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A strong electron–hole exchange interaction (EI) in semiconductor nanocrystals (NCs) gives rise 
to a large (up to tens of meV) splitting between optically active (‘bright’) and optically passive 
(‘dark’) excitons. This dark–bright splitting has a significant effect on the optical properties of 
band-edge excitons and leads to a pronounced temperature and magnetic field dependence 
of radiative decay. Here we demonstrate a nanoengineering-based approach that provides 
control over EI while maintaining nearly constant emission energy. We show that the dark– 
bright splitting can be widely tuned by controlling the electron–hole spatial overlap in core– 
shell CdSe/CdS NCs with a variable shell width. In thick-shell samples, the EI energy reduces 
to  < 250 µeV, which yields a material that emits with a nearly constant rate over temperatures 
from 1.5 to 300 K and magnetic fields up to 7 T. The EI-manipulation strategies demonstrated 
here are general and can be applied to other nanostructures with variable electron–hole 
overlap. 
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The electron–hole exchange interaction (EI) is an intrinsic 
property of semiconductors that impacts critical excitonic 
fine structure details, such as the energetic ordering of opti-

cally allowed (‘bright’) and forbidden (‘dark’) exciton states. Whereas 
in bulk II–VI materials exchange energies are characteristically 
small, just 0.13 meV for CdSe1, quantum-confined semiconductor 
nanocrystals (NCs) of the same composition exhibit much larger 
energies on the order of 2–20 meV2–5. Such 1–2-order-of-magni-
tude increases in exchange energies are significant as NC materials  
that exhibit large emission rates at high temperatures (radiative  
lifetime τr~10–20 ns at 300 K in CdSe NCs) become very slow 
emitters at low temperatures (τr~1 µs at 1 K)2,6. The EI leads to 
this strong temperature dependence as it produces a fine structure  
with a lowest-energy dark exciton state and a higher-lying bright 
exciton state2. It also markedly affects other important physical 
properties of nanostructures, such as exciton recombination and 
spin dynamics7,8, coherent interdot coupling9 and electron transfer 
kinetics to external quenchers10.

The dark–bright splitting (∆DB), which directly relates to the EI 
energy, has been shown to be tunable by control of NC size from 
nearly 20 meV for small NCs to ~2 meV for large particles5. How-
ever, such size-dependent reduction of EI is accompanied by a  
significant change of the emission wavelength, resulting from 
progressively weaker quantum confinement in larger NCs. In this  
work, we demonstrate a means to drastically reduce EI in quasi- 
type II CdSe/CdS core–shell NCs11 while preserving a nearly  
constant emission energy.

Several reports have focused on the intrinsic effects of NC size-
dependent exchange energy in II–VI NC materials2,4,12. Nirmal et al.  
established for the first time that the EI was enhanced relative to 
the bulk material by magnetic field-dependent studies of low- 
temperature time-resolved photoluminescence (trPL) and fluores-
cence line-narrowing (FLN) experiments2. Crooker et al. utilized 
trPL measurements as a function of temperature to determine 
the radiative lifetimes of both the ground-state dark exciton and 
the thermally accessible bright exciton state6. In concurrence with  
the FLN results of refs 2, 3, this work confirmed that a characteristic 
splitting energy dictated the relative thermal populations of dark 
and bright excitons in NC ensembles13. Importantly, it was also 
shown that overcoating of CdSe NCs with thin ZnS-passivating  
layers results in no significant change of EI or temperature-depend-
ent photoluminescence (PL) dynamics6. LeThomas et al. showed that 
the ordering of fine structure states changes in elongated CdSe rods  
that exhibit differing quantum confinement effects in radial ver-
sus axial directions14. On elongation, the dark exciton becomes  
higher in energy than the bright exciton, which results in accele
rated radiative recombination with reduced temperature.

