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Large-scale quantum-emitter arrays
in atomically thin semiconductors
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Quantum light emitters have been observed in atomically thin layers of transition metal

dichalcogenides. However, they are found at random locations within the host material and

usually in low densities, hindering experiments aiming to investigate this new class

of emitters. Here, we create deterministic arrays of hundreds of quantum emitters in tungsten

diselenide and tungsten disulphide monolayers, emitting across a range of wavelengths in

the visible spectrum (610–680 nm and 740–820 nm), with a greater spectral stability than

their randomly occurring counterparts. This is achieved by depositing monolayers onto silica

substrates nanopatterned with arrays of 150-nm-diameter pillars ranging from 60 to 190 nm

in height. The nanopillars create localized deformations in the material resulting in the

quantum confinement of excitons. Our method may enable the placement of emitters

in photonic structures such as optical waveguides in a scalable way, where precise and

accurate positioning is paramount.
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T
ransition metal dichalcogenides (TMDs) are optically
active, semiconducting layered materials (LMs) which
can be exfoliated down to monolayers. These are of

particular interest, as they exhibit properties such as an optically
accessible valley degree of freedom that is locked to the exciton
spin1–3, strong two-dimensional confinement, favouring bound
excitonic states4,5 and the opportunity to investigate many-body
physics6. Intrinsic properties of LMs—atomically precise
interfaces, lack of dangling bonds, flexibility and the possibility
of stacking different LMs into functional heterostructures7,8—
make them not only interesting for fundamental physics but also
suitable for technological applications9,10. For these reasons, the
identification of quantum emitters (QEs) in LMs11–16 has
generated much excitement in the field of two-dimensional
nanophotonics10,17–19 and quantum technologies9,20.

Single photon emission has been seen from QEs in tungsten
diselenide (WSe2) with both above bandgap11–16 and resonant
optical excitation21. In addition, QEs in WSe2 and tungsten
disulphide (WS2) have been implemented in heterostructures to
achieve electrically driven single-photon emission22. However,
the origin of QEs in TMDs is still unclear, and has been assigned
to both defects11–16 and strain gradients21,23,24. Experiments on
these QEs have, until now, been reliant on their rare and random
occurrence. Deterministic creation of precisely positioned LM
QEs in large numbers is important for accelerating the study of
these emitters, as well as opening up the prospect for scalability
and on-chip applications.

Here, we report a method to create arrays of single-photon
emitting QEs in WSe2 and quantum-like emitters in WS2 using a
nanopatterned silica substrate. We obtain structures with
QE numbers typically in the range of hundreds. The quality of
these deterministic QEs surpasses that of their randomly
appearing counterparts, with spectral wanderings of B0.1 meV
– an order of magnitude lower than previous reports11–15. Our
technique is a crucial first step towards solving the scalability
challenge for LM-based quantum photonic devices.

Results
Nanopatterned substrate preparation and characterization. To
create large-scale QE arrays in LMs, we place the active material
on patterned structures fabricated on the substrate in order to
create spatially localized physical disturbances to the otherwise
flat LM flakes. To this end, we first pattern arrays of nanopillars
of different heights, ranging from 60 to 190 nm, on silica
substrates using electron beam lithography. Figure 1a shows a
scanning electron microscope image of one such substrate of
130 nm nanopillar height. We place layers of WSe2 and WS2 on
the nanopillars as follows. Bulk WSe2 and WS2 crystals are
characterized before exfoliation as described in ref. 22. These
are then exfoliated on a polydimethylsiloxane layer by
micromechanical cleavage7,25. Single-layer (1L) samples are
identified first by optical contrast26, and the selected 1L-WSe2

and 1L-WS2 flakes are then placed onto the patterned nanopillar
substrate via an all-dry viscoelastic transfer technique due to their
higher adhesion to SiO2 (refs 7,19,27), as schematically shown in
Fig. 1b. After exfoliation and transfer, the 1L-WSe2 and 1L-WS2

