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Self-assembling knots of controlled topology by
designing the geometry of patchy templates
Guido Polles1, Davide Marenduzzo2, Enzo Orlandini3 & Cristian Micheletti1

The self-assembly of objects with a set of desired properties is a major goal of material

science and physics. A particularly challenging problem is that of self-assembling structures

with a target topology. Here we show by computer simulation that one may design the

geometry of string-like rigid patchy templates to promote their efficient and reproducible

self-assembly into a selected repertoire of non-planar closed folds including several knots.

In particular, by controlling the template geometry, we can direct the assembly process so as

to strongly favour the formation of constructs tied in trefoil or pentafoil, or even of more

exotic torus knots. Polydisperse and racemic mixtures of helical fragments of variable

composition add further tunability in the topological self-assembly we discovered. Our results

should be relevant to the design of new ways to synthesize molecular knots, which may

prove, for instance, to be efficient cargo-carriers due to their mechanical stability.
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S
elf-assembly, at multiple length scales, is an important goal
of material science and of physics, and recent times have
witnessed a marked rise in research efforts aimed at

discovering new ways in which this objective may be achieved.
For instance, colloidal scientists and soft matter physicists have
explored the feasibility of self-assemblying extended photonic
crystals and other metamaterials by designing patchy particles of
increasingly complex surface activity1–4, by exploiting the shape
anisotropy of convex polyhedrical colloids5,6 or by choosing to
disperse particles into complex fluids such as binary fluids or
liquid crystals7–10. The resulting interparticle interactions are in
general highly non-trivial and can promote the formation of
crystals, glasses, gels and so on, often with tunable physical
properties11.

In other cases, the goal of self-assembly is the formation of a
target structure, at a length scale only slightly larger than that of
the microscopic constituents. A beautiful example is provided by
the creation of DNA origami12–14, or of other DNA-based
microstructures, such as molecular spiders and nanorobots15–17.
Here various target structures can be achieved by favouring the
base pairing of specific DNA regions, which embody the struts of
the desired construct. The DNA assembly technology is nowadays
so advanced that planar structures can be designed in fully
automated processes18.

Here we address a related, yet distinct, problem: we wish to
design string-like rigid templates that can spontaneously assemble
in solution to form fully three-dimensional (3D) closed structures
with a specified topology. Unlike previous seminal work that
considered clusters of dipolar spheres19, or flexible colloidal and
biological polymers with tunable chemical interactions20,21, in
our framework knots are created starting from a variable number
of identical rigid monomeric fragments, which join up thanks to
simple, non-specific attractive interactions. This simplicity is a
notable advantage in view of future experimental realizations of
our in silico self-assembly. Accordingly, we shall exclusively vary
the shape of the templates and ask whether this suffices to design
a set of conditions under which the templates spontaneously self-
assemble into, say, a trefoil knot or another prescribed knot type.

This problem of the self-assembly of target topologies
(henceforth ‘topological self-assembly’) with string-like fragments
is important from a fundamental point of view. In fact, the
thermodynamic and kinematic pathway to tie a polymer chain
into a given 3D molecular knot is intricate and extremely
challenging to incorporate in a self-assembly protocol 20; this
matter is at the basis of the known difficulty of naturally
occurring knotted proteins to fold without the aid of molecular
chaperones22. Gaining a better understanding of this problem
may be useful in practical contexts too; for example, to harness
the mechanical stability of knotted structures to engineer
better molecular cages for nanoreactors, or other cargo-carrier

constructs. It may further provide a route to design novel
synthetic molecular knots, if templates of small enough size can
be fabricated. This would extend the current range of synthetic
molecular topologies which, notwithstanding recent major
technical advancements23–28, is still presently limited.

Towards these goals we consider monodispersed solutions of
helical building blocks with sticky (patchy) ends and show that it
is possible to optimally design their geometry so to favour the
spontaneous and efficient self-assembly into closed constructs
with different topologies. In particular, we found that the most
robustly designable knot types are two torus knots: the trefoil
knot and the 819 knot. The latter has apparently not yet been
considered in molecular architecture contexts and hence is an
ideal candidate for future experimental attempts. Finally, we show
that the repertoire of designable topologies can be significantly
extended by considering solutions where helical templates of
different shape or chirality are mixed.

