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Abstract

Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live 

cells, but the efficiency is low possibly due to competition from release factors, limiting the power 

and scope of this technology. Here we show that the reportedly essential release factor 1 can be 

knocked out from Escherichia coli by fixing release factor 2. The resultant strain JX33 is stable 

and independent, and reassigns UAG from a stop signal to an amino acid when a UAG-decoding 

tRNA/synthetase pair is introduced. Uaas were efficiently incorporated at multiple UAG sites in 

the same gene without translational termination in JX33. We also found that amino acid 

incorporation at endogenous UAG codons is dependent on RF1 and mRNA context, which 

explains why E. coli tolerates apparent global suppression of UAG. JX33 affords a unique 

autonomous host for synthesizing and evolving novel protein functions by enabling Uaa 

incorporation at multiple sites.
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INTRODUCTION

The canonical genetic code specifies 61 sense codons for amino acids and 3 nonsense 

codons for stop signals in protein translation. Although the canonical code is preserved in 

virtually every organism on earth, small deviations in codon assignments have been 

discovered in the mitochondrial and nuclear codes of an increasing number of organisms1,2. 

These include the reassignment of sense codons from one amino acid to another and the 

reassignment between nonsense and sense codons. In the laboratory, stop codons have been 

exploited for the incorporation of both natural and unnatural amino acids (Uaas) into 

proteins. Natural suppressor tRNAs decoding stop codons as common amino acids have 

been identified in E. coli and other organisms3,4. Orthogonal tRNA/synthetase pairs have 

been engineered to incorporate various Uaas into proteins in response to a stop codon5,6,7.

A major limitation of using a stop codon to encode Uaas is that the incorporation efficiency 

is low; this low efficiency can be inherent because the suppressor tRNA has to compete with 

endogenous release factors (RFs), whose native function is to recognize stop codons and 

terminate translation. The assignment of the stop codon is thus ambiguous, being a stop 

signal and an Uaa simultaneously, which severely limits the full exploitation and potential of 

this technology. Besides decreasing the Uaa incorporation efficiency, RF competition results 

in truncated protein products, which may interfere with target protein function or be 

deleterious to the host cell. Low incorporation efficiency also prevents the synthesis of 

proteins containing Uaas at multiple sites. Protein yields drop precipitously with the addition 

of even a second stop codon. Therefore, it is currently infeasible to efficiently synthesize 

proteins with Uaa modifications at multiple sites and to explore novel protein and organism 

functions through experimental evolution involving Uaas.

Another important yet unaddressed question is related to stop codons used by endogenous 

genes for translational termination in host cells. When a tRNA/synthetase pair is introduced 

to suppress a stop codon in exogenous genes, it is unclear whether and to what extent the 

legitimate stop codon in endogenous genes is suppressed. Would the extended proteins 

create pressure to host cells, and would host cells tolerate or adapt to such a challenge? 

These questions are not only important for overcoming the restrictions currently imposed on 

the Uaa incorporation methodology, but also for understanding how an organism copes with 

and eventually fixes codon reassignments during evolution.

To begin addressing these questions, we aim to fully reassign the amber codon UAG from 

the stop signal to an amino acid in E. coli. In prokaryotes, stop codons are recognized by 

two RFs, RF1 for UAA/UAG and RF2 for UAA/UGA8. To achieve full reassignment of 

UAG, RF1 must be removed from the system. However, the prfA gene encoding the RF1 is 

reportedly essential for E. coli survival9,10. Here we show that RF1 gene can be knocked out 

of the E. coli genome by fixing the expression of RF2. The RF1 knockout strain has been 

stable and sustainable for over 3 years. This new autonomous strain enables the genetic 

incorporation of various natural and unnatural amino acids into proteins at numerous UAG 

sites without being terminated. Moreover, we found whether an amino acid is incorporated 

by an orthogonal tRNA/synthetase pair at a legitimate UAG codon of endogenous genes is 
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strongly dependent on RF1, and that mRNA context of the UAG codon determines the 

translation outcome.

RESULTS

Generation of an autonomous RF1 knockout strain

UAG is the least used stop codon in E. coli, terminating only ~7% of E. coli genes11. 

Although RF1 recognizes UAA and UAG, UAA can also be read by RF2. However, RF1 is 

considered essential in E. coli10, and only conditionally lethal knockouts have been 

described9. This indispensability suggests that either accurate stoppage at UAG is essential 

for E. coli, or stoppage of the numerous UAA is impossible with RF2 alone. Consistently, 

our initial attempts to directly knock out prfA, the RF1-encoding gene, in the common 

DH10β strain using a chloramphenicol resistance (CmR) knock-in cassette failed. We then 

tried a two-step strategy: prfA was expressed in DH10β exogenously using a plasmid curable 

at 37 °C or higher temperature. In the presence of this plasmid, the genomic prfA of DH10β 

was successfully knocked out. However, when these cells were transferred to higher 

temperatures to cure the prfA expressing plasmid, none of them survived. These experiments 

indicate that it is unfeasible to directly knock out the prfA gene from the DH10β genome.