Here we examine heterostructured NCs comprising a CdSe core 
and a CdS shell of variable thickness of up to 19 CdS monolayers. 
These nanostructures have been a subject of recent interest owing 
to observations of suppressed PL intermittency (‘blinking’)15,16 
in single NC studies and suppressed biexcitonic Auger recombi-
nation11,17,18 that leads to ultra-broad optical amplification band-
width with record-low excitation threshold11 and efficient multi-
exciton emission18. Reduced rates of Auger decay have also been 
demonstrated for other types of colloidal heteroparticles such as 
CdTe/CdSe19 and CdZnSe/ZnSe20 NCs, as well as CdSe/CdS quan-
tum-dot/quantum-rod structures21. Such properties are desirable 
for applications ranging from optical tagging and bioimaging to 
telecommunications, lasing and display technology. Previous stud-
ies of CdSe/CdS NCs indicate that these systems exhibit quasi-type 
II electronic structure wherein the hole of an exciton is confined to 
the CdSe core and the comparatively light electron is delocalized 
over the entire core–shell nanostructure11,22. On the basis of the 
report of Efros et al.,5 which indicates that enhanced wave func-
tion overlap of electrons and holes dominates the increase of EI in 

NCs relative to bulk, we expect that this quasi-type II motif with 
controlled wave function overlap presents a means to control the 
dark–bright splitting in these structures. The effect of electron–hole 
spatial separation on EI has been recently invoked to explain obser-
vations of variable spin relaxation times in core–shell CdTe/CdSe 
NCs8. However, the measurements of the EI energy as a function 
of electron–hole overlap, which would unequivocally demonstrate 
a direct relationship between these two physical quantities, are still 
lacking in the literature. Further, there have been no demonstra-
tions of nanoscale systems for which the EI energy can be tuned 
while maintaining the same degree of quantum confinement, that 
is, the same emission energy.

We use CdSe/CdS core–shell NCs as a model system, which 
allows for facile control of the electron–hole spatial separation  
by varying the thickness of the CdS shell. CdSe/CdS NCs can be  
synthesized using successive ion-layer absorption and reaction  
methods15, which allow for the fine control of the shell thickness 
without introducing detrimental structural defects that lead to trap-
ping and consequent reduction of PL quantum yield. We apply three 
different techniques (temperature and magnetic field-dependent 
trPL as well as FLN measurements) to evaluate the EI energy as a 
function of the electron–hole overlap integral and observe a linear 
relationship between these two quantities. Furthermore, we demons
trate that, in this material system, the EI strength can be tuned  
independently of the emission energy, with the latter being con-
trolled primarily by the size of the CdSe core. Finally, we observe  
several interesting peculiarities in the measured excitonic dynamics 
in these NCs. Specifically, highly temperature-dependent trPL,  
typical of CdSe NC behaviour, is detected for thin CdS shells, 
whereas at large shell thickness we observe nearly temperature  
independent lifetimes that are, furthermore, independent of  
magnetic fields. All of these observations can be quantitatively 
explained by taking into consideration temperature-dependent  
distribution of excitons between the ‘bright’ and the ‘dark’ fine 
structure states, and by using the measured EI energies.

Results
Temperature dependence of exciton dynamics. Increasingly thick  
layers of a CdS shell were grown (from 4 to 19 monolayers) on a 
fixed CdSe core (radius R = 1.5 nm), using methods described 
below15. Representative transmission electron microscopy images of 
the investigated NCs are shown in Figure 1a–d. Figure 1e depicts 
a band alignment diagram of bulk CdSe and CdS. The spatial 
probability distributions, ρ(r), of the hole and the electron in CdSe/ 
CdS NCs for various shell thicknesses are shown in Figure 1f  
(see section ‘Effective mass calculations of e–h overlap and EI 
energies’ for computational details). The electron wave function 
exhibits increasing leakage from the core region with increasing 
shell thickness, whereas the hole remains confined to the CdSe core; 
these behaviours result in a progressive decrease of the electron– 
hole spatial overlap.

For each sample, we measured both steady-state and trPL 
responses of drop-cast films with indicated CdS monolayer thick-
nesses. Figure 2a–d reports the PL decay curves recorded at the 
emission maxima for the different NCs. PL spectra at three repre
sentative temperatures (T = 1.55, 185 and 300 K) are reported as 
insets. The spectral position of the PL band as a function of shell 
thickness is roughly constant (see below and Supplementary  
Fig. S1). Moreover, both the PL band maxima and full width at half 
maximum for all samples behave similarly as a function of tempera-
ture regardless of the shell thickness.