Results
Protocol. As the basic shape for the self-assembling templates we
considered helical fragments. On one hand, this is because, their
curved shape and non-planar nature are naturally compatible
with the properties of closed 3D structures, including the knotted
ones that we wish to assemble. On the other hand, helices can be
analysed quite simply mathematically, as the whole repertoire
of inequivalent shapes of their centre line is spanned by two
parameters only: the projected opening angle, a and the
longitudinal span or height, h, normalized to the radius of the
circular projection, see Fig. 1a.

The building blocks used in our simulations are obtained by
threading the centre lines of these helical fragments with identical
spherical particles of diameter s¼ 1/3 (again, in units of the
projected helical radius) interacting via a short-ranged repulsive
Weeks–Chandler–Andersen potential. To make the templates
stick to one another, the templates’ termini are functionalized
with the same type of cohesive patch (Fig. 1b). The attractive
interpatch interaction is modelled by a Gaussian potential with
a strength of 25 kBT and interaction range of 0.1 s. These
parameters ensure two important properties. First, they guarantee
that the bonding of contacting fragments is long lived. In fact,
their typical pairwise unbinding time exceeds by several orders of
magnitude the template Brownian time, that is, the time that a
template needs to diffuse its own size under conditions of infinite
dilution. Second, they ensure that the bonding can be established
for a wide range of contact angles (see Supplementary Fig. 1).
More details on the potential and simulation algorithms are given
in the Methods section.

We typically considered suspensions of 250 monodisperse
right-handed helical fragments, inside a periodic cubic simulation
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Figure 1 | Assembly templates and simulation setup. (a) The template centre line follows a helical curve projecting a unit radius and has angular

and axial spans equal to a and h, respectively. Its Cartesian parametrization is {cos(au), sin(au), hu} with uA[0,1]. (b) The helical centre line is

next threaded with spherical beads of diameter s¼ 1/3 (red spheres, s is in units of the projected helical radius, as all other distances) and its termini

are functionalized with small attractive patches (white spheres). (c) Initial configuration of 250 identical rigid templates (a¼ 1.7p and h¼ 1.6) packed

inside a periodic simulation box at a volume fraction of about 0.56%. The templates interact exclusively via their excluded volume repulsion and the

short-ranged attraction of the patches. The spontaneous assembly kinetics of the templates is followed by integrating numerically the Langevin dynamics of

the system. A typical system configuration at steady state is shown in panel (d).
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box at a f¼ 0.56% volume packing fraction. These parameters
are chosen as typical of self-assembly in the dilute regime because
they lead to an interfragment distance is comparable to the size of
each fragment (see Methods). Starting from a random, non-
overlapping initial arrangement of the templates, see Fig. 1c, the
system dynamics is followed for a time span which is B500-fold
longer than the time required by one template to diffuse over
distances comparable to the initial mean separation of the
templates.

Over such time scales, the number of freely diffusing
monomeric helical fragments gets depleted as templates bind to
each other, and eventually reaches a limiting concentration, see
Methods. At steady state, there is also a distribution of oligomeric
chains, some of which are closed (circularized) while others are
linear and hence open. Branched constructs, while theoretically
possible, are disallowed by our choice of a suitably small
interaction range between the ends of the templates (see Methods
for details).

Closure and knotting probability. Figure 2a portrays how the
fraction of templates in closed rings, also known as the closure
probability, depends on the h and a parameters, which determine
the shape of the template. The data show that relatively small
variations in the geometry of the helical building blocks lead to
sharp changes in closure probability: it is this extreme sensitivity
that will make our topological self-assembly highly tunable.

A simple example that illustrates this behaviour is provided by
the case for h¼ 0, which corresponds to planar arcs. Figure 2a
shows that, in the size range that we consider, these arcs are very
unlikely to form closed loops, as the closure probability is close
to zero. There is however an exception: if the template is
approximately half a ring (aBp), then dimerization leads to a
perfect circle—correspondingly, there is a major rise in the
closure probability, which approaches 1.

