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Accelerated search for materials with targeted
properties by adaptive design
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Finding new materials with targeted properties has traditionally been guided by intuition, and

trial and error. With increasing chemical complexity, the combinatorial possibilities are too

large for an Edisonian approach to be practical. Here we show how an adaptive design

strategy, tightly coupled with experiments, can accelerate the discovery process by

sequentially identifying the next experiments or calculations, to effectively navigate

the complex search space. Our strategy uses inference and global optimization to balance the

trade-off between exploitation and exploration of the search space. We demonstrate this

by finding very low thermal hysteresis (DT) NiTi-based shape memory alloys, with

Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest DT (1.84K). We synthesize and

characterize 36 predicted compositions (9 feedback loops) from a potential space

of B800,000 compositions. Of these, 14 had smaller DT than any of the 22 in the

original data set.
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T
here has been much recent interest in accelerating
materials discovery1. High-throughput calculations2,3 and
combinatorial experiments4 have been the approaches

of choice to narrow the search space. However, the interplay
of structural, chemical and microstructural degrees of freedom
introduces enormous complexity, especially if defects, solid
solutions, non-stoichiometry and multicomponent compounds
are involved, which the current state-of-the-art tools are not yet
designed to handle. Statistical inference and machine learning
algorithms have also been recently applied to materials design
problems5,6. The emphasis has largely been on feature or
descriptor selection or the use of regression tools, such as least
squares, to predict properties. The regression studies have been
hampered by small data sets, large model or prediction
uncertainties and extrapolation to a vast unexplored chemical
space with little or no experimental feedback to validate the
predictions. Thus, they are prone to be suboptimal7, because they
only exploit the model outcome and are liable to be confined to
local minima, without sampling points in the search space
where the uncertainties are largest. Hence, an approach is needed,
which can adaptively guide the next experiments. That is, an
adaptive procedure that makes optimal choices of materials to test
next by balancing the merits of searching for materials likely to
have the best property or where there may be fewer sampling
points and greater uncertainty, but which may improve the
quality of the regressor in the long run. Adaptive design has been
successfully applied in areas spanning computer science8,
operations research7 and cancer genomics9. The novelty of
this approach is that it provides a robust, guided basis for the
selection of the next material for experimental measurements by
using uncertainties and maximizing the ‘expected improvement’
from the best-so-far material in an iterative loop with feedback
from experiments. It balances the goal of searching materials
likely to have the best property (exploitation) with the need to
explore parts of the search space with fewer sampling points and
greater uncertainty.

Our goal here is to find new multicomponent NiTi-based shape
memory alloys (SMAs) with the targeted property of very low
thermal hysteresis (DT). The functionalities of SMAs, including
shape memory effect and superelasticity, arise from the reversible
martensitic transformation between high-temperature austenite
and low-temperature martensite phases. Heating and cooling
across the martensitic transformation temperature results in
hysteresis (DT) as the transformation temperatures do not
coincide, giving rise to fatigue. In Ni50Ti50 alloy, one of the best
known SMA materials, it has been shown that 60 heating and
cooling cycles results in a shift in the transformation temperature
of 25 K, indicating poor resistance to fatigue10. Therefore,
minimizing DT is crucial for realizing NiTi-based SMA
applications11. A common strategy is to chemically modify
Ni50Ti50 by substitutions at the Ni site. An obstacle for developing
low DT SMAs is the large search space, because a vast majority of
transition metals can be alloyed with Ni50Ti50. We, however,
constrain the problem to the Ni50� x� y� zTi50CuxFeyPdz family,
where recent experimental results have shown promise10,11.
This family of alloys can undergo a cubic to rhombhohedral
(B2-R) or cubic to orthorhombic, monoclinic (B2-B19,
B2-B190) transformation (Supplementary Fig. 1) and both
types have potential niche applications in industry12,13. The
concentrations x, y and z dictate which transformations will be
realized and the objective of our adaptive design here is to find
x, y, z leading to the lowest DT, that is, the global optimum. It is a
rich problem in that there are several transformations and our
algorithm has to navigate the search space.

