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Genome-scale metabolic modelling of hepatocytes
reveals serine deficiency in patients with
non-alcoholic fatty liver disease
Adil Mardinoglu1,*, Rasmus Agren1,*, Caroline Kampf2, Anna Asplund2, Mathias Uhlen3,4 & Jens Nielsen1,4

Several liver disorders result from perturbations in the metabolism of hepatocytes, and their

underlying mechanisms can be outlined through the use of genome-scale metabolic

models (GEMs). Here we reconstruct a consensus GEM for hepatocytes, which we call

iHepatocytes2322, that extends previous models by including an extensive description of lipid

metabolism. We build iHepatocytes2322 using Human Metabolic Reaction 2.0 database and

proteomics data in Human Protein Atlas, which experimentally validates the incorporated

reactions. The reconstruction process enables improved annotation of the proteomics data

using the network centric view of iHepatocytes2322. We then use iHepatocytes2322 to analyse

transcriptomics data obtained from patients with non-alcoholic fatty liver disease. We show

that blood concentrations of chondroitin and heparan sulphates are suitable for diagnosing

non-alcoholic steatohepatitis and for the staging of non-alcoholic fatty liver disease.

Furthermore, we observe serine deficiency in patients with NASH and identify PSPH, SHMT1

and BCAT1 as potential therapeutic targets for the treatment of non-alcoholic steatohepatitis.
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H
epatocytes have a wide range of physiological functions,
including production of bile and hormones, removal
of toxic substances, homeostatic regulation of the plasma

constituents and synthesis of most plasma proteins1.
The hepatocytes, the most metabolically active cell types in
human, play a major role in overall human metabolism.
Deficiency or alterations in the metabolism of hepatocytes can
lead to complicated disorders such as hepatitis, non-alcoholic
fatty liver disease (NAFLD), cirrhosis and liver cancer, which are
serious threats to public health2. NAFLD is considered as the
hepatic manifestation of obesity and metabolic syndrome, and
encompasses a spectrum of pathological changes; ranging from
simple fatty liver (FL; steatosis) to non-alcoholic steatohepatitis
(NASH)3.

Even though it is well known that lipid accumulation in the
liver is a hallmark of NAFLD4, the underlying mechanisms
leading to steatosis and further transition to NASH still remain
elusive. It is therefore difficult to track the onset and progression
or to diagnose and design effective therapeutic techniques.
The adverse outcomes of this pathology may possibly be
prevented once the molecular mechanisms involved in the
metabolism of hepatocytes are deciphered5. However, this
requires understanding of the coordinated behaviour of a very
large number of interconnected metabolic reactions and
metabolites. Relating this behaviour with disease and patients
have been a major focus in biomedicine6. A systems biology
approach, based on the employment of genome-scale metabolic
models (GEMs), can be used to extend our understanding of
these molecular mechanisms, which in turn may enable future
therapeutic discoveries7–10.

GEMs represent the current knowledge of metabolism
generated through the integration of genetic and biochemical
studies coupled with cellular, physiological and clinical data11.
Several generic (non-cell type-specific) GEMs for human
metabolism have been previously constructed12–16. However,
neither of these generic networks contain extensive lipid
metabolism, which is necessary to study the effect of lipids on
the underlying molecular mechanism of NAFLD. Recently, a
large-scale GEM for adipocytes, iAdipocytes1809, with a strong
focus on lipid metabolism was presented17, and this model can
provide a base for further integration of lipid metabolism into
generic networks.

There is currently no efficient treatment for NASH18 and new
therapeutic approaches are in great demand. This study
represents an attempt to rationally identify biomarkers and
therapeutic targets using GEM modelling. To reconstruct a high-
quality model for hepatocytes, we combine clinical, biochemical
and genetic studies such as expression, localization and functional
characteristics of the proteins. We first significantly expand the
content of our Human Metabolic Reaction (HMR) database by
including extensive lipid metabolism and generate HMR 2.0
database. This represents an important step forward, as lipids
have major effect on the development of NAFLD and other
metabolic diseases19. Second, we reconstruct a consensus GEM
for hepatocytes, iHepatocytes2322, by using the HMR 2.0 database
and large-scale proteomics data. We also merge previously
published hepatocyte models to cover the entire known metabolic
functions of hepatocytes and incorporated additional clinical data
(for example, liver tissue and plasma fatty acid (FA) contents in
lipid structures). During the reconstruction process, we reevaluate
the hepatocyte proteomics data after identifying proteins that are
included in the model to ensure network connectivity, but
are assessed as absent in hepatocytes in the Human Protein
Atlas (HPA, http://www.proteinatlas.org)20. Finally, we employ
iHepatocytes2322 for the analysis of differential gene expression
data from liver tissues of subject groups with NAFLD. This lead

to new insights into the molecular mechanisms involved in
NASH, which are used for the identification of potential
metabolic biomarkers and therapeutic targets for treatment of
NASH (Fig. 1).