Comparison of the different samples shows a prominent dif-
ference between the temperature dependence of the PL lifetimes 
of NCs having thin (4 and 7 monolayers) and thick CdS shells (14 
and 19 monolayers). Thin CdS shell samples exhibit highly tem-
perature-dependent PL lifetimes in similarity to previous reports 
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for CdSe NCs with either organic or inorganic passivation6. At high 
temperatures, the dynamics are predominantly single exponential, 
whereas multiexponential dynamics appear at low temperature.  
A fast initial decay at low temperature is thought to be due to  
thermalization of excitons from the higher-energy bright state  
(net spin projection J = 1) to a lower-lying J = 2 dark state, or cool-
ing of NCs as a whole due to heat exchange with the bath (matrix),  
followed by a much slower decay arising from recombination  
of dark excitons in equilibrium with the bath. With increasing  
temperature, the radiative lifetime becomes progressively shorter, 
as a result of thermal excitation of dark excitons to the bright  
upper exciton state6,23.

Thicker-shell NCs, in contrast to the thin-shell ‘typical behav-
iour,’ exhibit nearly temperature independent dynamics (from  
1.5 to 300 K). To directly compare temperature-dependent trends in 
exciton dynamics of different samples, we fit trPL traces to double  
exponential decay and assign a slower time constant to radiative  

lifetime, τr (see Methods and Supplementary Information for  
details of this procedure and verifications of its validity). For traces 
measured at T < 10 K for thin-shell samples, we disregard a fast  
initial signal drop as it is not due to recombination but rather by 
thermalization; this approach allows us to avoid non-recombi-
nation-related contributions to derived time constants and is  
common in the analysis of low-temperature excitonic dynamics in 
CdSe NCs2,6.

Figure 2e reports the evolution of τr with temperature for four 
samples. For thin-shell NCs, τr is 860 ns at temperatures below 3 K 
and undergoes a 2-order-of-magnitude decrease at higher tempera-
tures. In agreement with previous literature, we ascribe this effect 
to the thermal activation between the dark and the bright exciton 
states6. By assuming a Boltzmann distribution of excitons between 
these two states, we can model the transition between the slow and 
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Figure 1 | Transmission electron microscopy images and electronic 
structure of CdSe/CdS NCs. CdSe/xCdS NCs with core radius, R = 1.5 nm, 
and increasing shell thickness (a, x = 4; b, x = 7; c, x = 14; and d, x = 19 CdS 
monolayers, corresponding to H = 1.6, H = 2.8, H = 5.6 and H = 7.6 nm). 
Scale bars in a–d panels correspond to 20 and 2 nm in the inset of a. 
Schematic representations of the NCs structure are reported for each set 
of NCs for a fixed core radius. (e) A band alignment diagram of bulk CdSe 
and CdS; the band offset at the CdSe/CdS interface is not well known 
and in our calculations was varied from 0 to 0.32 eV (see Supplementary 
Information). (f) Spatial probability distribution, ρ(r), of the hole (grey 
area) and electron (coloured areas) for R = 1.5 nm and H = 1.6 nm (blue 
area), H = 2.8 nm (green area) and H = 7.6 nm (red area); ρ(r)∝r2|ψe,h|2, 
where ψe,h are the electron (e) and the hole (h) wave functions.
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Figure 2 | Photoluminescence dynamics in CdSe/CdS NCs as a function 
of temperature. Photoluminescence (PL) decay curves measured at the 
emission maximum for drop-cast films of CdSe/xCdS NCs (a, x = 4; b, x = 7; 
c, x = 14; and d, x = 19) at the indicated temperatures (excitation energy 
is 3.06 eV). Steady-state PL spectra with increasing temperature (1.55 K, 
blue curve; 185 K, black curve and 300 K, red curve) for each sample are 
reported as insets in ‘a–d’. (e) PL lifetimes as a function of temperature for 
the different CdSe/xCdS NCs (x = 4, blue dots; x = 7, green triangles; x = 14, 
orange squares; and x = 19, red triangles). Fits to equation (1) are reported 
as solid and dashed lines for CdSe/4CdS (∆DB = 1.85 meV) and CdSe/7CdS 
NCs (∆DB = 1.38 meV), respectively. Inset: three-level model of bright (J = 1) 
and dark (J = 2) exciton states separated by energy ∆DB.
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fast decay regimes in a simple three-level scheme (inset of Fig. 2e), 
by expressing the radiative decay rate as: 
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where Γ0D and Γ0B are the radiative decay rates of the dark and  
bright states6.

The above model exhibits excellent agreement with the experi-
mental data for CdSe NCs having four and seven CdS monolayer 
shells, yielding ∆DB = 1.85 meV and ∆DB = 1.38 meV for the two sam-
ples, respectively. NCs with 14- and 19 CdS monolayer shells show 
only very weak variation with temperature, from ~116 ns at 1.5 K  
to 200–300 ns at 300 K. These almost temperature independent  
radiative lifetimes of the thick CdS shell samples suggest that the 
dark–bright energy splitting has become significantly smaller with 
respect to conventional CdSe NCs.