Recent efforts to find low dissipation SMAs have included the
use of physical principles based on the crystallographic theory of

martensite10. It has been pointed out that the middle eigenvalue
(l2) of the distortion matrix that deforms unstressed austenite
into the deformed martensite structure should be close to 1, to
minimize the effects of hysteresis14. The l2¼ 1 condition ensures
that strain compatibility is exactly satisfied between austenite and
martensite. This rule of thumb has been used to find ternary15

and quaternary alloys10 with small hysteresis based on high-
throughput experiments. However, calculation of l2 requires a
priori knowledge of crystal symmetry and lattice parameters,
typically obtained from diffraction measurements after
experimental synthesis and, therefore, the approach has limited
predictive power (especially in multicomponent alloys where the
changes in lattice parameter as a function of composition are not
known, as in this work). Furthermore, l2¼ 1 is an elastic
condition and it is possible for two or more alloys with l2 close to
1 to possess quite different DT (see Supplementary Fig. 2 and
Supplementary Note 1), in which case thermal hysteresis would
also be influenced by thermodynamics (Supplementary Fig. 3).
Therefore, l2¼ 1 is only a necessary and not sufficient condition
for finding low DT alloys. What is desired is a one-to-one direct
mapping between alloy compositions and DT, which we establish
using inference methods.

Our objective is to find alloys undergoing R, B19 or B190

transformations, yet efficiently find the global minimum for DT.
Even in our constrained pseudo-quaternary composition space,
there are N¼ 797,504 potential alloys. Such a vast space is
difficult to explore with high-throughput experiments or ab initio
calculations. However, our design loop is able to discover
Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 with a low DT of 1.84K in the sixth
out of nine iterations of our loop. In all, 14 alloys are found
with DT o3.15K, the best value in our original experimental
data. Our design framework thus accelerates the process of
finding materials with desired properties offering the opportunity
to significantly reduce the number of costly and time-consuming
experiments.

Results
Design loop. Our iterative feedback loop is schematically shown
in Fig. 1a and includes the use of inference, uncertainties, global
optimization and feedback from experiments (collectively refer-
red to as ‘adaptive design’). In Fig. 1b we show how we exercise
the loop, the key ingredients of which are as follows: (i) a training
data set of alloys, each described by features and with a desired
property (that is, DT) that has been measured; (ii) an inference
model (regressor) that uses the training data to learn the feature–
property relationship, with associated uncertainties; (iii) the
trained model is applied to the search space of unexplored alloy
compositions (for which the property has not been measured), to
predict DT with associated uncertainties; (iv) design or global
optimization (selector) that provides the next candidate alloy for
experiment by balancing the trade-off between exploitation
(choosing the material with the best predicted property) and
exploration (using the predicted uncertainties to study regions of
search space where the model is less accurate); and (v) feedback
from experiments allowing the subsequent iterative improvement
of the inference model.

Data set. We considered Ni50� x� y� zTi50CuxFeyPdz alloys with
x, y and z compositions, where each doping element could vary in
steps of 0.1% with constraints 50� x� y� zX30%, xp20%,
yp5% and zp20% (see Supplementary Note 2). We synthesized
22 (training set) out of 797,504 possibilities in our group under
identical conditions, to minimize the variability due to processing
and microstructural effects (see Supplementary Table 1). Thus, the
remaining unexplored search space consisted of 797,482 potential
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alloys for which DT was unknown. We measured DT using dif-
ferential scanning calorimetry (DSC) and defined it as Pheating�
Pcooling, where Pheating and Pcooling are the endothermic and exo-
thermic peak temperatures, respectively16. Unlike the tangent
method (an alternative approach to determine DT from DSC
curves), where the estimation of transformation start and finish
temperatures introduces uncertainties of the order of ±0.5K, our
approach is relatively more reliable as the DSC peaks can be

determined accurately (the peak-to-peak DT has a much smaller
error, o0.001K) and our DT also correlates linearly with those
from the tangent method. Additional details are present in
Methods, Supplementary Figs 4 and 5, and Supplementary Note 2.