flakes are characterized by Raman spectroscopy28,29,
photoluminescence (PL)30 and atomic force microscopy (AFM),
confirming the transfer and that the process does not damage the
samples (see Supplementary Fig. 1 and Supplementary Note 1 for
the corresponding spectra and discussion). Figure 1c is an AFM
scan of a 1L-WSe2 flake over a single nanopillar. The bottom
panel of Fig. 1c plots the height profile of the 1L-WSe2 flake taken
along the dashed pink line. This reveals how the flake (solid pink
line) tents over the nanopillar. The blue-shaded area corresponds

to the measured profile of a bare nanopillar. Figure 1d is a dark-
field optical microscopy image of part of a 43,000 mm2 1L-WSe2

flake on a substrate patterned with a 4-mm-spaced nanopillar
array with nominal height of 130 nm. The regularly spaced bright
spots correspond to nanopillar sites. We see locations providing
brighter scattering (two examples are encircled in pink) and
others showing fainter intensity (two examples are encircled in
blue). By correlating with AFM measurements we find that the
former correspond to locations where the 1L-WSe2 tents over the
nanopillars and the latter correspond to locations where the flake
is pierced by the nanopillars (see Supplementary Fig. 2).
On average, we find that two-third of the sites are not pierced
during the deposition step.

Quantum light from WSe2-based deterministic QEs. Figure 2a
is an integrated raster scan map of PL emission at B10 K of six
adjacent non-pierced nanopillar sites in the region enclosed by
the green dashed line in Fig. 1d. The most prominent feature is
the B� 10 increase in intensity at the location of every nano-
pillar. Figure 2b reveals the source of this emission intensity
enhancement: spectra taken at each nanopillar location display
bright sub-nanometre linewidth emission peaks. Figure 2c
demonstrates the single-photon nature of this emission via pho-
ton-correlation measurements taken (from left to right) at the
first, third and fourth nanopillar locations. Ten nanometre band-
pass filters, indicated by the pink, green and blue highlighted
areas in the panels of Fig. 2b, select the spectral windows for the
photon-correlation measurements. We obtain g(2)(0) values of
0.0868±0.0645, 0.170±0.021 and 0.182±0.028, respectively,
uncorrected for background emission or detector response. While
these surpass those in early reports11–15, we expect the quality of
the single-photon emission from the QEs to improve under
resonant excitation31. Out of the 53 unpierced nanopillar sites in
this substrate we find sub-nm emission peaks in 51 of them,
giving B96% yield in QE generation. Their emission wavelength
ranges between 730 and 820 nm (see Supplementary Fig. 3 for
statistics), equivalent to a redshift distributed between 50 and
280 meV from the unbound exciton emission energy at
B1.755 eV (ref. 32), as observed for the naturally occurring
QEs in WSe2 (refs 11–15). The fine-structure splitting
(200–730 meV) and the emission linewidths as narrow as
B180 meV (B0.08 nm) are also consistent with previous
reports11–15 (Supplementary Fig. 3) advocating that these
deterministically created QEs are of the same nature as the
randomly appearing ones.

Effect of nanopillar height on WSe2-based QEs. To study the
effect of nanopillar height, we carry out similar optical mea-
surements of 1L-WSe2 flakes deposited on nanopillars of height
B60 and B190 nm. The spectra taken at the 60-nm nanopillars
have multiple peaks of B1 nm linewidth on average
(see Supplementary Fig. 3 for example spectra). In contrast,
Fig. 2d is a representative spectrum taken from the 190 nm
nanopillars, displaying a better isolated, single sub-nm emission
peak. The inset reveals a 722 meV fine-structure splitting for this
QE. We do not see clear nanopillar height dependence in the
emission wavelength and fine-structure splitting (see
Supplementary Fig. 3 for statistics). Although we often observe
multiple narrow emission lines from nanopillar locations,
increasing the nanopillar height reduces the spread in the number
of peaks arising at each. We verify this trend in Fig. 2e, a histo-
gram of the probability that a given number of sub-nm emission
peaks appear per nanopillar, for the different nanopillar heights
(60, 130 and 190 nm in white, blue and purple, respectively). The
likelihood of creating a single QE grows as nanopillar height is
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increased. For the 190 nm nanopillars, 50% of all nanopillar sites
host a single QE with one emission peak, as indicated by the
purple bars. Spectral wandering of the peaks as a function of time
also displays a strong dependence on the nanopillar height.
To quantify this dependence, we record the maximum range of
emission wavelength wandering per QE over tens of seconds. The
solid black circles in Fig. 2f correspond to the mean of these
values for each group of QEs pertaining to each nanopillar height,
for 17 different QEs in total, with the error bars displaying the
standard deviation of these distributions. We observe a reduction
from a few meV for 60 nm nanopillars to below 0.25 meV
(average) for the tallest 190 nm nanopillars (see Supplementary
Fig. 4), reaching as low as 0.1 meV. To the best of our knowledge,
this is the lowest spectral wandering seen to date in LM QEs11–15.
Hence, these deterministic QEs are comparable, and even
superior, in spectral stability to their randomly appearing
counterparts. The dependence of certain QE characteristics on
nanopillar height, along with shifts in the delocalized neutral
exciton peak (X0) at room temperature30 at the nanopillar
locations (see Supplementary Fig. 5), suggest that a localized
strain gradient induced by the nanopillars might be playing an