Results
HMR 2.0 database. To provide a resource for automated and
semi-automated reconstruction of cell-type-specific GEMs, we
previously constructed the HMR database15. This comprehensive
database, together with the INIT (Integrative Network Inference
for Tissues) algorithm, have been employed for automated
generation of cell-type-specific GEMs15. These models form
the basis for the Human Metabolic Atlas (http://www.
metabolicatlas.org), which is a web-based resource for human
metabolism. Here we expanded the HMR database by
incorporating extensive lipid metabolism, which accounts for
individual FAs rather than relying on generic FAs pool
metabolite. The generated HMR 2.0 database is formulated
using 59 FAs (Supplementary Table 1), which enables mapping
and integration of lipidomics data. Integration of extensive lipid
metabolism (for example, formation of lipid droplets (LDs) and
lipoproteins) may allow not only for understanding the
contribution of lipids to the development of diseases but also
allow for study of the relationship between lipid metabolism and
cellular molecular mechanisms17.

Reactions are included in the HMR 2.0 database depending on
evidence from previously published models and databases
(Supplementary Table 2) or on the availability of specific
experimental evidence for the occurrence of the reaction. The
reaction–gene associations of the generic human network were
improved based on the publically available resources and
literature review. The HMR 2.0 database is the largest
biochemical reaction database for human metabolism in terms
of number of reactions/genes/metabolites, as well as in terms of
covering most parts of metabolism.

Consensus GEM for hepatocytes and improved proteome
annotation. Cell-type-specific GEMs can be employed for the
analysis of high-throughput patient (-omics) data, simulation of
the metabolic differences under health and disease states, and
eventually for predicting the cellular phenotype10. Previously,
several GEMs for hepatocytes, including HepatoNET 1 (ref. 1),
iLJ1046 (ref. 21), iAB676 (ref. 22) and iHepatocyte1154 (ref. 15)
have been reconstructed. Here we generated a consensus GEM
for hepatocytes, iHepatocytes2322, based on proteomics data
(Supplementary Data 1) and the updated HMR 2.0 database.
iHepatocytes2322 contains all of the protein-coding genes and
associated reactions in previously published liver models (Fig. 2a).
In addition to the proteomics data and previous models, protein-
coding genes are also included in iHepatocytes2322 based on
transcriptomics data and connectivity (Fig. 2b). Reactions
and associated proteins were assigned into eight different
compartments following our HMR database standard based on
the subcellular localization of the proteins in HPA and Uniprot.
The protein localization information in HPA and Uniprot were
assigned to relevant compartments in the HMR 2.0 database
(Supplementary Data 2). A confidence score for each protein was
calculated based on the availability of knowledge in HPA and
Uniprot (Supplementary Data 3). Furthermore, the connectivity
in the model was checked carefully, such that all metabolites
consumed in one reaction should be able to be produced by
another reaction or they should be taken up from the plasma.
Finally, additional clinical data for plasma and hepatocyte lipid
concentrations for individual FAs were incorporated into the
model (Supplementary Data 4).
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iHepatocytes2322 differs from previously published hepatocyte
GEMs primarily in terms of coverage in lipid metabolism. Among
the new lipid-related functions are uptake of the remnants of
lipoproteins (chylomicrons, very-low-density lipoprotein (VLDL),
low-density lipoproteins and high-density lipoproteins), the
formation and degradation of LDs and secretion of synthesized
lipoproteins (VLDL, low-density lipoprotein and high-density
lipoprotein; Fig. 2c).

We tested iHepatocytes2322 by simulating 256 different
biologically defined metabolic functions (for example, the
synthesis of FAs, amino acids, cholesterol and bile acids;
Supplementary Data 5) that is known to occur in hepatocytes
using the RAVEN Toolbox23. Furthermore, the ability of
iHepatocytes2322 for performing gluconeogenesis was demon-
strated using experimentally measured secretion rates for glucose
and albumin, and uptake rates for glycerol, lactate, amino acids
and FAs in primary rat hepatocytes24 (Supplementary Data 6).

The HPA covers the annotated expression of proteins and their
subcellular localization in major human cell types, cancer and cell
lines20. Relative abundance of proteins encoded by 15,155 genes
in hepatocytes was analysed with 18,707 high-throughput-
generated affinity-purified antibodies (Supplementary Data 1).
The model reconstruction process was in excellent agreement
with the protein profiling of hepatocytes in HPA. During the
implementation of the metabolic tasks in iHepatocytes2322,
merely 61 (B1,6%) out of 3,765 proteins in the HMR database
and associated reactions had to be integrated into the model to
maintain the functionality, even though they have been reported
to be non-expressed in hepatocytes according to the HPA. We
re-analysed the immunohistochemistry (IHC) data of these
61 proteins and found that 20 (0.5%) of these proteins actually

should display presence in the liver (Supplementary Data 7).
Initial disconcordant data were due to the suboptimal titration of
the antibody, misinterpretation of weak IHC staining or due to
interference with other cell types besides hepatocytes present in
the liver (for example, Kupffer cells and sinusoids). Nine (0.2%)
of the investigated proteins showed more concordant results to
the mathematic model when re-analysed using another antibody
targeting the same protein. Fifteen proteins (0.4%) with negative
IHC data were kept as negative in HPA data, as limited literature
was available and/or concordant results were seen in subsets of
the remaining panel of tissues included in the HPA high-
throughput setup. The remaining 17 proteins (0,5%) were
inaccurately assessed by IHC due to technical issues, such as
antigen recognition due to antigen conformational changes,
fixation or suboptimal antibody.