Features. Each alloy is described in terms of one or more features,
x, representing aspects of structure, chemistry and bonding, and
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Figure 1 | Our adaptive design loop. (a) Prior knowledge, including data from previous experiments and physical models, and relevant features are used to

describe the materials. This information is used within a machine learning framework to make predictions that include error estimates. The results are used

by an experimental design tool (for example, Global optimization) that suggests new experiments (synthesis and characterization) performed in this work,

with the dual goals of model improvement and materials discovery. The results feed into a database, which provides input for the next iteration of the

design loop. The green arrows represent the step-wise approach of the state-of-art using experiments or calculations, although few studies have

demonstrated feedback. The red star shows that although sample number 3 is not the best predicted choice relative to sample 4, the ‘expected

improvement’ by selecting it is greater than other choices due to the large uncertainty. (b) Our loop, as executed in practice specific to the design problem

featured in this work, is as follows: (i) an initial alloy experimental data set with known thermal dissipation DT and features or materials descriptors serves as

input to the inference model. (ii) The model is trained and cross-validated with the initial alloy data. (iii) A data set of unexplored alloys defines the total search

space of probable candidates. The trained model in (ii) is applied to all the alloys in (iii), to predict their DT. (iv) The design chooses the ‘best’ four candidates

for synthesis and characterization. (v) The new alloys, with their measured DT, augment the initial data set to further improve the inference and design. The

four alloys for experiments are chosen iteratively by augmenting four times the initial data set with each new predicted alloy from the inference and design.
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the task of inference is to learn a map or model connecting x to
DT. We used Waber–Cromer pseudopotential radii, Pauling
electronegativity, metallic radius, valence electron number (VEN),
Clementi’s atomic radii and Pettifor chemical scale as features for
the inference model17–23. There are many approaches to choosing
features. We could have chosen a large number, typically of the
order of 30 that could be compiled from the input, output to a
density functional theory (DFT) type calculation and proceeded
to perform principal component analysis to downselect a few
features5, used methods such as gradient boosting to learn about
their relative importance (not via variance) in the data24 or recent
high-throughput approaches that distill a small number from
many combinations of a given set of chosen features6. Our choice
was dictated by prior materials knowledge. By examining a large
number (60–70) NiTi-based alloys doped with Pd, Fe, Pt, Hf, Zr,
Cu and so on, it has been shown16 that the martensitic transition
temperatures (which affect thermal hysteresis) are strongly
correlated with the valence electron concentration (fraction of
valence electrons) and electron number per atom. In particular,
the martensite and austenite start temperatures vary significantly
when the valence electron concentration increases and show
behaviour that depends on whether the electron valence number/
atom is greater or less than 7. Moreover, the thermal hysteresis is
directly influenced by the atomic size of the alloying elements
(hysteresis increases with size at almost constant electron valence
number)16. The dependence of transition temperatures and
hysteresis on electron number indicates trends of variations
corresponding to incomplete d–d orbital overlap at occupancy
o7 and complete overlap at 7. In addition, changes in the
electron number per atom influence the relative stability of
various phases in the NiTiFe system25. In our choice of features,
the Pauling electronegativity and VEN capture the chemical
bonding and changes in the valence electron concentration or
electron number per atom, respectively. Similarly, the
Waber–Cromer pseudopotential radii, metallic radius,
Clementi’s atomic radii and Pettifor chemical scale were chosen
to reflect the atomic size, which has been shown to influence the
thermal hysteresis. Therefore, these features provide a relatively
simple physical basis for predicting DT and reflect coarse-grained
aspects of electronic contributions that can affect the transition
temperatures and hysteresis. We potentially can reduce the
number of features to 3 or 4; however, we choose to retain a
higher dimensional feature space at the expense of computation.
Each Ni50� x� y� zTi50CuxFeyPdz alloy in our composition space
was uniquely described as a weighted fraction of each of these
features, where the weights are the relative concentrations
(x, y and z) of the chemical constituents in a given alloy
(see Supplementary Note 2).

