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A two-dimensional spin field-effect switch
Wenjing Yan1,*, Oihana Txoperena1,*, Roger Llopis1, Hanan Dery2,3, Luis E. Hueso1,4 & Fèlix Casanova1,4

Future development in spintronic devices will require an advanced control of spin currents, for

example by an electric field. Here we demonstrate an approach that differs from previous

proposals such as the Datta and Das modulator, and that is based on a van de Waals

heterostructure of atomically thin graphene and semiconducting MoS2. Our device combines

the superior spin transport properties of graphene with the strong spin–orbit coupling of

MoS2 and allows switching of the spin current in the graphene channel between ON and OFF

states by tuning the spin absorption into the MoS2 with a gate electrode. Our proposal holds

potential for technologically relevant applications such as search engines or pattern recog-

nition circuits, and opens possibilities towards electrical injection of spins into transition

metal dichalcogenides and alike materials.
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T
he integration of the spin degree of freedom in charge-
based electronic devices has revolutionized both sensing
and memory capability in microelectronics1. However, for

allowing further development and a successful implementation of
spin logic circuits, an electrical manipulation of spin currents is
required. The approach followed so far, inspired by the seminal
proposal of the Datta and Das spin modulator2, has relied on the
spin–orbit field as a medium for electrical control of the spin
current3–6. However, a challenge is to engineer a material that is
capable of transporting spins over long distances and meanwhile
has a strong enough spin–orbit coupling (SOC) to allow their
electrical manipulation at temperatures above few Kelvin.

For example, carbon-based materials with intrinsic weak
SOC, such as organic semiconductors7, carbon nanotubes8

and graphene9, have made a notable impact in spintronics. In
particular, graphene has been proved to be ideal for long-distance
spin transport (in excess of several micrometres)10–15. However,
owing to its weak SOC, spin manipulation in this material has
been mainly achieved by an external magnetic field through
Hanle precession10,13,14. Although various approaches have
been taken to enhance the SOC of graphene, for example
through proximity effect16–18 or by atomic doping19, a direct
evidence on the modulation of spin transport by an electric field
remains elusive.

Meanwhile, transition metal dichalcogenides (TMDs) have
emerged to complement graphene due to their unique
optical, spin and valley properties20,21. Specifically, MoS2, the
best-known member of that class, has a crossover from an
indirect to a direct-gap semiconductor when thinned down to a
monolayer (ML)22. Its electronic properties can be strongly
modulated by gate, large current ON/OFF ratio as much as
1� 108 in ML and 1� 106 in multilayers have been found23,24. Its
stronger SOC compared with that of graphene, arising from the
d-orbitals of the transition metal atoms, offers new possibilities to
employ the spin and valley degrees of freedom in TMDs20,25–27.

In our work, the combination of graphene with MoS2 in a
heterostructure through weak van der Waals (vdW) forces28

allows us to engineer an alternative type of field-effect switch for
spin transport. A spin current in the graphene section of the
device is electrically injected from a ferromagnetic source
terminal. The gate electrode controls how much of that spin
current is absorbed by the intersecting MoS2 layer (spin sink)
before its arrival to the ferromagnetic drain terminal. By tuning
the gate voltage, we were able to switch the spin current between
binary ON and OFF states at temperatures up to 200 K.
The current device could be scalable and operative at room
temperature, considering both the rapid progress made in
chemical vapour deposition of two-dimensional (2D) materials
and the theoretical performance of the materials involved.

Results
Device structure and measurement configurations. A sketch of
the 2D vdW heterostructure and the electrical measurement
scheme is shown in Fig. 1a, whereas a scanning electron micro-
scope image of the device is shown in Fig. 1b. Graphene flakes are
exfoliated onto a highly doped Si substrate covered by 300 nm of
SiO2. An ML graphene flake is identified according to its optical
contrast29 and, subsequently, a few-layer MoS2 flake is transferred
above it by all-dry viscoelastic stamping30. Several Co/TiO2

electrodes are patterned by electron-beam lithography and
evaporated onto the graphene channel, to create lateral spin
valves (LSVs; see Methods), which enable the injection and
detection of pure spin currents in graphene in a non-local
geometry10,14. The non-local resistance Rnl¼Vnl/I, which
depends on the relative orientation of the magnetisation of the
injecting and detecting Co electrodes, is measured while sweeping
the magnetic field B in-plane along the easy axis of the electrodes
(see Fig. 1a for a sketch of the experimental geometry).
Specifically, when the configuration of the magnetizations
changes from parallel to antiparallel, Rnl switches from high
(Rp) to low (Rap) value. The spin signal is proportional to the
amount of spin current reaching the detector, measured by
DRnl¼Rp�Rap (Fig. 1c).
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Figure 1 | Illustration of the experiment and scanning electron microscope (SEM) image of the device. (a) Sketch of the 2D vdW heterostructure to be