Discovery of biomarkers for NASH. NAFLD is progressively
diagnosed worldwide25, is tightly associated with obesity, type 2
diabetes, insulin-resistance and hypertension, and represents a
severe risk for the development of cirrhosis and hepatocellular
carcinoma26. Despite its severe drawbacks, liver biopsy is still the
most common procedure for diagnosing NASH18. Thus, there is a
need for identifying non-invasive biomarkers to diagnose NASH
and to subcategorize the NAFLD patients without taking biopsies.

To date, there has been a number of studies aiming at
finding non-invasive biomarkers for diagnosis and staging of
NAFLD27,28. A routinely available biochemical marker for
hepatocellular damage is alanine transferase, but this has only
proven to have moderate diagnostic value. Other markers
for metabolic syndrome (such as adiponectin or leptin),
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Figure 1 | Effective therapeutic approach through GEM modelling. Schematic illustration of how a consensus GEM for hepatocytes, iHepatocytes2322,

may contribute to the development of effective therapeutic approaches for NAFLD patients. The HMR 2.0 database was constructed through the use of

previously published GEMs and pathway databases, including KEGG, HumanCyc, Reactome and LIPIDMAPS Lipidomics Gateway. Elements of lipid

metabolism were included in the HMR database to understand the effect of the lipids and their interactions during the appearance of NAFLD. The HMR 2.0

database was used for reconstruction of iHepatocytes2322 based on proteomics data in the HPA, transcriptomics data in NAFLD patients and previously

published hepatocytes models. During the reconstruction process, iHepatocytes2322 was employed for the improvement of proteomics data through

identification and re-annotation of putative false-negative proteins. The resulting GEM was used for the analysis of clinical data obtained from NAFLD

patients to investigate the alterations in their hepatocyte metabolism and eventually for the discovery of biomarkers and identifying therapeutic targets.

Through our systems biology-based analysis, potential biomarkers for diagnosing NASH and for subcatogorizing NAFLD patients were discovered.

Furthermore, a list of candidate therapeutic targets was identified to develop efficient treatments for NASH patients.
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inflammation (such as tumour-necrosis factor-a or interleukin 6),
oxidative stress (such as catalase, glutathione peroxidase and
overall plasma ferric reducing ability), apoptosis and fibrosis have
also been proposed as biomarkers for staging NAFLD29,30.
Among these, the apoptosis markers are arguably the ones with
the best predictive ability. One such marker is cytokeratin 18

fragment, which is an intermediate filament expressed in single-
layer epithelial tissues in patients with NAFLD. Its strong
correlation with the occurrence of liver fibrosis and hepatic
inflammation has been reported31,32.

In this study, we focused on predicting potential metabolite
biomarkers rather than on proteins, as they can quickly and easily
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improved annotation of proteomics data in the HPA. This high-quality model includes the structure of major lipid metabolism in hepatocytes, as well as all

of the reactions and associated genes to those reactions in previously published GEM for hepatocytes. The overlapping of the genes in iHepatocytes2322

and previously published models are presented. One thousand and twenty-eight new protein-coding genes were included into iHepatocytes2322 primarily

based on proteomics evidence provided by HPA. (b) Genes and associated reactions in iHepatocytes2322 are included into the model based on the

high-quality proteome, transcriptome, previously published models, as well as the connectivity. The overall distribution is shown. (c) iHepatocytes2322

contains extensive lipid metabolism that is known to exist in hepatocytes, in addition to other known metabolic pathways. In the model, 59 different

individual FAs are used to allow the integration of high-quality lipidomics data rather than generic pool names. The model can uptake the remnants of

chylomicrons, VLDL, low-density lipoproteins (LDLs) and high-density lipoproteins (HDLs) and can form and degrade LDs. Moreover, the model can

synthesis VLDL, LDL and HDL, and secrete it to the blood. Some of the important elements of lipid metabolism are shown.
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be measured both in the plasma and urine33. We analysed the
liver gene expression data obtained from NASH (severe stage of
NAFLD) patients (Supplementary Fig. 1) to understand the
multi-factorial nature of its appearance by using iHepatocytes2322
as a scaffold for data analysis. The liver transcriptomics data
include samples from 45 different subjects, and the samples were
diagnosed as healthy (n¼ 19), steatotic (n¼ 10), NASH with FL
(n¼ 9) and NASH without FL (n¼ 7)34. Diagnosis of the liver
samples was first established by a Liver Tissue Cell Distribution
System medical pathologist and was confirmed by histological
examination at the University of Arizona in a blinded fashion.
Steatosis was diagnosed by 410% fat deposition without
inflammation or fibrosis. NASH with and without FL samples
were characterized by 45% fat deposition and o5% fat
deposition within hepatocytes, respectively, and both were
accompanied by inflammation and fibrosis. The severity can be
ordered as NASH without FL4NASH with FL4steatotic4
healthy. Clinical information of these human liver samples has
been described previously35. In brief, samples of frozen and
formalin-fixed, paraffin embedded adult explant livers were
obtained from the Liver Tissue Cell Distribution System at the
University of Minnesota, Virginia Commonwealth University,
and the University of Pennsylvania. Histological staining of
progressive stages of NAFLD were provided for each human liver
donor samples using a previously established scoring system36,
and representative images of haematoxylin and eosin-stained
livers from normal, steatotic, NASH with FL and NASH without
FL have been provided35. The age, gender and disease state of the
patients are included in Supplementary Data 8.