Fluorescence line-narrowing experiments. To directly measure 
the dark–bright energy splitting in thick-shell samples, we perform 
FLN measurements. Figure 3a shows FLN spectra at 1.55 K of the 
same NC samples as in Figure 2, excited on the red edge of the  
lowest-energy 1S absorption feature, which selects only the low-
est band-gap NCs in the ensemble. Whereas photoexcitation of 
the entire NC ensemble produces a broad Gaussian PL feature 
that arises because of NC-size distribution (insets of Fig. 2a,d), 
FLN spectra exhibit several distinct, relatively narrow peaks. In 
qualitative agreement with previous studies of CdSe NCs2,3,24, the 
FLN spectrum of the CdSe/4CdS NC sample shows a pronounced 
zero-phonon (ZP) line that is red-shifted by ~2 meV with respect 
to the photoexcitation energy corresponding to the J = 1 (bright) 
exciton. This ZP feature results from radiative recombination of the 
nominally forbidden dark J = 2 state2,3. In addition, we detect two  
lower-energy features separated from the ZP line by 25 and 35 meV, 
which are due to phonon-assisted recombination of a dark exciton 
involving CdSe and CdS phonons, respectively.

On increasing the shell thickness, notable changes appear in 
the FLN spectra. Most importantly, the ZP feature becomes less 
pronounced with increasing CdS shell thickness and is essentially 
undetectable for the CdSe/19CdS NCs sample. This trend is con-
sistent with a progressive reduction in the spacing between the 
J = 2 and J = 1 excitons until it becomes unresolvable, given limited 
instrumental spectral resolution. The dark–bright energy splitting 
extracted from the analysis of the temperature-dependent PL life-
times of the four-monolayer sample (1.85 meV) is in good agree-
ment with the Stokes shift between the laser pump and the ZP line 
observed in the FLN spectrum (1.87 meV).

As for samples with a thicker shell, the ZP line is not directly 
resolvable, we use the positions of the phonon replicas to derive the 
dark–bright exciton splitting. Specifically, we notice that the energy 
shift of the phonon-assisted features with respect to the excita-
tion laser is progressively reduced with increasing shell thickness 
as expected for the situation in which the ZP emission line shifts 
towards the laser line. The spectral position of the phonon features 
in the FLN spectra can therefore be used to probe the dark–bright 
splitting for thick-shell NCs. To do so, we use CdSe/4CdS NCs as a 
reference to measure the energy shift between the ZP line and the 
first phonon feature (LOCdSe) and subtract its value from the energy 
of the same LOCdSe feature for thicker-shell NCs, which we obtained 
by a Gaussian fit of the respective FLN peaks (grey lines in Fig. 3a). 
For CdSe/19CdS NCs, this procedure produces ∆DB = 0.27 meV, 
which is about 1-order-of-magnitude smaller than that for CdSe/
4CdS NCs and is in good agreement with the EI energy obtained by 
analysis of the PL dynamics, as shown later in this paper. Therefore, 

(1)(1)

both trPL and FLN results suggest the progressive reduction of the 
dark–bright energy splitting for increasing shell thickness.