The tmRNA surveillance system for translational stalling could cause lethality after prfA 

knockout. In the absence of RF1-mediated peptide release, ribosome will be stalled on 

UAG-ending mRNAs. The alanyl-tmRNA can recognize and enter the stalled ribosome, 

transfer the nascent peptide onto itself, and resume translation to append a degradation tag12. 

Tagged polypeptides are subsequently degraded. Degradation of an overwhelming number 

of proteins could induce cell death. We reasoned that a tmRNA-deficient E. coli strain 

would bypass degradation of too many proteins. However, our attempts to knock out prfA in 

the tmRNA-deficient strain (X90 ssrA1::cat)13 also failed.

RF2 expression in E. coli is tightly autoregulated by an in-frame UGA codon in its mRNA 

that requires a +1 frameshift to generate full-length RF214. Interestingly, E. coli strains 

derived from K-12 contain a peculiar mutation (Ala246Thr) in RF2 that lowers its release 

activity for the UAA codon 5-fold15. Once RF1 is removed in K-12 derivatives, RF2 

expressed at the endogenous level may be unable to efficiently terminate all UAA codons. 

To relieve the potentially increasing burden imposed on RF2, we removed the in-frame 

UAG autoregulation element and mutated residue 246 back to Ala to generate the “fixed” 

prfBf gene (Fig. 1a). We used E. coli MDS42 as the parental strain16, because the deletion of 

nearly 700 nonessential genes in MDS42 may alleviate the termination load imposed on 

RF2. The RF2-encoding gene prfB in MDS42 cells was first replaced by the prfBf gene 

coupled to a CmR cassette using the λ-red recombination system17 (Fig. 1b). The CmR 

cassette was subsequently excised from Cm resistant clones using the pACBSR plasmid for 

markerless insertions18 (see Supplementary Methods). The resultant strain, JX2.0, has the 

prfB replaced by prfBf. Knockout of prfA was then attempted in JX2.0 by electroporating the 

linear CmR knock-in cassette with flanking sequence identical to those of prfA (Fig. 1c). 

Genomic PCR screening of Cm resistant colonies showed that they contained the CmR 

cassette at the endogenous prfA locus, indicating that RF1 was successfully knocked out 

(Fig. 1c). The RF1-knocked out strain was named as JX3.0 (Fig. 1d).
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We measured the growth rates of JX2.0 and JX3.0 cells (Supplementary Results, 

Supplementary Fig. 1). JX2.0 grew with a doubling time of 27.1 minutes in the Luria-

Bertani media, similar to the parental DH10β. JX3.0 doubled every 74.4 minutes, 

significantly slower than JX2.0 and DH10β, indicating that RF1 knockout puts pressure on 

cell growth. However, JX3.0 cells are viable and sustainable, suggesting that RF1 is not 

essential for their survival. Interestingly, out of numerous JX3.0 colonies we found a single 

colony, JX33, growing faster than others with a doubling rate (27.5 minutes) close to JX2.0.

Genomic sequencing of JX2.0 and JX3.0 strains

To confirm the introduced genomic changes and to detect any potential mutations 

compensatory for RF1 knockout, we performed full genomic sequencing on JX2.0 and 

JX3.0, and compared to E. coli K-12 MG1655. For JX3.0, colonies with slow (JX31) and 

fast (JX33) growth rate were both sequenced. Both JX2.0 and JX3.0 showed gene deletions 

identical to the parental MDS42 strain, a multiple-deletion descendent of MG165516. They 

also both contained the exact changes we made in prfBf. The knockout of prfA by the CmR 

cassette in JX3.0 was confirmed, and this is the only deletion difference between JX2.0 and 

JX3.0. No other differences and mutations were found between JX2.0, JX31 and MG1655. 

These results clearly indicate that RF1 can be knocked out from JX2.0 without incurring 

compensatory mutations in other genes, indicating that RF1 is nonessential in JX2.0.

Two single nucleotide polymorphisms (SNPs) were found between JX2.0 and JX33 

(Supplementary Fig. 2a). One is a silent mutation in the coding region of ypdE and the other 

results in an amino acid change (A293E) in RF2. The A293E mutation has not been 

discovered in any previous complementation screens for RF1 deficiency19–22. We then 

determined if the A293E mutation in RF2 is sufficient for rescuing RF1 function in E. coli. 