We identified metabolic differences by performing a pair-wise
analysis of the gene expression of subjects with NASH with and
without FL versus healthy (Fig. 3) and steatotic (Supplementary
Fig. 2) samples using the Reporter Metabolite algorithm37.
Reporter Metabolite analysis allows for the identification of
metabolites in the network for which there is significant
enrichment of associated gene expression changes. Such
metabolites can therefore be used to discover key regions of the
metabolic network, which are significantly perturbed between the
compared conditions37. The analyses for two NASH patient
groups were performed independently and a total of 60
statistically significant (Reporter Features, P-value o0.05)
Reporter Metabolites for NASH with and without FL versus
healthy samples were identified. The association of the Reporter
Metabolites with up- and downregulated genes and their
metabolic subsystems classified in the HMR database are
presented (Fig. 3). NASH is associated with some well-studied
major metabolic abnormalities. These include increased uptake of
FAs, decreased b-oxidation and cholesterol synthesis, and
irregular preparation and export of triacylglycerols and
cholesterol in the form of VLDL particles38,39. Many of the
metabolites associated with these functions were identified in our
analysis, and literature evidence for their association with the
appearance of NAFLD are included in Supplementary Data 9.

We focused here on the less well-studied metabolic subsystems
involved in the progression of the NASH. In addition to
subsystems previously implicated in NASH (for example, folate,
vitamin B6, lipid, eicosanoid and amino acid metabolism40,41),
new Reporter Metabolites involved in glycan metabolism and
biosynthesis of chondroitin sulphate (CS), a proteoglycan (PG)
were identified. Previously, the association of serum levels of
hyaluronic acid (a non-sulphated glycosaminoglycan) with
the fibrosis stage in chronic liver diseases, including NAFLD, was
reported28,42. Hyaluronic acid is distributed throughout epithelial
tissues and most of its disassembly takes place in endothelial liver
cells. Fibrosis and cirrhosis lead to impaired clearance of hyaluronic
fragments due to the lack of function in endothelial liver cells.

Kalsch et al.43 re-evaluated the hyaluronic acid as biomarkers for
NAFLD and fibrosis in a cohort of 127 patients, and compared
these results with the histological diagnosis of NAFLD.

PGs are composed of glycosaminoglycans, including CS and
heparan sulphate (HS) and core proteins. The biosynthesis of PGs
starts with the xylosylation of serine residues in core proteins. To
gain more knowledge about the metabolic differences around
PGs, the detailed CS and HS biosynthesis pathway and the gene
expression changes in NASH with and without FL patients versus
healthy subjects are presented (Supplementary Fig. 3). It is
observed that the expression of the genes involved in the CS
biosynthesis are upregulated, whereas the expression of genes
involved in the biosynthesis of HS are downregulated
(Supplementary Table 3). It has been earlier reported that CSPG2
gene is upregulated in biopsy-proven NASH patients versus obese
controls44. CS and HS were also implicated in cancer
progression45, one of the most severe outcomes of NASH.
Therefore, we predicted that these changes in gene expression, in
particular as it involves complete metabolic pathways, may
correlate with a change in blood concentration of the pathway-
associated metabolites. Hence, the blood level of CS and HS can
be regarded as a potential biomarker for diagnosing NASH.

To validate the gene expression changes around CS and HS, we
retrieved another microarray data set that includes liver samples
from eight patients with morbid obesity and associated NASH,
and seven control obese subjects from the Gene Expression
Omnibus public repository under the accession number
GSE37031. The control subjects had normal serum aminotrans-
ferase levels and liver histology. The Reporter Metabolites for this
data set are presented (Supplementary Fig. 4). As can be seen,
there are quite large differences in terms of overlap with the
previously used data set. This can most likely be attributed to the
small sample sizes in both data sets. Most importantly though, CS
were found among the top-ranking metabolites for which there
were transcriptional upregulation, and HS were found among the
top-ranking metabolites for which there were transcriptional
downregulation (Reporter Features, P-value o0.05).

Potential therapeutic targets for NASH. The Reporter Subnet-
work algorithm identifies a set of metabolic reactions that exhibit
transcriptional correlation after a perturbation (in this case
NASH)37. We applied this algorithm to gain more insights into
the molecular mechanisms involved in the appearance of NASH.
After removing highly connected metabolites (for example,
cofactors; Supplementary Table 4) in iHepatocytes2322, the
involved subnetworks in either NASH with or without FL were
identified and they are presented (Fig. 4a and Supplementary
Fig. 5). The enzymes involved in the reactions are also
represented (Fig. 4a), and related P-values and fold changes of
their expression are shown (Supplementary Table 5).