In general, the sensitive dependence of the self-assembly output
on the template geometry reflects two fundamental principles of
configurational selection, one based on excluded volume and
entropic constraints, the other on topological ones. Entropic

considerations are particularly important to determine binding
probability between templates: for certain template shapes it may
even be sterically impossible for these to bind to each other; this
happens, for instance, in the right corner region in Fig. 2a, see
also Supplementary Fig. 2. More generally, simple geometrical
considerations clarify that excluded volume effects also preclude
the formation of three-fragment rings (the most abundant
component of closed structures in our simulations) in about
one-third of the whole-phase space, see Supplementary Fig. 2. On
top of this, the incidence of closed conformations is further
hindered by the decrease in entropy associated with oligomeriza-
tion and binding. Given these premises, it is even more
remarkable that, in broad regions of the parameter space, the
incidence of self-assembled rings, including dimeric ones, can
exceed 80% (Fig. 2a).

Topological constraints also have a role: most notably,
all ring-like structures may be characterized by their ‘total
curvature’, which is simply the integral of the local radius of
curvature over the ring length. The self-assembly of closed loops
with a non-trivial knot topology, which are of particular relevance
for our work, requires that the total curvature of the ring must be
equal or exceed 4p, and this leads to further selection in
parameter space29 as it poses a lower bound to the number of
templates required for assembly.

Having characterized the probability of forming circular
structures, we next profiled their topology and found, remarkably,
that many of these structures are knotted. Intriguingly, knots are
most likely for non-planar templates located at the boundary
between open and closed structures, see Fig. 2b. In fact, at the
centre of the approximately convex region of phase space shown
in Fig. 2b, as many as 50% of the 250 fragments are involved in
knotted constructs.

Observed knots repertoire. The repertoire of knots which self-
assemble in silico is impressively rich given the simplicity of the
template shapes considered here, and is shown in Fig. 3a,b. All the
observed knots are chiral (for example, the amphichiral Flemish
knot 41 is not observed) and, unsurprisingly their chirality
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Figure 2 | Closure and knotting probabilities of the assembled constructs as a function of the templates shape parameters. The quantities shown in a

and b are the closure and knotting probabilities of the self-assembled constructs. These probabilities are more rigorously defined in our framework as the

percentage of templates involved in closed (a) and knotted (b) constructs, respectively. The phase diagram is drawn by interpolating data obtained by

sampling the two-dimensional parameter space with a triangular grid with a/p and h spacings both equal to 0.1. h is measured in units of the projected
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matches that of the templates used in the self-assembly. Moreover
most of the knots are torus knots (which can be drawn on the
surface of a torus) while twist knots as the 52 knot are extremely
rare. Among the torus knots, however, only the conformations of
the 3-mer trefoil knot (31), of the 4-mer 819 knot and of the 5-mer
10124 knot resemble the ideal shape of these knots, that is the
configuration which minimizes the rope length used to tie
them30,31. Furthermore, presumably because the range of allowed
contact angles is fairly wide, several alternative closed constructs
geometries and topologies can self-assemble from the same helical
fragments. For instance, for h ¼ 0.8 and a ¼ 1.8p one has knots
of type 51, 819 and 31 (the latter made with both 3 and 4
templates).

Dominant and robust knot types. To gain more insight into our
results, we present in Fig. 3c a topological ‘phase diagram’
showing the dominant type of knot—this is defined as the most
frequent non-trivial knot which forms for a given choice of the
h and a parameters. To avoid showing marginal or sporadic
structures, in Fig. 3c we only consider knot types which appear
with probability 41%. This topological phase diagram demon-
strates that, by a suitable choice of the templates shape, it is
possible to reliably control the statistical or thermodynamic
incidence of self-assembled constructs with definite topology in a
manner that is robust on decreasing or increasing the solution
density by a factor of two, see Fig. 4. Increasing the density ever
further, for example, by a factor of 10, favours the formation of
linear or percolating structures, at the expense of closed oligo-
meric constructs. Quite remarkably, however, within the observed
dominant topologies for closed oligomers, which are shown in
Fig. 4, are identical to those previously discussed, see Fig. 3.
A further notable point is that closed constructs not only come in
few distinct topologies, but are also locked into well-defined
geometries. This geometrical monodispersity of the knotted
assemblies is illustrated in Supplementary Fig. 3.