Inference. Our approach to learning from the alloy data was to
establish how DT varies with the input features, x, by using
regression methods and subsequently predict DT of unexplored
alloys. Least squares or maximum likelihood are examples of such
methods. However, we used several well-known regressors
including a Gaussian Process Model (GPM), which is a Bayesian-
based approach in terms of probability distributions, and where
the means and uncertainties are natural outcomes and support
vector regression (SVR), which aims to learn a nonlinear function
by a mapping into a high-dimensional feature space. For the
latter, we compared results using SVR with a radial basis function
kernel (SVRrbf) and with a linear kernel (SVRlin), and to estimate
model uncertainties we used the well-known statistical method of
‘bootstrap’ sampling in which samples of the alloy data were
randomly generated, allowing for replacements (Methods). These
regressors produce, in general, a non-convex input/output

(features/property) fitness function that may have multiple local
optima. Therefore, navigating this complex fitness landscape in
search of a material with optimal property solely based on
regression is inadequate7.

Design. To guide the next experiment, the search needs to
combine exploration and exploitation, that is, explore the total
experimental area and focus on a local area with the apparent
global optimum. Accordingly, we employed different design
functions or selectors based on a heuristic referred to as efficient
global optimization (EGO) developed by Jones et al.7, which has
been extensively used in the aircraft and automobile industries as
part of surrogate-based optimization. We show here how this can
be used for materials discovery, as this allows us to choose
potential candidates for experiment based on maximizing the
‘expected improvement’ over the search space. This is essentially
the probability of improving the current best estimate of the target
property by sampling estimates from compounds in the search
space. By treating the uncertainties in their predicted values from
the regressor as the realization of a normally distributed variable
with mean m and s.d. s, the expected improvement f(m, s) can be
shown to be given by s[f(z)þ zF(z)], where z¼ (m*�m)/s and
m* is the minimum DT observed in the training set, and f(z) and
F(z) are the standard normal density and distribution functions,
respectively. In the limit of no uncertainty in target estimates
(s-0), samples will be selected with a m smaller than best
measured so far (m*) (exploitation). Similarly, in the other limit
(s-N), the choice will be limited to samples with the largest
uncertainty (exploration) rather than seeking out those with a
minimum property (exploitation). For values between the two
extremes, there will be a trade-off between the two, so that local
minima can be avoided, that is, the algorithm will move onto
regions of greater uncertainty at the expense of lower values of DT
after the local search space with potential for small DT values has
been exploited. In addition to EGO, we also used the Knowledge
Gradient (KG)26 algorithm, where the m* is replaced by minimum
over all the data, in the training and search space. We also greedily
choose the next material with the best predicted value (minimum)
from the regressor (pure exploitation or Min). Details are given in
Methods.

Inference and design combination. We emphasize that a priori it
is not clear which regressor:selector combination to use. According
to the ‘no-free-lunch theorem’27, there is no universal optimizer for
all problems. Thus, we investigated the performances of several
regressor:selector combinations as a function of the size of the data
using cross-validation and found that SVRrbf:KG outperformed
every other regressor:selector combination on the training set. Our
approach (see Methods) is based on determining the average
number of samples needed to find the best value when training on
randomly chosen initial subsets of the training data. In particular,
we randomly selected without replacement a given number of
samples from the training data, trained using a given
regressor:selector combination pair and counted the total
number of tries needed to find the best sample in the training
data. This was repeated 2,000 times with different sets of randomly
selected samples and we included the initial random picks in the
overall count. Figure 2 shows the relative performance of the
various regressor:selector combinations on the NiTi training data.
The plotting symbols are slightly larger than the s.d. of the
measurements. Some of the algorithms perform worse than
random, agreeing with the no-free-lunch theorem that
guarantees such algorithms exist. The GPM:Min combination,
which for design merely chooses the best estimate from the GPM
regressor, showed the best performance for sample sizes 2 and 3;
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however, as more samples were included its performance began to
deteriorate. For samples sizes from 4 to 8, SVRrbf:KG and
SVRrbf:EGO have nearly identical performance and are better
than the other regressor:selector pairs. As SVRrbf works well or
better than the other techniques beyond three training samples—as
we have more than three training samples and as we do not have
any compelling argument for using less than our full training set
on the problem—the results indicate that we should choose
SVRrbf:KG. Thus, the 22 initial samples are adequate enough for
our training set, because beyond B5 randomly chosen training
samples, we are better off using samples chosen by the design loop
than by random guessing.