The Reporter Subnetwork analysis showed that the non-
essential amino acids serine, glycine, glutamate, glutamine,
aspartate, asparagine and alanine, and the essential amino acid
valine and methionine seem to be involved in the appearance of
NASH. For reasons discussed later, serine, glycine and glutamate
are of particular interest. Several metabolites involved in folate
metabolism (for example, tetrahydrofolate (THF), 5-methyl-THF,
5-formyl-THF, 5,10-methenyl-THF and 5,10-methylene-THF)
were also identified in the Reporter Subnetwork analysis, and
these metabolites are involved in the interconversion of serine,
glycine and glutamate. The metabolism around THF changed in
NASH patients and this difference may be dependent on the
uptake of 5-methyl-THF and 5-formyl-THF.

Moreover, phosphatidylserine (PS), an essential component for
formation of LDs, was identified through our analysis. LDs have
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diverse roles in the cell, such as serving as storage for
triacylglycerols and CEs, or protecting the cell from excess lipids
or lipophilic substances that may be toxic46. The enzymes PS
synthases PTDSS1 and PTDSS2 that catalyse the production of
PS by condensation of phosphatidylcholine and phosphatidyl-
ethanolamine, respectively, were significantly downregulated
in NASH patients. The significant changes in the level of PS in
cirrhotic (severe stage of NASH) livers was previously reported in
a study on changes in lipid species in subjects with cirrhotic livers
compared with healthy controls47. Given that PS is essential for

hepatocytes, we hypothesize that decreased activity of these
enzymes may be associated with a decrease in the endogenous
level of serine, which is the second most connected node in our
identified Reporter Subnetworks (Fig. 4a).

Serine is endogenously biosynthesized from a glycolytic
intermediate, 3-phospho-D-glycerate. This three-step process is
catalysed by phosphoglycerate dehydrogenase (PHGDH), phos-
phoserine aminotransferase 1 (PSAT1) and phosphoserine
phosphatase (PSPH), as shown in Fig. 4b. An alternative
synthesis pathway is via the reversible interconversion with
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glycine through hydroxymethyltransferases SHMT1 and SHMT2.
Serine can also be derived from the diet and the degradation of
protein and/or phospholipids. Serine plays a key role in the
central metabolism, where it is involved in the formation of
macromolecules, including lipids (sphingosine and PS), and other
building blocks and cofactors, such as protein (glycine and
cysteine), creatine, porphyrins, glutathione and nucleotides48.

Through differential analysis of transcriptomics data from the
NASH patients, it was also observed that gene expression of
several enzymes that either use serine as substrate or produce it as
a product, including CBS (cysteine synthesis), SARS2 (aminoacyl-
tRNA biosynthesis), SHMT1 and SHMT2 (glycine synthesis) were
significantly downregulated (t-test, P-value o0.05), whereas
SPTLC1 and SPTLC2 (sphingosine synthesis) were significantly
upregulated (Supplementary Table 5). Downregulation of CBS
that catalyses the conversion of serine and homocysteine to
L-cystathionine and upregulation of MTR that condensates
homocysteine to methionine through the use of 5-methyl-THF
indicate that there are metabolic changes around homocysteine in
NASH patients. Notably, it has been earlier reported that the
plasma homocysteine level can be used for diagnosing NASH and

classifying steatosis and NASH patients49. It is not always
straightforward to relate blood concentrations to gene expression
levels of the involved enzymes, but our model-based analysis
suggests a mechanistic explanation for this.

Taken together, the results suggest that the changes in the level
of PS in the liver47 as well as the relative increase in the
homocysteine blood level49 is caused by decreased level of
endogenous serine. To test this hypothesis, we checked the
expression level of enzymes that catalyse the biosynthesis of
serine in the liver of NASH patients, and it was observed that the
expression levels of PHGDH, PSAT1, PSPH in serine synthesis
pathway (SSP), and SHMT1 and SHMT2 enzymes were
significantly downregulated (Supplementary Table 6). Decreased
levels of serine in NASH patients was supported by plasma
profiling of amino acids, where the serine level in the plasma is
relatively decreased (15% decrease, P-value¼ 0.0568) compared
with healthy subjects50.

Equimolar amounts of serine and alpha-ketoglutarate (AKG)
are synthesized in the SSP, and downregulation of reactions in
SSP decrease the anaplerosis of AKG to the tricarboxylic acid
(TCA) cycle in the form of glutamate51. Decreased level of serine

Palmitoyl-CoA[c]

5-Methyl-THF[c]

1-(1-Alkenyl)-sn-glycero-3-
phosphoethanolamine[c]

Glutamine[c]

Carbamoyl-phosphate[c]

Aspartate[m]

Valine[c]

tRNA(val)[c] L-valyl-tRNA(val)[c]

1-(1-Alkenyl)-sn-glycero-
3-phosphate[c]

3-Methyl-2-oxobutyrate[c]

THF-hexaglutamate[c]

3-Phosphoserine[c]

3-Phosphonooxypyruvate[c] 

Glycine[c]

5,10-Methylene-THF[c]

5,10-Methenyl-THF[c]

5-Formyl-THF[c]

THF[c]

Serine[c]

Glycine[s]

Lysine[c]
Lysine[s]

HMR_5907

HMR_5677

Phenyalanine[s]
Phenyalanine[c]

tRNA(ser)[c]

L-Valyl-tRNA(val)[c]

Homocysteine[c]

L-Cystathionine[c]

Methionine[c]

3-Dehydrosphinganine[c]