active role in producing QEs, as well as determining their specific
optical properties21,23,24.

Deterministic QE creation in WS2 monolayers. The method we
present for QE creation is not restricted to a specific LM. We
predict a similar effect on different LMs and test this by using
1L-WS2. Despite previous efforts to measure QEs in 1L-WS2,
there has only been one previous report of single-photon emis-
sion in this material22. Figure 3a shows an integrated PL intensity
raster scan map taken at B10 K of a 1L-WS2 on a substrate with
170-nm-high nanopillars square array spaced by 3 mm. The inset
shows a true-colour dark-field optical microscopy image of the
same flake, where the red areas (due to fluorescence) are 1L-WS2.
Once again, the brighter spots correspond to the unpierced
nanopillar locations, as verified by AFM measurements, and show
overlap with the bright fluorescence spots in the PL intensity
image where, similar to WSe2, intensity is increased (here by a
factor B4) at every one of the 22 non-pierced nanopillar sites in
the flake. Panel 1 of Fig. 3b shows the typical 1L-WS2 emission
spectrum at B10 K (ref. 22), measured from a flat region of the
same flake away from the nanopillars. The X0 and X� unbound
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Figure 1 | Fabrication and characterization of scalable quantum confinement arrays. (a) SEM image of nanopillar substrate, fabricated by electron beam

lithography. Black scale bar, 2 mm. (b) Illustration of the fabrication method: (1) mechanical exfoliation of LM on PDMS and all-dry viscoelastic deposition

on patterned substrate; and (2) deposited LM on patterned substrate. (c, top) An AFM scan of 1L-WSe2 on a nanopillar. (bottom) The AFM height profile of

a bare nanopillar (blue-shaded region) and of the flake deposited over it (pink line), measured along the dashed pink line cut in the top panel. Colour-scale

bar represents height in nm and white scale bar 1 mm. (d) Dark field optical microscopy image (real colour) of 1L-WSe2 on nanopillar substrate (130 nm

high, 4mm separation). The full image corresponds to a 170 mm by 210mm area. The green box highlights six adjacent nanopillars within the 1L-WSe2

region, measured in Fig. 2. The blue circles indicate two pierced nanopillars, and the pink circles indicate two non-pierced nanopillars. PDMS,

polydimethylsiloxane; SEM, scanning electron microscope.
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excitons are labelled in the figure, while the broad red-shifted
emission band arises from weakly localized or defect-related
excitons in the 1L-WS2 at low temperatures22, and is present in
this material regardless of location. Panels 2 and 3 of Fig. 3b show
representative PL emission spectra taken at nanopillars of heights
B170 andB190 nm, respectively, where once again sub-nm
spectral features arise. We note that we observe fine-structure
splitting for WS2 in these QEs, which range from 300 to 810meV
(Supplementary Fig. 6), as represented in the panel insets
corresponding to the spectral regions highlighted in red. We
also measure the spectrum of several WS2 QEs as a function of
time (see Supplementary Fig. 6) and find all spectral wandering

values below 0.5 meV over 1–2 min. Figure 3c shows statistics on
QE emission wavelength collected for over B80 QEs for 1L-WS2