used for switching the spin transport. For the non-local measurement, a DC current (10 mA) is injected into graphene from a ferromagnetic Co electrode

across a TiO2 barrier and a non-local voltage (Vnl) is measured by a second Co electrode while sweeping the magnetic field B. The red- and blue-coloured

circuit diagrams represent the measurement configurations in the reference graphene LSV (without MoS2 on top) and the graphene/MoS2 LSV (with MoS2

intercepting the spin current path). In the latter case, the spin current flowing in the graphene can be switched ON and OFF by modulating the conductivity

of MoS2 using an electric field across a SiO2 dielectric (also shown in the diagram). (b) False-coloured SEM image of the LSV devices. The width of the

graphene and MoS2 are wGr ¼ 3 mm and wMoS2
¼ 0:4 mm, respectively. Scale bar, 2 mm. (c) An illustration of a typical non-local magnetoresistance

measurement, where the non-local resistance Rnl switches between RP and RAP for parallel and antiparallel magnetization orientations of the Co electrodes.

The spin signal is tagged as DRnl¼ Rp� Rap.
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Spin transport in a reference graphene lateral spin valve. We
first study the spin transport in a graphene LSV without MoS2

(reference LSV). Figure 2a shows the measured Rnl as a function
of B for different gate voltages (Vg). On application of Vg, the
magnitude of the spin signal weakly varies, following the
modification of the graphene sheet conductivity (s’Gr) with Vg, as
can be observed in Fig. 2b. The correlation between DRnl and
s’Gr is a signature of a transparent interface between the Co/TiO2

electrodes and the graphene (B250O), as it is well established in
the literature14.

Spin transport in a graphene/MoS2 spin field-effect switch.
Next, we introduce the central results of our manuscript: the
demonstration of spin switching by a gate voltage in a graphene/
MoS2 LSV. Figure 3a shows Rnl of this device, while sweeping B
for different values of Vg, where a gradual decrease of the spin
signal DRnl with Vg can be observed. This behaviour is clearly
seen in Fig. 3b, where DRnl is plotted as a function of Vg, showing
the decay of DRnl towards zero at positive values of Vg, in contrast
with the weakly varying spin signal measured in the reference
LSV (see Fig. 2b). Figure 3b also plots the MoS2 sheet con-
ductivity (s’MoS2

) from a reference device revealing an opposite
gate voltage dependence to that of DRnl. For large negative Vg, the
semiconducting MoS2 is in the low conductivity OFF state and
the measured DRnl value is comparable to that of the reference
LSV, reaching the ON state of the device. This result is expected,
considering that the electrode spacing here is slightly longer
than in the reference LSV (1.8 versus 1 mm; see Fig. 1b for
comparison). Sweeping the gate voltage towards positive values
brings the MoS2 towards its high conductivity ON state, where
s’MoS2

increases by more than six orders of magnitude compared
with the OFF state. Simultaneously, the spin current reaching the
detector and the corresponding DRnl gradually decrease towards
zero (see Fig. 3b), reaching the OFF state of the device for
Vg415 V. The change in spin signal per gate voltage unit in our
device is B0.7 mOV� 1. The results are completely reproducible
upon multiple gate voltage sweeps and temperature cycles,
evidencing the robustness of the effect (Supplementary Fig. 1).
Similar results to those in Fig. 3b are also observed at
temperatures up to 200 K (Supplementary Fig. 2).

This control of the spin current directly demonstrates the 2D
spin field-effect switch. This proof-of-principle effect can be
enhanced by using a different dielectric, for example, layered
hexagonal BN24,31, or by tuning the interface resistance between
graphene and Co14.

Discussion
The switching of spin transport using the graphene/MoS2 vdW
heterostructure relies on the absorption of spins travelling
through the graphene by the MoS2, as schematically illustrated
in the inset of Fig. 3b. To support this argument, we make use of
the spin resistances of the channel (graphene) and the absorbing
material (MoS2), which are the main control parameters in the
spin absorption mechanism. Roughly, they can quantify how
easily the spin current flows through each of the materials, in the
same way in which one can estimate a charge current flow in
parallel electrical resistors. The spin resistances of graphene and

MoS2 can be expressed as RS
Gr ¼

R’
GrlGr

wGr
and RS

MoS2
¼ R’