New alloys via feedback from experiment. We predicted DT
(using SVRrbf) for all the data in the search space using 1,000
‘bootstrap’ samples, to estimate m and s for design. As we
could synthesize four compositions at a time, our predicted four
compositions were obtained by incorporating the best single
prediction successively in the data set, to make updated new
predictions for each loop (Kriging believer algorithm28). Among
the four samples in the first iteration, one had no martensitic
transformation, whereas another gave the second best DT.
The training set was augmented to 26 samples and the feedback
loop of Fig. 1b repeated (see Supplementary Fig. 6 and
Supplementary Note 3).

In total, we performed nine design iterations and the results are
shown in Fig. 3a, which depicts how the experimental (as well as
predicted, inset) DT behaves with successive iterations. The range
(max–min) in DT is large in the first two iterations, becomes
smaller in iterations 3–6 and increases from the seventh iteration
onwards. Figure 3b shows how the measured DT varies with the
average VEN (one of the features used in the inference step). There
are two local minima in the VEN landscape, one at 6.95 and the
other at 7.13, and SVRrbf:KG predominantly explores the minima
for the VEN at B6.95, which eventually led to the discovery of the
Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 alloy. It can be seen in Fig. 3a,b that
from the third iteration onwards, our strategy produces results in
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middle iterations and then exploring new areas in later iterations.
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the desired direction of minimizing DT. However, as shown in
Fig. 3c, after the sixth iteration our design drifts away from
the apparent global minimum. We found 14 new alloys, out
of 36 synthesized compositions from 9 feedback loops
(see Supplementary Table 2), with DT o3.15K (the best value
in our original training set). One of the alloys, Ti50.0Ni46.7Cu0.8-
Fe2.3Pd0.2 with B2 to R transformation, discovered in iteration 6
had a DT of 1.84K (as measured from DSC curves), surpassing the
best value in the training data by 42%. In Table 1, we list the best
five low DT alloys from this work.

It is interesting to find that from the seventh iteration onwards,
the spread in DT (see Fig. 3a) begins to widen, relative to earlier
iterations. This trend could be misconstrued as arising from
model overfitting. We interpret this behaviour as a consequence
of our global optimization. Recall that the purpose of SVRrbf:KG
is to balance the trade-off between exploration and exploitation.
As a result, every new set of experiments are purposefully
designed to rapidly learn the response surface in the high-
dimensional space and minimize the model uncertainties.
Therefore, Fig. 3a–c indicates that the SVRrbf:KG has explored
the minimum in the vicinity of VENB6.95 and now it is moving
away in search of other local minima in our response surface. We
partially capture this trend in Fig. 3c, where the trend in VEN
values increases continuously (it is partial, because we are in a
six-dimensional feature space). Figure 4a compares the resistivity
versus temperature curves (R(T)) of Ni50Ti50 and our newly
found Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2. Both R(T) curves show a
reversible martensitic phase transformation but our alloy also
possesses negligibly small hysteresis of 0.84 K from R(T). This
thermal hysteresis is consistent with a small DT of 1.84K
measured from DSC (Fig. 4b) and the shift in transformation
temperature is negligibly small, that is, B0.02K (inset in Fig. 4b).
In the literature, TiNiCuPd has been reported with ‘near-zero’
thermal hysteresis from resistivity measurements10. However, for

the same alloy if we use our DT yardstick, then it is determined to
be 16K. We have listed in the Supplementary Table 2 the
transformation types for all the alloys we synthesized by our
design loop. There are several among these, which undergo the B2
to B19 transformation. Our best B2 to B19 alloy from the design
loop has a thermal hysteresis of 9.1 K as compared with 16K for
the TiNiCuPd compound10.

Insights from DFT. We interpret the outcome of our inference
and design in the context of energetics and strains associated with
the alloy transformations. Our DFT calculations account only for
the bulk or homogeneous part of the free energy and neglect
interfacial, entropic or long-range elastic contributions. For small
thermal dissipation across the transition, we expect the total
energy difference (DE) between the austenite and martensite
phases should be negative, to provide an adequate driving force
for martensite transformation, and yet the magnitude (|DE|)
should be relatively small, as this is a measure of the depth of
the potential that has to be overcome on cooling and heating.
In addition, the lattice strains associated with the phase
transformations should also be small enough to allow for ease of
reversibility across the transition.

