¼ aj
� �� �2

A cell is counted as correctly classified if the deviation to its true environment is the
smallest, compared with the other two environments.
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