Exciton recombination dynamics under applied magnetic fields. 
To further confirm this controlled reduction of the EI, we perform 
trPL under applied magnetic fields (0–7 T). Magnetic fields both 
Zeeman split and quantum mechanically mix proximal exciton 
states. In previous low-temperature trPL measurements of CdSe 
NCs, magnetic fields were found to accelerate radiative rates owing 
to field-induced mixing of bright exciton character into the dark 
exciton2,25. Figure 3b,c shows magnetic field-dependent trPL data  
for 4- and 19-shell NC samples. The magnetic field notably decreases 
the radiative lifetime for the four-shell sample, but does not induce 
any discernable changes in the decay rate for the 19-shell sample. 
These results again suggest that indeed the EI approaches zero in 
samples with a large CdS shell thickness.
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Figure 3 | Fluorescence line-narrowing spectra and magnetic field 
dependence of the emission dynamics. (a) Fluorescence line-narrowing 
(FLN) spectra at 1.55 K for CdSe/4CdS (blue curve, excitation energy 
EEX = 2.101 eV), CdSe/7CdS (green curve, EEX = 2.138 eV) and CdSe/19CdS 
NCs (red curve, EEX = 2.138 eV). A portion of the excitation laser is included 
for reference and set to zero for direct comparison between the different 
NCs. The values for the Stokes shift, ∆DB, between the excitation pump 
and the zero-phonon (ZP) line extracted from the Boltzmann fit of the 
temperature-dependent fluorescence lifetimes (τR(T)) are indicated by 
arrows. Gaussian fits of the CdSe and CdS LO phonon bands are shown 
by grey curves. The deviations of the experimental spectra from simple 
double-Gaussian fits are likely due to contributions from surface phonons 
that were not included in the fitting procedure. PL decay curves at the 
emission maxima (excitation energy is 3.06 eV) at 0 T (black curve) and 
7 T (red curve) for (b) CdSe/4CdS and (c) CdSe/19CdS NCs.
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Effective mass calculations of e–h overlap and EI energies. Pre-
vious studies of CdSe NCs indicate a strong dependence of dark– 
bright exciton splitting on emission wavelength, which reflects 
a direct dependence of EI on NC size2,6. The NC-size arguments, 
however, are unlikely to explain the observed changes in ∆DB in our 
core–shell samples. Although the overall size of the NC is increased 
with increasing shell thickness (H), the emission wavelength in 
these samples is almost insensitive to this parameter. For example, 
as evident from Figure 4a, both the thinnest and the thickest shell 
samples studied here emit at the same energy of 2.01 eV (T = 300 K), 
whereas in other samples the emission energy is within  ± 25 meV 
of this value. These observations strongly suggest that the effective 
exciton size in our samples is not significantly dependent on the 
overall NC dimensions but is defined primarily by the core size (see 
Supplementary Information).

In addition to the effective exciton size, the e–h exchange  
coupling depends critically on the spatial overlap between the elec-
tron and the hole. Evaluation of this overlap is especially important  

in hetero-NCs in which the spatial distributions of electrons and 
holes can be very different. To evaluate the effect of electron– 
hole spatial overlap on EI, we use a standard approach based on 
the effective mass approximation (EMA). This approximation  
has been successfully applied previously to describing electronic 
spectra in CdSe NCs (including the fine structure excitonic split-
ting) for a wide range of radii down to values of 1 nm (refs 2–4). 
More recently, EMA models were successfully used to calculate 
electronic structures and exciton–exciton interactions in core– 
shell NCs of compositions such as CdS/ZnSe22,26, ZnSe/CdSe27,28, 
CdSe/ZnS29,30, CdTe/CdS31 and PbSe/CdSe32.

In EMA models, electronic wave functions are described in terms 
of a product of the Bloch function and the envelope wave function 
(Ψe and Ψh are the electron and hole envelope functions, respec-
tively). In the case of our nearly spherical NCs, the exchange cou-
pling is dominated by the short-range interaction, which is directly 
proportional to the quantity xe h− = ∫d r r r3 2 2| ( ) | | ( ) |Y Ye h , refs 33, 
34. To calculate ξe − h, we use the two-band EMA formalism from  
refs 11 and 22. This formalism does not account for band-mixing 
effects. However, it still allows us to capture essential trends associ-
ated with variations of shell thickness because in CdSe/CdS NCs, 
changes in H affect ξe − h primarily through changes in Ψe, which is 
not strongly influenced by band mixing. Specifically, in CdSe/CdS 
NCs, the increase in shell thickness leads to increased leakage of the 
electron wave function into the shell region without significantly 
affecting the spatial distribution of the hole wave function, which 
remains confined to the core (Fig. 1f). These behaviours lead to a 
reduction of the electron–hole spatial overlap, which, within the 
EMA, can be quantitatively characterized by the overlap integral 
involving envelope wave functions: qe h e h− = ∫d r r r3 2

Y Y( ) ( ) .
In our modelling, we assume a sharp, step-like potential at the 

CdSe/CdS interface. However, we would like to point out that very 
recent FLN studies of CdSe/CdS nanostructures suggest the forma-
tion of a thin alloyed layer (~1–2 monolayers) due to a small degree 
of Se/S intermixing at the core–shell interface35. This interfacial 
alloying or ‘smoothing’ does have profound implications for Auger 
recombination dynamics that are very sensitive to the abruptness of 
the interface36. However, this slight Se/S alloying at the core–shell 
boundary does not alter the depth or the mean width of the con-
finement potential, and therefore should only minimally affect the 
spatial extent and the overlap of the electron and the hole wave 
functions.