Guided by Fig. 3b and our composition space, we selected three
alloy families TiNiCu, TiNiFe and TiNiPd for further study. The
Ti50Ni34Cu16 and Ti50Ni46Fe4 alloys with VEN values 7.16 and
6.92, respectively, fall in the two minima in Fig. 3b and
Ti50Ni34Pd16 (VEN¼ 7) corresponds to a data point away from
the minima. Our alloy, Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2, with the lowest
DT has a VEN of 6.96, in close proximity to the Ti50Ni46Fe4
system. In addition, Ti50Ni34Cu16 and Ti50Ni34Pd16 both
undergo a B2 to B19 transformation, whereas Ti50Ni46Fe4 and
Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 display a B2 to R transformation. Our
DFT calculations show that in Ti50Ni34Pd16, Ti50Ni34Cu16 and

Table 1 | Five of the 14 best alloys with the lowest DT.

Iterations Composition DT (K) Transformation temperature (K)

6 Ti50.0Ni46.8Cu0.9Fe2.0Pd0.3 2.64 289.95
6 Ti50.0Ni44.2Cu1.9Fe3.8Pd0.1 2.53 243.43
6 Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 1.84 281.77
7 Ti50.0Ni48.1Cu0.2Fe1.5Pd0.2 2.09 301.86
7 Ti50.0Ni46.5Cu1.1Fe2.2Pd0.2 2.32 283.79

DSC, differential scanning calorimetry.
From a total of 9 iterations, which resulted in 36 new alloys, 14 had a DT o3.15 K, the lowest in the original training set of 22. Transformation temperature is given by the endothermic peak in the DSC
curve.
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Figure 4 | Experimental measurements for the predicted Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 alloy. (a) Resistivity measurements for the new alloy,

Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 , compared with NiTi (inset) emphasize the very small hysteresis (0.84K). (b) DSC curves for Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 , whose

peak-to-peak DT is measured as 1.84K, which is the lowest among related NiTi-based SMAs. Thermal cycles (60 heating and cooling cycles) also show

very small shift (B0.02K in the inset), indicating excellent thermal fatigue resistance.
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Ti50Ni46Fe4 alloys, DE is negative and is equal to � 0.0624,
� 0.0337 and � 0.0209 eV per atom, respectively (Supplementary
Fig. 7). It is noteworthy that DE for the Ti50Ni46Fe4 alloy is closer
to 0 (that is, its |DE| is small) relative to others. The experimental
DT data for Ti50Ni34Pd16, Ti50Ni34Cu16 and Ti50Ni46Fe4,
which are part of the training set (see Supplementary Table 1),
give 8.53, 6.04 and 4.21K, respectively, in agreement with the
trend in DE.

Although DE is favourable for the R-phase, DT is also
dependent on the activation barrier that must be overcome
in traversing the transition. Supplementary Fig. 3 shows
schematically in a Landau model context the barrier and
temperature range for DT. To obtain a measure of the activation
barrier, we performed DFT calculations on Ti50Ni48Fe2 that has
Fe concentration similar to that for our Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2
alloy and same VEN value of 6.96 (adequate DT data for
Ti50Ni48Fe2 is not available for comparison with our alloy
or Ti50Ni46Fe4). The objective is to obtain the energy as a function
of the lattice strain (the order parameter) along a path from
the austenite to the martensite for both B2 to B19 and B2 to
R transformations. Experimentally, Ti50Ni48Fe2 undergoes a B2
to R transformation29 but we also considered the B2 to B19
transformation for this alloy so that the activation barriers can be
compared. In these simulations we constrained all atoms in the
high-symmetry position relative to the B2 phase, that is, we
‘turned off’ the atomic displacements and did not relax them.
We started from the high-symmetry B2 cubic structure and
incrementally increased the lattice strain until we reached its
maximum value (as that found in the ground-state structure)
with the atoms still in the high-symmetry unrelaxed position
(Supplementary Fig. 8 and Supplementary Note 4); we treated
this configuration as the ‘saddle point’ (although this may differ
from the minimum energy path in a nudged elastic band
calculation). When the atoms are also relaxed, the system then
reaches its true ground state. The energy difference between
the saddle point and the B2 configuration is an estimate of the
activation barrier. We find that in Ti50Ni48Fe2 the activation
barrier for B2 to R is 5.15meV per atom, whereas that for B2 to
B19 is 24.49meV per atom, which is B5 times greater.
Furthermore, the magnitude of the shear strain for B2 to R
is less than that of the tetragonal strain for B2 to B19
(Supplementary Table 3), in agreement with the prevailing
literature30. Thus, we conjecture that the relatively small DT
in Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 arises from the stabilization of
the R-phase due to the presence of appropriate compositions
of Fe, Cu and Pd, which favour a low activation barrier and a
small |DE| as well.