The topological phase diagram in Fig. 3c demonstrates that, of
all knots that can be seen in simulations (shown in Fig. 3a,b),

those that are most abundant are only few. As shown in Fig. 3a,
the dominant structures involve only two types of torus knots:
trefoils, which occur in two geometrical flavours with 3 and 4
templates, respectively, and 819 knots. In knot tables, the 819 is
marked as the first non-trivial torus knots because, if cut open, it
presents three braided strands rather than two as the simpler 31,
51 and 71 torus knots. It is remarkable that such a complicated
knot as 819 has a much higher incidence than the 51 and 71 torus
knots, which could be expected to be frequently assembled from
chiral templates given their nominal simplicity (and which, in
fact, are entropically favoured in fluctuating polymer chains32,33).

Importantly, the 819 knot and most of those shown in Fig. 3—
namely 31, 51, 10124 and 10139 knots—are also among the very few
topologies that clusters of dipolar spheres can adopt to minimize
their potential energy19. The unexpectedly broad overlap of the
topologies that are viable for both our helical fragments and for
chiral string-like clusters of dipolar spheres has, we believe,
important implications. It suggests that these knots have various
characteristics (chirality, compactness, symmetry and uniformity
of curvature), which favour them markedly over other structures,
as products of a thermodynamical self-assembly based on rather
simple interactions.

At the same time, it is interesting to note that, instead, the set
of knots in Fig. 3 do not resemble the repertoire of topologies
commonly formed by biopolymers such as proteins and DNA,
whether in solution or under confinement34–41. Arguably, a key
element favouring the self-assembly of the knots in Fig. 3a in our
system is the chirality and intrinsic curvature of the building
blocks. Consistent with this view, when repeating the self-
assembly simulations for straight, rather than helical, fragments,
we observed that the knotting probability dropped to negligible
levels, see Supplementary Fig. 4.

Knots repertoire expansion by polydispersed templates. The
results presented thus far have been obtained using monodisperse
template suspensions. What about mixtures, or polydisperse
suspensions? To address this issue, we consider a situation in
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which a fraction x of the templates have a shape that promotes
3-template trefoils (a¼ 1.7 and h¼ 1.0), whereas the remaining
1� x fraction has a geometry which directs the self-assembly of
819 knots, see Fig. 5. A notable outcome of this numerical
experiment is that the transition from the trefoil-dominated to a
819-dominated regime is accompanied by the non-monotonic
occurrence of the pentafoil 51-knot type, which is virtually absent
in either of the two pure phases. This suggests that the mixing
ratio, x, provides a further dimension in the topological phase
diagram of Fig. 3c, which can not only move around the
boundary between different dominant knot types, but also
introduce new structures, not observed for monodisperse
suspensions.

Another possible bidisperse suspension is a racemic mixture
where the templates making up the two components are mirror

images (that is, they have the same value of h but opposite values
of a, one is right handed and the other one is left handed). This
case also affects the outcome of our topological self-assembly, as
racemic mixtures result in a marked decrease in the closure
probability, and also in knot formation, see Supplementary Fig. 5.
It is also intriguing that achiral knots, which are not observed in
monodisperse suspensions of templates with the same handed-
ness, remain absent in these globally achiral racemic mixture.

In conclusion, we have shown here that rigid helical templates
with functionalized, sticky ends can be properly designed to self-
assemble into a wide range of non-trivial topological structures,
including a variety of torus knots, and some rare twist knots.
Importantly, we have shown that in a dilute monodisperse
suspension, there is a large region of parameter space where
closed structures are more likely than open ones. Within this
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NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7423 ARTICLE

NATURE COMMUNICATIONS | 6:6423 | DOI: 10.1038/ncomms7423 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


region we can further tune the parameters describing the basic
geometry of the template to control efficiently and in a
reproducible manner the knot type that is statistically dominant.
Such dominant topologies can be the unknot, the trefoil knot as
well as the more exotic 819 torus knot, one of the so-called Pretzel
knots, which has eight crossings in its minimal projection and is
known to topologists mainly because it provides the simplest
example of a non-alternating torus knot42.