Glutamate[c]

PS-LD pool[c]

Ethanolamine[c] 

SM pool[c]

O-1-Alk-1-enyl-2-acyl-sn-glycero-
3-phosphoethanolamine[c]

2-Lysolecithin pool[c]

Fatty acid-LD-TG1 pool[c]

PC-LD pool[c]

PI pool[c]

1,2-Diacylglycerol-LD-TAG pool[c]

1-Radyl-2-acyl-sn-glycero-
3-phosphocholine[c]

Lipid droplet[c]

Acetyl-CoA[m]

NH3[c]

AKG[c]

5-Oxoproline[c]

Cholesterol-ester pool[c]

TAG-LD pool[c]

Cholesterol biosynthesis

Cholesterol[c]

Bile acid biosynthesis

Fatty acid
biosynthesis

HMR_7607

HMR_5393

HMR_5392

1-Acyl-PE pool[c]

Inositol phosphate
metabolism

HMR_4034

HMR_3889

HMR_3841

HMR_3747

HMR_5150

Glutamate[m]

Aspartate[c]Asparagine[c] HMR_4172

Fumarate[c]

HMR_3831

Asparagine[m]

NH3[m]

HMR_3862

5,10-Methylene-THF[m]

3-Methyl-2-oxobutyrate[m]

AKG[m]

HMR_3802

Valine[m]

HMR_3744

1-Pyrroline-5-carboxylate[m]

OAA[m]

Pyruvate[m]

Alanine[m]

2-Methyl-3-oxopropanoate[m]

D-3-Amino-isobutanoate[m]

HMR_3792

HMR_3793

HMR_4143Malate[m] HMR_4141

HMR_8143

HMR_3822Arginine and proline
metabolism

Glycine[m]

Glyoxalate[m]

Proline[m]

AKG[m]

Glutamate[m]

HMR_4788
THF[m]

L-2-Amino-3-
oxobutanoic acid[m]

Serine[m]

Malonyl-CoA[m]

Glycine, serine and
threonine metabolism

HMR_3847

HMR_4295

Porphobilinogen[c]

Hydroxymethylbilane[c]
Porphyrin metabolism HMR_4746

Haeme[m]

MTHFS

MTHFD1

SHMT1
SLC7A6
SLC7A9

SLC7A6

FPGS

GGH

PE-LD pool[c]

Choline[c] 

ENPP2

CAD

OPLAH PSAT1

BCAT1

VARS;VARS2

ASRGL1;ASPG

HMBS

FH

ASRGL1ALDH4A1

GLUD1;GLUD2

AGXT2;
ABAT

BCAT2

AGXT2

PC

GPT2

MDH2

AGXT;AGXT2

SHMT2

ACACB

GCAT

FITM1
PLIN3
PLIN4

Glucose[c] 3-Phospho-D-glycerate[c] Lactate[c]Pyruvate[c]

3-Phosphonooxypyruvate[c]

Serine[c] Glycine[c]

3-Phosphoserine[c]

Cysteine[c]

NAD+[c]

NADH[c]

Glutamate[c]

AKG[c]

H2O[c]

Pi[c]

Diet
Phospholipid
degradation

PHGDH

PSAT1

PSPH

SHMT1

SLC25A13
SLC25A12HMR_3825

TCA cycle
BCAT1

HMR_4792

HMR_4109

HMR_3837HMR_8609 PYCR1PYCR1

HMR_0031

HMR_0622

PTDSS2

PTDSS1

HMR_0623

HMR_0738SPTLC1
SPTLC2 HMR_5147SARS2 HMR_3879CBS

MTR

HMR_8144

HMR_3845

HMR_3917

Mitochondria

Cytosol
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also causes an accumulation of upstream glycolytic
intermediates52, and a decreased flux of mitochondrial AKG is
compensated by an increased flux of pyruvate to oxaloacetate in a
healthy cell. To investigate the occurrence of this mechanism in
NASH patients, we examined all mitochondrial reactions
involving pyruvate as reactant in iHepatocytes2322. We found
that the corresponding genes were downregulated for five out of
seven such reactions (Fig. 5 and Supplementary Table 7).
Furthermore, we investigated the expression of level of
mitochondrial pyruvate carriers (MPC1 and MPC2) and
mitochondrial AKG/malate carrier (SLC25A11), and it was
observed that their expression levels were down-
regulated in NASH patients. These indicate that the
mitochondrial metabolic activity (TCA cycle) of hepatocytes is
decreased in NASH patients in comparison with healthy subjects.
This is in agreement with findings in our previous study wherein
we investigated the metabolic changes in the case of fat
accumulation in adipocytes in response to obesity17.

In the appearance of NASH, glutamate, which is the most
connected node in our Reporter Subnetwork, plays a significant
role as well. All enzymes linked to glutamate, except the branched
chain amino-acid transaminase 1 (BCAT1) that convert AKG and
valine to glutamate in the cytosol, are downregulated. In NASH
patients, upregulation of BCAT1 is previously reported40 and our
study identifies its mechanism in the appearance of NASH. The
simultaneous upregulation of BCAT1 and downregulation of
PSPH could point to an imbalance in intercellular level of AKG
and glutamate. This could possibly result in an accumulation of
intracellular glutamate, which would then be compensated for by
reduced uptake from/increased export to the blood. Notably, a
previous study detected a significantly higher level of glutamate
(60% increase, P¼ 9.808E� 09) in the plasma profiling of the
amino acids in NASH patients50. At the same time, this may

result in a higher demand for valine in hepatocytes, and given
that valine is an essential amino acid this would arguably
correlate with an increased uptake. Indeed, the same study50

reported that the plasma valine concentration displayed
significant changes (10% increase, P-value¼ 0.012).