Discussion
Our new alloys, even though they have very low DT, are also
accompanied by relatively high transformation temperatures. The
high transformation temperature was not by design and methods
such as multi-objective optimization offer the potential to lead to
further improvement in simultaneously optimizing both trans-
formation temperature and DT (possibly in addition to other
factors such as transformation strain, operating stress, operating
temperature or processing conditions). Could our findings (14 of
36 with DT o3.15K, the best alloy in our original set) be the
result of a random occurrence? A Mann–Whitney test comparing
the DT values in the original set with those in the synthesized set
shows that the design loop picked alloys that are significantly
better (U-value¼ 172, z (s.d.)¼ 3.6, P-valueo0.001). Although
the test shows that the alloys picked by the design loop are ranked
better than those in the original set, we used the design loop to
find the best alloys, not merely those that are better on the

average. Thus, if the alloys chosen by the design loop were picked
randomly from the same distribution as those in the original set,
the probability that the 14 (or more) lowest DT scores would fall
into the set chosen-by-the-design loop is 3.7� 10� 4.
Clearly, the design loop is finding compounds that are better
than the original alloys at significantly higher than chance
performance.

Methods
Experimental. The base ingot of Ni50� x� y� zTi50CuxFeyPdz alloy was made by
arc melting of 99.9% pure Ti, 99.9% pure Ni, 99.9% pure Cu, 99.9% Fe and 99.9%
pure Pd in an argon atmosphere. The ingot was then hot rolled into 1-mm-thick
plate. The specimens for measurements were spark cut from the plate and then
solution treated at 1,273 K for 1 h in an evacuated quartz tube, followed by water
quenching. DSC measurements were made with a cooling/heating rate of
10 Kmin� 1, to detect the martensitic transformation temperatures with
exothermal/endothermic peaks. The desired property (DT) values were measured
by using DSC with DT¼ Pheating�Pcooling, dictated by the need to have a reliable
diagnostic. Additional details are discussed in Supplementary Note 2.

Regressors. We trained regressors on samples in the training set to map features
to property. The three regressors used in the present study, included the following:

� GPM
� SVRrbf

� SVRlin

The GPM is an attractive choice, because it includes an uncertainty estimate via
a distribution. On the other hand, we have observed better predictive performance
with other models such as SVR; however, these models do not typically estimate
uncertainties. To obtain uncertainties with SVR models, we used a bootstrap
approach via cross-validation. The SCIKIT-LEARN python implementations of these
learning algorithms were used31.

Global optimization using selectors. The selectors choose which experiment to
do next by making optimal choices of materials to test. Our strategy is based on
EGO7, to choose potential candidates by maximizing the ‘expected improvement’,
f(m,s), over the search space. The improvement I is defined by max(m*�Y, 0),
where Y is a random variable chosen from a distribution where the uncertainties
are assumed to be normally distributed and where the mean of the property is m
with s.d. s and m* is the ‘best-so-far’ value of the property, assuming it to be a
minimum. The expected improvement, defined as f(m,s)¼

R
If(z)dz, where f(z) is

the standard normal distribution, gives the improvements on the current best
estimate of the target property by sampling from compounds in the search space.
The integral is easily evaluated and f assumes the following forms for the difference
selectors:

� Min: greedily choose the material in the unexplored alloy data set with minimum
predicted DT value.

� EGO: maximizes the ‘expected improvement’ f(m, s)¼ s[f(z)þ zF(z)], where
z¼ (m*� m)/s and m* is the minimum value observed so far in the training set.
f(z) and F(z) are the standard normal density and distribution functions,
respectively.