Considering, instead, suspensions of polydispersed helical
templates leads to further surprises. For instance by mixing
templates which favour the formation of trefoils and 819 knots,
respectively, we find that pentafoil knots, practically absent in the
monodisperse topological phase diagram, can now be observed.
Another interesting avenue in which our work can be further
pursued in the future could be to allow to for some flexibility of
the templates, as would be relevant for molecular or polymeric
building blocks26.

Designing molecular knots. Our topological self-assembly is an
example of thermodynamic self-assembly, or ‘passive’ self-
assembly in the terminology of ref. 43. Normally, we are used to

the idea that thermodynamics can only drive the formation of
relatively simple structures, whereas further information, or
coding, is required to form more complicated assemblies which
are often found in the living world. Against this conventional
framework, our topological self-assembly provides a notable
counter example: while lacking any active coding and while
working in the absence of any external energy input, it can be
tailored to drive the formation of knotted structures, with
relatively high probability. It is especially remarkable that the
selected knots are not in general the simplest ones, as we are able
to self-assemble an 8-crossing knot as well as the trefoil and
pentafoil knots. It would be of high interest to recreate our
in silico topological self-assembly at the molecular level.

At a mesoscopic level, possible candidate templates to achieve
these might be DNA miniarcs, which can stick due to base
pairing, or functionalized fragments of cytoskeletal polymers such
as actin and microtubules. The resulting self-assembled knots
would have interesting mechanical and transport properties at the
nanoscale, particularly if they could be made motile. At a more
atomistic level, a natural choice is represented by helicates that
have been recently used to design supramolecular constructs tied
in trefoil and pentafoil torus knots. The abundance of the 819 knot
among the helical self-assembled constructs (and for clusters of
dipolar spheres too19) suggests that it ought to be an ideal
candidate for future attempts to design novel synthetic molecular
knots.

Methods
System setup. In our simulations, we considered a collection of rigid helical
templates with patchy ends. The body of each template was obtained by threading a
portion of a helical centre line with touching hard spheres or beads with nominal
diameter s, see Fig. 1. The template is next functionalized with two patchy
interaction centres lying on the exposed surface of the terminal beads where it
intersects the helical centre line, see Fig. 1. The templates are treated as rigid bodies
that interact with each other exclusively via the hard-core repulsion of the beads
and the short-ranged attraction of the patches.

A Weeks–Chandler–Andersen potential, that is, a shifted and truncated 12–6
Lennard–Jones potential, is used to enforce the excluded volume interaction of the
hard spheres:

Uhs
ij ¼ 4khsE

s
dij

� �12

� s
dij

� �6

þ 1
4

" #
; ð1Þ

where dij is the distance between the ith and jth beads, e is equal to the system
thermal energy, kBT, and khs is an adimensional parameter quantifying how hard
the potential is. Its value, together with that of the other parameters used, is given
in the ‘Model parameters’ section. The repulsive interaction acts for distances
dijo2

1
6s and is zero otherwise.

The pairwise attractive interaction of the patches has, instead, a Gaussian form:

Upatchy
ij ¼ �kpatchyE exp �

r2ij
2s2patchy
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where kpatchy and spatchy measure, respectively, the magnitude and range of the
attractive interaction (again their values are given in the ‘Model parameters’
section).

The dynamics of the ith hard-core bead, whose position vector we call ri, is
described by a Langevin equation

m€ri þ g_ri þri

X
j 6¼ i

Uhs
ij

0
@

1
Aþ ZðtÞ ð3Þ

where m and g are the mass and friction of the ith hard-core bead, the index j runs
over the other hard-core beads, and ri is the gradient operator with respect to the
ith bead coordinates.