Discussion
To gain insights into the underlying molecular mechanisms of
NASH, we reconstructed a consensus GEM for hepatocytes,
which allowed for study of the interactions between lipid
metabolism and other cellular metabolic functions. The recon-
struction process enabled re-evaluation and improved annotation
of the proteomics data, and our analysis clearly showed the power
of using reconstructed metabolic networks for improving the
annotation of experimental expression data. This highly curated
GEM reconstructed through the use of the HMR 2.0 database
enables interpretation of systemic effects, provides deeper insight
into omics data for better understanding of the genotype–
phenotype relationship in NASH subjects and allows for
application of constraint-based modelling techniques to distin-
guish the NASH-specific metabolic features. On the basis of liver
transcriptomics data of NASH patients and systems biology-
based approaches, we proposed potential biomarkers and
identified candidate therapeutic targets for NASH. Throughout
our analysis, the gene expression levels served only as cues for the
changes in the metabolic flux of its associated reaction. It is
known that the correlation between these measurements is
known to be limited, but several methods for inferring flux rates
using gene expression data have been successfully applied53,54.

On the basis of our analysis, increasing the serine level in
hepatocytes through the uptake of serine as a dietary supplement
could be beneficial for NASH patients. Similarly, activity loss of
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PHGDH in SSP in the brain, which causes low serine and glycine
levels, and affects neuronal function, is reversed by serine
supplementation55. The toxicity and the dosage of serine during
its uptake through diet have been previously studied. Further-
more, long-term serine treatment decreased the homocysteine
level in animal studies56 and in humans, in a single-dose
situation57.

One other possible way to increase the serine level to offer the
possibility for therapeutic interventions is activation of the
enzymes in SSP or SHMT1 and SHMT2 that converts glycine
to serine. Three different enzymes constitute the SSP and it is
earlier reported that PSPH is the rate-controlling enzyme for SSP
in the liver58. Activation of the SSP through the amplification of
PSPH may also decrease the flux through pyruvate and lactate
formation in cytosol, as increased pyruvate and lactate levels were
previously reported in NASH patients50. Recently, Frayling
et al.59 performed a genome-wide association study using 1,004
non-diabetic individuals and identified 8 common genetic
variants relevant to insulin sensitivity and type 2 diabetes
that are strongly linked to NASH phenotype. Their findings are
in agreement with our results and they reported that three
variants were associated with serine levels, out of which one is
in the PHGDH gene and the other two are independently in
the PSPH gene.

Boosting the serine level through SSP will also increase the flux
on unregulated anaplerotic reactions that drive glutamine-derived
carbon (via glutamate) into the TCA cycle through increased level
of AKG and result in increased TCA cycle flux51. TCA cycle
intermediates, besides being involved in driving energy
production, are also used for biosynthesis of lipids (citrate),
porphyrin (succinyl-CoA) and amino acids (AKG and
oxaloacetate). AKG concentration in the cytosol can also be
increased by inhibition of BCAT1, which converts AKG and
valine to glutamate. Increasing the AKG level by either
overexpressing PSPH or inhibiting BCAT1 may change the
NASH-specific patterns to healthy patterns, and it may
potentially be used to develop an effective treatment for NASH.

In conclusion, we reconstructed a consensus GEM for
hepatocytes, showed how reconstructed metabolic networks can
be used for improving the annotation of experimental data and
employed the model to gain more insight into the metabolic
transformations associated with the development of NASH. Our
analysis suggests that it is possible to diagnose NASH through
identified metabolic biomarkers such as CS and HS levels in the
blood. Furthermore, the development of therapeutic techniques
based on the enhancement of endogenous serine and AKG levels
may correct the underlying aetiology of NASH. This could be
achieved by activation (or elevated expression) of PSPH and
SHMT1, and inhibition of BCAT1. This study demonstrates that a
deeper understanding of the metabolic changes obtained through
GEM modelling may allow for elucidating the unknown aetiology
of NASH, discovery of novel biomarkers, identification of
drug targets and, eventually, development of efficient treatment
strategies.

Methods
Expansion of HMR database. The HMR database was constructed15 by
integrating the elements of stoichiometric networks of human metabolism, Recon 1
(ref. 12) and EHMN13,14, as well as the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database60. To generate a generic network for studying the effect of the
lipids on the cellular metabolism, we expanded the coverage of the HMR database.
We first merged metabolism of lipids and lipoproteins in Reactome, a manually
curated and peer-reviewed pathway database61, and the literature-based GEMs
including Recon 1 (ref. 12), EHMN13,14 and HepatoNet 1, a manually
reconstructed GEM for hepatocytes1. Extensive lipid metabolism involving 59
different FAs in the comprehensive database for lipid biology for mammalian cells,
Lipidomics Gateway62, were included in the network and the gaps in the resulting
network were filled using public databases such as KEGG60 and HumanCyc63.