MoS2
ðlMoS2 Þ

2

wGrwMoS2
,

respectively (Supplementary Note 2); where R’
Gr;MoS2

¼ 1=s’Gr;MoS2

are their sheet resistances, lGr;MoS2 their spin diffusion lengths
and wGr;MoS2 their widths (wGr ¼ 3 mm and wMoS2 ¼ 0:4mm).
We have estimated the intrinsic spin lifetime in bulk MoS2 to be
in the range of 10 ps (see Supplementary Note 2). For this
estimation, we have considered electron interaction with flexural
phonons and found weak temperature dependence of the spin
relaxation in accord with our experimental results and in contrast
to the findings in ML MoS2 (ref. 27). The lack of space inversion
symmetry in a ML has two effects on the spin transport. The first
one is to increase the amplitude of the spin-flip matrix element26.
The second effect is to induce spin splitting of the energy bands at
the K point. Although the former effect enhances spin relaxation,
the latter one suppresses it when the spin splitting is large enough
to exclude elastic scattering. In p-type ML TMDs, for example,
the spin splitting in the valence band is of the order of hundreds
of meV and the overall spin lifetime is prolonged compared with
bulk. In this view, the spin degeneracy of the energy bands in
few-layer TMDs renders these materials ideal spin sinks when put
in proximity to graphene. Using the estimated spin lifetime in
bulk MoS2, we calculate lMoS2 � 20 nm in the OFF state of the
device at Vg¼ 40 V. In contrast, the spin diffusion length in
graphene is much longer, being lGr � 1:2 mm estimated from
Hanle measurements on a reference device (Supplementary
Fig. 3). Substituting the spin diffusion lengths, the electrical
properties and geometrical factors of graphene and MoS2, we
obtain RS

Gr ¼ 408O and RS
MoS2
¼ 2:7O Vg¼ 40 V (Supple-

mentary Note 2). The fact that RS
MoS2

ooRS
Gr demonstrates the

capability of the MoS2 to absorb spins from the graphene channel.
This is further supported by the low graphene/MoS2 barrier
height at high positive Vg (ref. 32), making the interface resistance
sufficiently low for efficient spin absorption.
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Figure 2 | Spin transport in a reference graphene lateral spin valve. Measurements are done using the red-coloured circuit diagram in Fig. 1a.

(a) Non-local resistance Rnl as a function of the magnetic field B measured at different Vg at 50 K. The current bias is 10mA and the centre-to-centre

distance between ferromagnetic electrodes (L) is 1mm. Individual sweeps are offset in Rnl for clarity. (b) Spin signal DRnl measured at different Vg

(red circles). The black solid line shows the sheet conductivity of the graphene as a function of Vg. The inset shows schematically the spin current (green

arrow) reaching the detector in the full range of Vg. Error bars are calculated using the s.e. associated with the statistical average of the non-local resistance

in the parallel and antiparallel states.
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The situation completely changes when the gate voltage Vg is
swept towards negative values. At Vg¼ � 30 V, the MoS2

conductivity s’MoS2
decreases by more than six orders of

magnitude from Vg¼ 40 V, which leads to a similar increase in
RS

MoS2
. Therefore, we have RS

MoS2
44RS

Gr, preventing spin
absorption by MoS2. Although the very large spin resistance of
MoS2 alone is sufficient to support the vanishing spin absorption,
we note that the interface resistance between graphene and MoS2

also increases32, further preventing probable spin absorption into
the MoS2. Therefore, the gate dependence of the graphene/MoS2

interface resistance acts as a positive feedback, further improving
the performance in the regime between the fully ON and OFF
state of the device.

The inverse correlation between the spin signal DRnl and the
MoS2 conductivity s’MoS2

can be clearly seen in Fig. 3b. This
correlation supports the aforementioned argument and discards
other scenarios, such as spin dephasing in possible trap states at
the graphene/MoS2 interface. The fact that similar results to those
in Fig. 3b are also observed at 200 K indicates that the effect
barely changes with temperature and therefore is incompatible
with the exponential temperature dependence expected for
capture and escape in trap states (Supplementary Note 1). Next,
we confirm the spin absorption mechanism by computing
the expected spin signal ratio, DRabs

nl =DRnl, which quantifies the
relative amount of spins deviating from the graphene channel
towards the MoS2 (ref. 33):

DRabs
nl

DRnl
¼

2RS
MoS2

sinh L=lGrð Þþ 2QIeL=lGr þ 2Q2
I eL=lGr

� �

RS
Gr cosh L=lGrð Þ� 1f gþ 2RS

MoS2
sinh L=lGrð Þþ 2RS

I eL=lGr 1þQIð Þ 1þ 2QMoS2ð Þ� 1f g ;

ð1Þ
where DRabs

nl and DRnl are the spin signals with and without spin
absorption by the MoS2; RS

I ¼ RI=ð1� P2
I Þ is the spin resistance

of the Co/TiO2/graphene interface, RI is the interface resistance

and PI is the interface spin polarisation; and finally, QMoS2 ¼
RS

MoS2
RS

Gr

and QI ¼ RS
I

RS
Gr

. Assuming the interface is transparent at 40 V, one

can calculate the expected spin signal ratio when the MoS2 is fully
ON. Substituting the known parameters into equation (1), one
gets DRabs

nl =DRnl � 0:017 at Vg¼ 40 V (Supplementary Note 3).