Interestingly, our calculations indicate that for CdSe/CdS NCs, 
changes in ξe − h with increasing H are in close correspondence 
with the changes in θe − h, which results in almost perfectly linear 
dependence of ξe − h on θe − h (Fig. 4b). This result strongly suggests 
that, in these nanostructures, ∆DB is directly proportional to θe − h: 
∆DB = ∆0θe − h, where ∆0 is the EI splitting in the case in which the 
electron–hole overlap is unity.

Discussion
To experimentally evaluate the changes in the electron–hole overlap 
with increasing H, we analyse room-temperature radiative lifetimes 
(Fig. 4c,d). At room temperature, when kBT∆DB, radiative decay 
occurs primarily through the bright exciton state, which accommo-
dates half of the exciton population. In this case, the change in shell 
thickness does not affect the exciton distribution between the bright 
and the dark states, and the PL decay rate varies solely because of 
the change in the spatial distributions of electron and hole wave 
functions. To characterize this change, we introduce a dimension-
less parameter χ, which we calculate by normalizing the PL decay 
rate (Γ = 1/τr) measured for different samples by the rate observed 
for the thinnest-shell (4 CdS monolayers) NCs (τr≈15 ns). The data 
derived in this way (Fig. 4e) indicate that χ progressively decreases 
with increasing H and is ~0.05 in the case of the 19 CdS monolayer 
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Figure 4 | Room-temperature emission energies (EPL), radiative lifetimes 
and calculated exchange interaction terms (e − h). (a) Peak emission 
energy as a function of the total NC size (excitation energy is 3.06 eV).  
All NCs have the same CdSe core radius R = 1.5 nm. Different thicknesses 
of the CdS shell (H) correspond to different colours that are used to 
colour-code data in four other panels of the figure (H = 1.6 nm, blue; 
H = 2.8 nm, green; H = 3.6 nm, cyan; H = 4.4 nm, black; H = 5.6 nm, orange; 
H = 7.6 nm, red). (b) Exchange interaction term, ξe − h, as a function of 
electron–hole overlap integral (θe − h) calculated according to refs 11 and 22 
for different values for the conduction-band energy offset at the CdSe/CdS 
interface: ∆Ee = 0 (circles), 0.1 eV (squares), 0.2 eV (triangles) and 0.32 eV 
(diamonds, see Supplementary Information). Both θe − h and ξe − h are 
normalized to the respective values obtained for CdSe/4CdS (H = 1.6 nm). 
Experimental results for (c) PL dynamics, (d) radiative lifetimes and  
(e) χ = Γ Γx x≥4 4/ =  as a function of total NC size.
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sample. This drop in χ is due to a progressive increase in the mis-
match between the volumes occupied by the electron and the hole  
in the course of expansion of the electron wave function into the  
shell region. As within the EMA, the radiative decay rate is directly 
proportional to θe − h(Γ = 1/τr∝θe − h) (refs 5, 34), the measured changes 
in χ should reproduce the variations in θe − h: θe − h = aχ, where a is  
a proportionality constant.

To incorporate the effect of electron–hole overlap into equation 
(1), we assume the validity of EMA, which allows us to express the 
radiative decay rates of the bright and the dark excitons as ΓD = θe − h 
Γ0D and ΓB = θe − h Γ0B (refs 5, 37). On the basis of the results of  
our modelling (Fig. 4b), we also assume a linear scaling of the  
dark–bright energy splitting with θe − h. These assumptions lead to 
the following generalized version of equation (1), which would 
apply to samples with a nonunity electron–hole overlap integral: 
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In this generalized form, equation (2) accounts for the effect of 
varying electron–hole overlap on both the emission rate of a given 
exciton state and the distribution of exciton population between the 
bright and the dark levels.

To verify the validity of our model, we use it to analyse the effect 
of shell thickness on low-temperature PL lifetimes. In Figure 5a, we 
plot τr measured at 1.5 K as a function of NC total radius (r = R + H). 
In contrast to room-temperature observations in which PL life-
time increases with r, the low-temperature data indicate a different 
trend—a significant, almost an order-of-magnitude decrease in τr. 
This trend is opposite to one expected from a progressive reduc-
tion of the electron–hole overlap and is a direct result of decreasing 
EI energy that leads to increased occupancy of the bright excitonic 
state.