on 170-nm (white bars) and 190-nm (red bars) nanopillars. The
wavelength distribution of the sub-nm emission lines, typically in
the 610–680 nm region (53–300 meV redshift from X0)22, is as
narrow as B20 nm for the 190-nm nanopillars. Most nanopillar
sites on WS2 show multiple sub-nm lines, suggesting the creation
of several QEs at each site for these nanopillar heights. Figure 3d
plots a histogram of the number of sub-nm peaks appearing at
each nanopillar for both nanopillar heights. The trend is similar
to that seen in WSe2, where higher nanopillars lead to a narrower
spread in the number of peaks towards a higher likelihood of
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Figure 2 | Creation of quantum emitter arrays in 1L-WSe2. (a) Integrated PL intensity raster scan of the region enclosed by the green rectangle in Fig. 1d,

taken under 200 nWmm� 2, 532 nm laser excitation at 10 K. Green crosses mark the position of the six nanopillars beneath the 1L-WSe2. Colour-scale bar

maximum, 160 kcounts s� 1. (b) PL spectra taken at each of the corresponding green crosses in a, from left to right respectively, showing the presence of

narrow lines at each nanopillar location. (c) Photon correlation measurements corresponding to the filtered spectral regions (10 nm wide) enclosed by the

blue, green and pink rectangles, in b, with g(2)(0)¼0.087±0.065, 0.17±0.02 and 0.18±0.03, and rise times of 8.81±0.80 ns, 6.15±0.36 ns and

3.08±0.41 ns, respectively. (d) Spectrum taken from a 1L-WSe2 on a 190 nm nanopillar, showing lower background and a single sub-nm emission peak.

Higher-resolution spectrum in the inset reveals the fine-structure splitting of this QE peak. An asymmetry can be seen in the spectrum, which has been

previously attributed to a phonon sideband in naturally occurring QEs31. (e) Probability distribution (in %) of the number of emission lines per nanopillar for

samples using different nanopillar heights (60, 130 and 190 nm in white, blue and purple, respectively). A trend of higher probability of single QE emission

peaks per nanopillar location with increasing height is evident, reaching 50% for 190 nm nanopillars. (f) Increasing nanopillar height also leads to a

reduction of spectral wandering. Solid black circles represent the mean value of spectral wandering of several QEs for a given nanopillar height, while

the error bars represent the standard deviation of each distribution, both extracted from time-resolved high-resolution spectral measurements

(Supplementary Fig. 4). A total number of seven samples was used to collect the statistics necessary for Fig. 2e,f.
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creating a single QE at each nanopillar site. We note that we
obtain a 95% yield of QE creation in 1L-WS2 on non-pierced
nanopillars. Further, B75% of these display two or less sub-nm
emission peaks. In contrast, the 60- and the 130-nm-high
nanopillars do not result in any QE occurrence (see
Supplementary Fig. 7 for examples of these measurements).

Discussion
We presented a simple method for the deterministic creation of
scalable arrays of quantum-light emitters embedded in LMs
emitting at different regions of the optical spectrum33. The
reliability of the technique will accelerate experimental studies of
QEs in TMDs, which at present rely on their rather rare and
random occurrence11–15. In the immediate future, a detailed
study is necessary in order to achieve a better understanding of
the specific role of nanopillar height and geometry in defining the
characteristics of the quantum emission. We expect tunability of
the optical emission by varying the shapes of the underlying
nanostructures. In this respect, interesting possibilities to realise
dynamical circuits using micro-electro-mechanical systems and
piezoelectric tuning exist. Heterostructures may enable new
routes towards tunnel-coupled quantum devices and the
formation of QE molecules. Several approaches are being
investigated for the production of wafer-scale samples34,35,
which could lead to rapid optimization. While our approach is
already compatible with standard silicon processing techniques, it

is nevertheless not restricted to the specific properties of the
substrate. In fact, even nanodiamonds of the appropriate
dimensions, drop-cast onto silica substrates, are able to create
QEs in 1L-WSe2 (see Supplementary Fig. 8 and Supplementary
Note 2). The choice of substrate material will be particularly
important, for example, when considering inhomogeneous line-
broadening due to charge noise. Further, the flexibility in the
choice of substrate, in turn, provides an opportunity to create
hybrid quantum devices where LM QEs can be coupled to
quantum systems in other materials such as spins in diamond and
silicon carbide.