� KG: f(m,s)¼ s[f(z)þ zF(z)], where z¼ (m**�m)/s, m** is the minimum value
of either m* or m0 and m0 is the minimum predicted value in the virtual
unexplored alloy data set.

In addition to these three selectors, we also employed a Random selector,
which (as the name suggests) randomly selects a material without any guidance
from the statistical inference model. EGO has so far been studied with GPM
(Kriging), as the variance can be calculated from the distribution. However, we now
use it in this work with other regressors, such as SVRrbf, by using ‘bootstrap
sampling’ to estimate the errors associated with the training set, which is
considered to be representative of a sample of the overall distribution.

Evaluation of regressor and selector combinations. As there are many ways to
choose the regressor:selector pairs, we first need to choose the best regressor:
selector combination. The approach we took to selecting the regressor:selector pair
was to use cross-validation on the full set of training compounds we counted the
average number of samples needed to find the best DT when trained on the
randomly chosen subsets of the training data. For example, (a) we randomly
selected (without replacement) s¼ 2 samples of the training data, (b) trained using
those two samples and the known DT for those samples, (c) chose the next
samples from the full training set using a given regressor:selector pair and
(d) counted the total number of tries needed to find the best sample in the training
set. We repeated this process 2,000 times using different pairs of randomly picked
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samples. When counting the number of tries to find the best sample in the
training set, we included the random picks in the count, for example, if we picked
the best compound on the first random sample, we counted one. If we did not find
the best sample in the first two random picks and had to run the regressor:selector
pair three times to find the best compound, then we counted five. Therefore,
every random selection of two training samples gave us a count between
1 and 22, inclusive. The average of these counts was calculated over all 2,000
cross-validation runs to obtain the average number of tries for that regressor:
selector combination.

We also ran cross-validation with the same procedure but using s42 random
picks. We know a priori that if s is large, the performance will approach the (poor)
performance of random picks. At the extreme, if we use s¼ 21 random picks for
training, all regressor:selector pairs have the same chance of finding the best
compound in the first 21 random picks and all regressor:selector pairs have 100%
chance of finding the best compound on the 22nd pick, if it was not found in the
first 21 picks; thus, all regressor:selector combinations will perform at chance level.
On the other hand, if the number of training samples is very small, for examplae,
s¼ 2, then we expect the regressor to perform poorly; thus, the regressor:selector
combination may not perform well either. Therefore, As s increases we expect to
see each regressor:selector performance to improve until s is large enough that
further random picks are not as useful as regressor:selector pair to choose the next
sample. This is the behaviour we see in Fig. 2.

Density functional theory. DFT calculations for the NiTi SMAs were performed
with non-spin polarized generalized gradient approximation (GGA) calculations
using perdew-burke-ernzerhof (PBE) exchange-correlation functional as imple-
mented in the QUANTUM ESPRESSO planewave pseudopotential package32,33. The
core and valence electrons were treated with the normconserving
pseudopotentials34, which were generated using OPIUM code. Solid solutions were
modelled using the virtual crystal approximation35. We considered 60 Ry
plane-wave cutoff for wavefunctions and 240 Ry kinetic energy cutoff for charge
density and potential. We used the Marzari–Vanderbilt smearing36 with 0.02 Ry
width for the Brillouin zone integration. For the Cu and Pd containing solid
solutions, we performed full electronic structure calculations for B2 (Pm�3m, cubic)
and B19 (Pmma, orthorhombic) phases. On the other hand, for Fe containing
solid solutions, in addition to B19, we also considered the R-phase
(P3, rhombohedral). The R-phase contains 18 atoms, which can be identified as
a 3R martensitic structure and this is the structure commonly used for
DFT calculations. However, experimentally the R-phase has been identified with a
9R configuration30. The atomic positions and the cell volume were allowed
to change until an energy convergence threshold of 10� 8 eV and Hellmann–
Feynman forces o2meVÅ� 1, respectively, were achieved. The Brillouin
zone integration was performed using a 10� 10� 10, 10� 8� 8 and 4� 4� 6
Monkhorst–Pack k-point mesh37 centred at G-point for the cubic, orthorhombic
and rhombohedral phases, respectively. Details and data are provided in
Supplementary Note 4.
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