To further analyse the data, in Figure 5b we present them in terms 
of the product of the measured radiative decay time and χ plotted 
as a function of χ. According to equation (2), such a representation 
allows one to separate the contribution due to variable EI energy 
from that due to the direct effect of electron–hole overlap on ΓD and 
ΓB rates. Using this plot, we immediately see that changes in EI alone 
would lead to more than a 2-order-of-magnitude change in the PL 
decay constant. The measured changes in τr, however, are weaker 
because the effect of the variable EI energy is partially compensated 
by reduction of bright- and dark-exciton decay rates produced by 
reduced electron–hole overlap.

Finally, we analyse the data set in Figure 5b using equation 
(2). Specifically, equation (2) can closely reproduce a complete set 
of experimental data for six different core–shell samples (line in  
Fig. 5b) using ∆0 and a as adjustable parameters. The ∆0 value pro-
duced by this fit is ~1.6 meV, which is close to the dark–bright exci-
ton splitting of 1.5 meV measured by FLN for standard CdSe NCs 
emitting at a similar wavelength3. On the basis of the fit, a = 1.1, 
which indicates that the experimental values of χ provide a close 
measure of θe − h. An excellent agreement between the experimen-
tal results and the model described by equation (2) provides strong 
evidence that observed changes in EI energy are primarily due to 
changes in electron–hole spatial overlap but not due to changes in 
the overall NC size.

In Figure 5c, we summarize the dark–bright splitting ener-
gies obtained by the three different approaches: direct analysis of 
the temperature dependence of the PL dynamics by equation (1) 
(thin-shell samples), analysis of the FLN spectra (that is, by direct 
measure of the position of the ZP feature for CdSe/4CdS NCs and 
by the analysis of the position of the LOCdSe peak for samples with 
shells containing 7–19 monolayers of CdS), and calculations using 
expression ∆DB = ∆0θe − h (all samples), where ∆0 is determined from 

(2)(2)

fitting the low-temperature PL lifetimes by equation (2) (Fig. 5b) 
and θe − h is derived from room-temperature lifetimes (Fig. 4e). The 
data obtained by all of these methods are in good agreement and 
indicate a systematic decrease in the energy of dark–bright exciton 
splitting with increasing shell thickness. Furthermore, the fact that 
the result of direct experimental measurements of PL lifetimes are 
closely described assuming a linear scaling of ∆DB with θe − h indicates 
that the demonstrated tunability of EI energy is enabled by varying 
electron–hole overlap, which in CdSe/CdS NCs can be controlled 
by tuning the CdS shell width. A linear relationship between ∆DB 
and θe − h is also evident from the plot in the inset of Figure 5c, in 
which we show the values of a dark–bright splitting derived from 
FLN (squares) and temperature-dependent PL dynamics (triangles) 
as a function of electron–hole overlap obtained from room-tem-
perature PL decay rates (Fig. 4e).
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Figure 5 | Analysis of PL lifetimes using a variable-EI energy model.  
(a) Measured radiative lifetimes at 1.55 K for increasing shell thickness.  
All NCs have the same CdSe core radius R = 1.5 nm. Different thicknesses of 
the CdS shell (H) correspond to different colours that are used to colour-
code data in two other panels of the figure and in the inset of ‘c’ (H = 1.6 nm, 
blue; H = 2.8 nm, green; H = 3.6 nm, cyan; H = 4.4 nm, black; H = 5.6 nm, 
orange; H = 7.6 nm, red). (b) Same as in ‘a’ but as a product of τr and χ 
plotted versus χ (χ is extracted from room-temperature PL dynamics using 
the relationship χ = Γ Γx x≥4 4/ = ). A fit of τr·χ to equation (2) is shown by 
the solid line. (c) Dark–bright energy splitting, ∆DB, as a function of shell 
thickness (expressed in terms of the number of CdS monolayers) extracted 
from the analysis of the PL dynamics and FLN spectra. A very good 
agreement is observed between the ∆DB values obtained with the different 
methods. The inset shows the measured values of ∆DB as a function of 
the measured electron-hole overlap integral (θe − h) for increasing shell 
thickness. These data can be fitted closely using a linear relationship 
between ∆DB and θe − h (line).
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In conclusion, we have demonstrated that by increasing the thick-
ness of a CdS shell in core–shell CdSe/CdS NCs, we can tune the EI 
energy from ~1.8 to ~0.1 meV. The measured radiative lifetimes as a 
function of shell width exhibit two opposite trends at room and cry-
ogenic temperatures. The room-temperature time increases with H, 
as expected from the reduced electron–hole overlap due to increas-
ing leakage of the electron wave function into the shell region. The 
low-temperature PL lifetime, instead, rapidly decreases with H, 
which is a direct consequence of reducing EI energy, which leads to 
increased occupancy of the bright exciton level. The direct correla-
tion between evolutions of θe − h with H (derived from room-temper-
ature measurements) and the dark–bright splitting (obtained from 
FLN studies and temperature-dependent PL dynamics) strongly 
suggests that, in these core–shell NCs, the EI energy is directly pro-
portional to the electron–hole overlap integral. Importantly, this 
tunability is achieved for a nearly constant emission energy, which 
provides a new tool for controlling excitonic dynamics including 
absolute recombination time scales and temperature and magnetic 
field dependences (enabling, for example, selection between strong 
versus weak dependence on T or B) separately from the confine-
ment energy.