The very small value calculated for DRabs
nl =DRnl predicts a strong

spin absorption, which confirms this scenario to be responsible
for the observed experimental results of Fig. 3b.

Compared with previous Datta and Das-like spin modulators3–6,
the electrical manipulation of spin transport in our 2D spin field-
effect switch is observed at much higher temperature (up to 200 K
versus few or sub K). It also displays well-defined ON and OFF
states, which are easily controlled by the gate electric field instead
of an oscillatory spin signal. Moreover, there is plenty of room for
the optimization of the device performance. For instance,
by incorporating tunnel barriers with higher resistance, the spin
signal and thus the difference between the ON and OFF
states could be increased by two orders of magnitude34–36. The
threshold voltage required to turn ON and OFF the device can be
reduced by replacing SiO2 with a thinner dielectric of larger
dielectric constant, such as HfO2 (ref. 37) or hexagonal BN24,31.
With the above improvements to the fabrication process, and
considering the robust performance of MoS2 transistors at room
temperature23,24, a room-temperature 2D spin field-effect switch
is envisioned. The recent advances in chemical growth of high
quality 2D layered materials21,38 and their heterostructure
multilayers39–41, as well as in homostructural42, and hetero-
structural36 tunnel barriers for spin injection, may well lead to
large-scale integration of the current device architecture. Aside
from the potential technological applications, the spin absorption
effect in our experiments provides a solution to electrically inject
spins into 2D semiconducting TMDs, which has so far been elusive
due to the conductivity mismatch problem43–45.

In conclusion, the seamless integration of two 2D layered
materials with remarkably different spin–orbit coupling ampli-
tudes leads to a device capable of both transporting and
electrically controlling a spin current. The demonstrated 2D spin
field-effect switch can improve the performance of search engines
or pattern recognition circuits, wherein a large number of
independent logic operations are executed in parallel15,46,47.
Furthermore, the vdW heterostructure at the core of our
experiments opens the path for fundamental research of exotic
transport properties predicted for TMDs20,25,26.

Methods
Device fabrication. Fabrication of ML graphene samples uses the mechanical
exfoliation method initiated in ref. 29. We first exfoliate bulk graphitic crystals onto
a Nitto tape (Nitto SPV 224P) and repeat the cleavage process between three and
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Figure 3 | Spin transport in a graphene/MoS2 lateral spin valve. Measurements are done using the blue-coloured circuit diagram in Fig. 1a.

(a) Non-local resistance Rnl measured as a function of the magnetic field B at different Vg at 50 K using 10mA current bias and for a centre-to-centre

distance between ferromagnetic electrodes (L) of 1.8 mm. Individual sweeps are offset in Rnl for clarity. (b) Gate modulation of the spin signal DRnl (blue

circles). The black solid line is the sheet conductivity of the MoS2 as a function of Vg. The insets show schematically the spin current path (green arrow) in

the OFF state (left inset) and the ON state (right inset) of MoS2. Error bars are calculated using the s.e. associated with the statistical average of the

nonlocal resistance in the parallel and antiparallel states.
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five times until thin flakes can be identified visually by the eye. The Nitto tape with
relatively thin flakes is pressed against a preheated Si substrate with 300 nm SiO2.
After peeling off the Nitto tape, the substrate is examined under an optical
microscope and ML graphene is identified by well-established optical contrast.
We then prepare the MoS2/poly-dimethyl siloxane stamp following ref. 30. First,
a MoS2 crystal is exfoliated twice using the Nitto tape and transferred on to a piece
of poly-dimethyl siloxane (Gelpak PF GEL film WF � 4, 17 mil.). After identifying
the desired few-layer MoS2 flake using optical contrast, it is transferred on top of
graphene after slowly removing the viscoelastic stamp.

The lateral spin valve is formed following a standard nanofabrication procedure
including electron-beam lithography, metal deposition and metal lift-off in acetone.
5 Å of Ti are deposited by electron-beam evaporation and left to oxidize in air for
0.5 h before depositing 35 nm of Co using electron-beam evaporation.

Electrical measurements. The measurements are performed in a Physical
Property Measurement System by Quantum Design, using a ‘DC reversal’
technique with a Keithley 2182 nanovoltmeter and a 6221 current source. A current
bias of 10 mA is used unless stated in the text. Gate voltage is applied using a
Keithley model 2636. The gate voltage is applied between the back of the doped Si
substrate and the grounding electrode. As graphene layer on the bottom is ML,
it does not fully screen the gate electric field. Therefore, the gate voltage modulates
the charge carrier density in both graphene and the MoS2.

Data availability. All relevant data are available from the authors.
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