Methods
Substrate preparation. The silica nanopillar substrate is fabricated with a high-
resolution direct-write lithographic process via spin-on-glass polymer hydrogen
silsesquioxane (HSQ)36. First, a wafer with 2 mm thermal oxide is cleaved and then
cleaned. HSQ resist (FOx-16, Dow-Corning) is diluted with methyl isobutyl ketone
(MIBK) in different ratios and spun onto the substrate, giving variable thickness
depending on the dilution. After baking at 90 �C for 5 min, the substrate is exposed
in an electron beam lithography tool (Elionix F-125) and then developed in a 25%
solution of tetramethyl ammonium hydroxide (TMAH) developer and rinsed in
methanol. To convert the defined structures into pure SiO2, we apply rapid thermal
annealing at 1,000 �C in an oxygen atmosphere37, resulting in arrays of sharply-
defined sub-100 nm silica nanopillars.

Optical measurements. Room temperature Raman and PL measurements are
carried out using a Horiba LabRam HR Evolution microspectrometer equipped
with a � 100 objective (numerical aperture 0.9) and a spot size o1 mm. The pixel-

b

6 μm 

Wavelength (nm)

a

c

X0

X-

WS2

Wavelength of sub-nm emission peaks (nm) Number of sub-nm emission peaks per nanopillar

No pillar

170 nm

190 nm

C
ou

nt

%

600 625 650 675 700
0

25

50

170 nm
190 nm

170 nm
190 nm

600 625 650 675 700

627 628

d

1.

2.

3.

617 618

0 1 2 3 4 5 6 7 8

20

15

10

5

0

P
L 

in
te

ns
ity

18 k2 k

Figure 3 | Creation of quantum-emitter arrays in 1L-WS2. (a) Integrated PL intensity raster scan of a 1L-WS2 flake deposited on top of a 3 mm spaced,

170-nm-high nanopillar array, taken at 300 nW mm� 2, 532 nm laser excitation at 10 K. Colour-scale bar maximum is 18 kcounts s� 1. Inset: true-colour DFM

image of the same area. The red region corresponds to the WS2 monolayer. (b) PL spectra of 1L-WS2 at 10 K. Panel 1 shows a spectrum taken from a flat

region away from nanopillars. Red arrows indicate unbound monolayer neutral (X0) and charged (X� ) excitons. Panels 2 and 3 show representative

spectra of WS2 on 170 and 190 nm nanopillars, respectively. Insets are high-resolution PL spectra of the red-highlighted spectral regions, showing the fine-

structure splitting of the peaks. (c) Distribution of the emission wavelengths measured for 1L-WS2 QEs on 170 (black and white) and 190 nm (red)

nanopillars. (d) Distribution of the number of narrow emission lines observed per nanopillar for 1L-WS2 QEs on 170 (black and white) and 190 nm (red)

nanopillars. DFM, dark-field optical microscopy.
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to-pixel spectral resolution for the Raman measurements is B0.5 cm� 1. Bragg
gratings (BraggGrate) are used to detect the ultralow frequency Raman peaks. The
power is kept below 50 mW to prevent heating effects. The excitation wavelength
used is 514.5 nm for WSe2 and 457 nm for WS2.

A variable-temperature helium flow cryostat (Oxford Instruments Microstat
HiRes2) is used to perform low-temperature PL measurements with a home-built
confocal microscope mounted on a three-axis stage (Physik Instrumente
M-405DG) with a 5-cm travel range, 200-nm resolution for coarse alignment and a
piezo scanning mirror (Physik Instrumente S-334) for high-resolution raster scans.
PL is collected using a 1.7-mm working distance objective with a numerical
aperture of 0.7 (Nikon S Plan Fluor � 60) and detected on a fibre-coupled single-
photon-counting module (PerkinElmer: SPCM-AQRH). Photon correlations from
a Hanbury Brown and Twiss interferometer are recorded with a time-to-digital
converter (quTAU). A double grating spectrometer (Princeton Instruments) is
used for acquiring spectra. For PL measurements, the excitation laser (532 nm,
Laser Quantum) is suppressed with a long pass filter (550 nm Thorlabs FEL0550).

Data availability. The data that supports the findings of this study are available
from the corresponding author upon request.
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