Methods
Nanocrystal synthesis and sample preparation. Colloidal core/shell CdSe/CdS 
NCs were produced based on successive ion-layer absorption and reaction  
methods as reported previously15. The NCs were then diluted in hexane and  
drop-casted onto quartz substrates.

Temperature and magnetic field-dependent trPL. The samples were mounted 
in the variable temperature insert (1.5–300 K) of a 7-T split-coil superconducting 
magnet with direct optical access. Steady-state and trPL measurements were  
conducted  by exciting at 3.06 eV (405 nm) with a pulsed diode laser (repetition 
rate 250 KHz, pulse duration ~40 ps) and collecting the emitted light with an opti-
cal fibre coupled to a monochromator, a multichannel plate detector and time- 
correlated single-photon counting electronics (time resolution ~200 ps). Very low 
excitation fluence (peak power ~2×1015 photons pulse − 1 cm − 2) was used to avoid 
multiexciton excitation. Neither 10× higher nor lower laser fluence affected the 
results.

Fluorescence line-narrowing experiments. For FLN measurements, a spectral-
ly narrow photoexcitation source ( < 0.2 nm FWHM) was produced by coupling 
the output of an 800-nm Ti:sapphire oscillator (70 mW, 80 MHz, 100 fs) into a 
photonic crystal-fibre white-light continuum generator, which was filtered with 
a 1/3 m monochromator. The emitted PL photons were collected, fibre coupled 
into a 1/2 m spectrograph and detected with a liquid nitrogen-cooled charged 
coupled device.

Derivation of radiative lifetimes. Measurement of trPL at multiple emission 
wavelengths indicated a lack of energy transfer for all NC film samples presented. 
PL traces were analysed using a double exponential fit, which produced two time 
constants τ1 and τ2 and two amplitudes A1 and A2 (as mentioned in the main text, 
for thin-shell samples, we analysed the low-temperature traces disregarding the 
fast initial drop due to thermalization). We further used the slower time constant τ2 
as a measure of a radiative lifetime, τr = τ2, assuming that initial faster decay is also 
contributed by non-radiative processes. This ‘biexponential’ (or often multiexpo-
nential) behaviour is common in NC ensemble measurements and arises from 
coexistence of well-passivated NCs with dynamics dominated by radiative decay 
and poorly passivated particles, in which carrier recombination is also contributed 
by non-radiative processes involving surface or interfacial (in the case of core–shell 
structures) defects.

The validity of assigning a slow constant to purely radiative decay is 
indicated by the following arguments. First, the same samples prepared as 
solutions exhibited almost a single exponential decay with a constant, which 
was nearly identical (within 10%) to τ2 derived from NC film measurements. 
Further, in the case of biexponential PL decay with τ2 = τr, the emission quan-
tum yield (q) is given by q = [A1(τ1/τ2)  +  A2](A1 + A2) − 1. We used this expres-
sion to calculate room-temperature quantum yields for our core–shell NCs 
based on measured dynamics and then compared them with relative quantum 
yields measured by normalizing spectrally integrated steady-state PL by sam-
ple absorbitivity for constant excitation intensity. The observed remarkable 
agreement (within 15%) between the two data sets confirms the assignment 
of the τ2 time constant to radiative decay. More details on extraction of radia-
tive lifetimes from measured PL dynamics can be found in Supplementary 
Information. 
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