The noise Z is uncorrelated across the various beads and, for each of them,
satisfies the usual fluctuation–dissipation conditions, hZa(t)i¼ 0 and
hZa(t)Zb(t0)i¼ 2kBTgda,bdt,t0 , with a and b running over the three Cartesian
components.

Similarly, the evolution of the k-th attractive patch is described by

m€rk þ g_rk þrk
X
l 6¼ k

Upatchy
kl

 !
þ ZðtÞ ð4Þ

with the index l running over the other patchy centres. Notice that there is no
interaction between the hard-core beads and the patchy centres because the latter
exactly lie on the surface of the hard-core beads.

The Langevin equations of motion for all beads are integrated numerically with
the LAMMPS simulation package44 with the rigid body constraint applied to each
construct. The integration time step is Dt¼ 0.012tLJ, where tLJ ¼ s

ffiffiffiffiffiffiffiffiffi
m=E

p
and with

m/g¼ 2tLJ as in ref. 45.
With these parameters, the templates’ typical Brownian time, that is, the time

required by an isolated construct to diffuse over a distance equal to its radius of
gyration, is tBB40tLJ, see Fig. 6.

Model parameters. The parameters of the attractive potential were set equal to
kpatchy¼ 25 and spatchy¼ 0.1 s, while for the hard-core interactions we use
khs¼ 150. These parameters were chosen after several trials, and were adopted
because it was found a posteriori that they satisfy a number of physics-based
desiderata. In particular, the attractive potential is sufficiently short ranged that it
avoids simultaneous binding of more than two patches that would, in turn, result in
the formation of branched multimeric complexes. At the same time, the depth of
the well is sufficient to guarantee that the unbinding time of two isolated templates
is much larger than the characteristic microscopic time, tB.

Simulation details. Each simulation includes 250 templates in a cubic box of
volume l3b with periodic boundaries. The desired total density of spheres in the
simulation, r, is fixed by setting lb¼ (nm/r)1/3, where nm is the number of hard
spheres in the simulation box and r is set to 7.5� 10� 3s� 3, corresponding to a
volume fraction of B0.56% (other densities are considered in Fig. 4). Because the
spherical particles are not individually dispersed in solution but are grouped to line
the helical fragments, this volume fraction corresponds to an appreciable crowding
of the templates. In fact, since each template typically consists of 15 beads, one has
that its specific volume is about 2,000 s3.
The associated characteristic length scale, which measures the separation of
neighbouring templates, is therefore B13s, which is comparable to the templates’
typical size (gyration diameter) which is B7s.

The phase space was discretized with a triangular grid with a and h spacings,
respectively, equal to 0.1p and 0.1. The total number of sampled points is equal
to 179.

For each point considered in the (a, h) space, 20 independent starting
configurations were randomly generated. For each simulation, the dynamical
evolution was followed for a time span of at least 6,600 tB, which suffices a
posteriori to observe the stationarity plateau for the closure and knotting
probability, see Fig. 6. For each point in the (a, h) space, the system dynamics was
thus followed, over various trajectories, for a total duration of at least 1.3� 105tB
and the closure and knotting probabilities were obtained by cumulating the data of
the last snapshot of the 20 independent simulations. The density plot of Fig. 2 were
obtained using a bicubic spline interpolation of the sampled data. The topological
phase diagram of Fig. 3c is a Voronoi tasselation of phase space based on the
dominant knot type (including the unknot) in each sampled point.

Topological profiling. The topological state of a ring is established from the
crossings in one of its planar projections, specifically, from the succession of over-
and under-passes. These are used to compute the Alexander determinants and, if
needed, the Dowker codes46. The Alexander determinants are standard topological
invariants that suffice to pinpoint the topological state of prime knots with fewer
than 10 crossings in their minimal projection. More complex or composite knots
are identified through the algebraic Dowker code, for which there exist lookup
tables of all prime knotted components of up to 16 crossings. We used the tables
made available in the Knotscape software package developed by M. Thistletwaite
(http://www.math.utk.edu/Bmorwen/knotscape).
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