The resulting generic human GEM is called HMR 2.0 database, and to ensure
the standardization of the HMR database all model components were extensively
annotated with database identifiers. HMDB, Lipid Map62, KEGG and ChEBI
identifiers were assigned for each metabolite, and KEGG ids and enzyme
commission numbers were assigned for each reaction. Alternative genes associated
to reactions were assigned using UniProt64 and Lipid Map proteome database65

using enzyme commission numbers. The resulting HMR database contains 3,765
genes, 6,007 metabolites (3,160 unique metabolites) and 8,181 reactions, and 74%
of the reactions associated to one or more genes. The generated HMR 2.0 database
is the most comprehensive resource for the human-related biochemical reactions
and includes all of the genes, metabolites and reactions in the recently published
models (Supplementary Table 8). It also includes all of the genes and associated
reactions in recently published generic human model Recon2 (ref. 16). In the HMR
2.0 database, proteins encoded by genes are classified into eight different
compartments, including cytosol, nucleus, endoplasmic reticulum, Golgi apparatus,
peroxisome, lysosome, mitochondria and extracellular space. The HMR 2.0
database is available at http://www.metabolicatlas.com in SBML (Systems Biology
Mark-up Language) format.

To construct a simulation-ready HMR 2.0 database, first it was tested so that all
individual reactions, except pool reactions, were mass balanced. Second, it was
guaranteed that high-energy compounds cannot be generated from low-energy
compounds (such as ATP from ADP). This allowed us to test the thermodynamic
constraints and the reversibility of the reactions. Third, the gap identification
and gap-filling capabilities of the RAVEN Toolbox23 were used to guide targeted
literature studies to keep the number of dead-end reactions to a minimum.
The production of all metabolites in the model was tested using artificial
reactions (Supplementary Data 10). Artificial reactions were used to ensure the
connectivity and were not included during the simulations and network-dependent
analysis.

Consensus GEMs for hepatocytes. GEMs provide biologically meaningful
mechanistic basis for the genotype–phenotype relationships, yet it is necessary to
have functional cell-type GEMs to identify the metabolic differences between dif-
ferent states. We reconstructed iHepatocytes2322 by merging recently generated
GEM for hepatocytes iHepatocyte1154 and previously published liver mod-
els1,15,21,22. iHepatocyte1154 was generated from the HMR database using the INIT
algorithm, which allows for automated reconstruction of GEMs based on the cell-
type-specific proteome in the HPA (http://www.proteinatlas.org)20.

We incorporated differentially expressed genes (t-test, P-value o0.001) in
NAFLD patients in our reconstruction process, as iHepatocytes2322 is used for the
analysis of NAFLD patient data. Moreover, we integrated biochemical knowledge
about hepatocyte metabolism and a large number of additional clinical data into
the model. The resulting iHepatocytes2322 is the largest cell/tissue-type-specific
GEM and contains 2,322 genes, 5,686 metabolites (2,895 unique metabolites) in 8
different compartments and 7,930 reactions. In the model, 74% of the reactions are
associated to one or more genes. iHepatocytes2322 was validated with 256 known
biological functions of hepatocytes (Supplementary Data 5), based on the
definitions by Gille et al.1, by using the checkTasks function in the RAVEN
Toolbox23.

Transcriptomics data for NAFLD. To study the appearance of human NAFLD
through the changes in global gene expression, microarray data for liver samples
were retrieved from ArrayExpress public repository (accession code E-MEXP-
3291). The data include samples from 45 different subjects and the samples were
diagnosed as healthy (n¼ 19), steatotic (n¼ 10), NASH with FL (n¼ 9) and NASH
without FL (n¼ 7)34. The age, gender and disease state of the patients are presented
(Supplementary Data 8).

The steatotic samples did not demonstrate significant gene expression changes
compared with normal samples, as similarly reported in the plasma metabolic
profiling of subjects with NAFLD, steatosis and NASH50 (Supplementary Fig. 1).
Hence, we performed the pair-wise comparison analysis of the gene expression to
compare NASH with and without FL samples versus healthy (Fig. 3) and steatotic
(Supplementary Fig. 2) samples using Piano R package66. Identified metabolic
differences between the NAFLD patients through iHepatocytes2322 provided
detailed information comparing the enrichment of differentially expressed genes in
the KEGG pathways (Supplementary Fig. 6). Differentially expressed genes in
NASH with and without FL samples versus healthy and steatotic samples enriched
in metabolism-related KEGG pathways, including steroid biosynthesis, oxidative
phosphorylation, valine, leucine and isoleucine degradation, peroxisome,
pyrimidine metabolism, pentose phosphate pathway and FA biosynthesis.

Data availability. HMR 2.0 database (Supplementary Data 11) and GEM for
hepatocytes iHepatocytes2322 (Supplementary Data 12) is publically available in
the SBML format at Human Metabolic Atlas (http://www.metabolicatlas.org).

The annotation of the presence or absence of protein targets in hepatocytes
together with the high-resolution images is publically available through the HPA
(http://www.proteinatlas.org).
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