We replaced the RF2 gene of a temperature sensitive RF1 (tsRF1) strain (MRA8)9 with the 

RF2(A293E) gene from JX33 using established procedures17 to create strain MRA8 A293E. 

However, no difference in growth phenotype was observed between the parental (MRA8) 

and mutant (MRA8 A293E) strains (Supplementary Fig. 2b), indicating that the A293E 

mutation is not able to rescue the RF1 temperature sensitive phenotype in E. coli. As the 

only difference between JX31 and JX33 is the A293E mutation, this mutation is likely 

responsible for the fast growth phenotype of JX33.

Incorporation of tyrosine at multiple UAG sites in JX33

Deletion of RF1 from E. coli presumably changes the UAG codon from the stop signal to a 

blank codon. Introduction of an orthogonal tRNA/synthetase pair to recognize the UAG 

codon in JX3.0 would translate UAG with the amino acid cognate for the synthetase, 

essentially reassigning UAG to a sense codon. In the absence of RF1 competition, 

incorporation efficiency at UAG should be significantly increased, and multiple UAGs 

should be suppressible simultaneously. We tested these hypotheses using the fast-growing 

JX33 strain.

A single All-in-One expression plasmid (pAIO) was constructed to contain an orthogonal 

amber suppressor tRNA, an orthogonal aminoacyl-tRNA synthetase, and an EGFP reporter 

with an N-terminal hexahistidine (His6) tag (Fig. 2a). TAG mutations were introduced into 
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tyrosyl sites in the EGFP gene to create 1-, 2-, 3-, and 6-TAG EGFP reporters. We first 

tested incorporation efficiency at UAG sites using the orthogonal  derived 

from archaebacterium Methanococcus jannaschii5, which inserts tyrosine at UAG codons. 

In JX2.0, this system showed a reduction of EGFP protein yields with each additional UAG, 

and no full-length EGFP in the 6-TAG reporter was detected on Western blot (Fig. 2b). In 

stark contrast, JX33 showed increased levels of protein and no reduction in EGFP protein 

yields across all TAG mutants. For the 1-TAG reporter, the protein expression level in JX33 

increased to 254% of in JX2.0. For EGFP with 6 TAG sites, JX2.0 yielded no protein 

whereas JX33 afforded 6.8 mg/L, which reached 46% of wild-type EGFP without any TAG. 

In-cell fluorescence intensity was measured for each mutant using fluorometry. In JX2.0, 

fluorescence intensity decreased with each additional TAG, while JX33 fluorescence was 

similar among all mutants and much higher than in JX2.0 (Fig. 2c). These results 

demonstrate that JX33 has markedly higher incorporation efficiency for tyrosine at UAG 

sites than the parental JX2.0. In addition, the knockout of RF1 allows multiple UAG sites to 

be efficiently suppressed with tyrosine in JX33, but not in the RF1-containing JX2.0.

Incorporation of Uaa pActF at multiple UAG sites in JX33

To determine if RF1-deletion permits an Uaa to be incorporated at multiple UAG sites, we 

used the orthogonal  pair23 to incorporate Uaa p-acetylphenylalanine 

(pActF) into EGFP. In JX2.0, only the 1-TAG EGFP reporter produced full-length EGFP 

protein; no full-length EGFP was detected in reporters containing 2-, 3-, or 6-TAGs by 

Western blot (Fig. 2d). The evolved LW1RS is less active than wt TyrRS in 

aminoacylation23, consistent with the observation that small amounts of EGFP were 

detected in the 2- and 3-TAG reporters in JX2.0 with  but not with 

. In JX33, EGFP expression with pActF incorporated at a single TAG 

site was doubled compared to in JX2.0. Large amounts of full-length EGFP were also 

produced in the 2- and 3-TAG reporters using the  pair. Notably, protein 

yield did not diminish when the number of UAG codons increased from 1 to 3 

(Supplementary Table 1). Even for EGFP with 6 TAG sites, 0.5 mg/L of pActF containing 

EGFP was purified from JX33.

In-cell fluorescence measurement confirmed that pActF was incorporated into EGFP at 

multiple sites only in JX33 and not in JX2.0 (Fig. 2e and 2f). Green fluorescence was 

detected for 1-TAG reporter only in JX2.0, but for 1-, 2-, and 3-TAG reporters in JX33. A 

decrease in fluorescence intensity was observed when pActF was incorporated at the second 

UAG site but no further decrease at the third UAG site. This observation is consistent with 

previous studies that the change of GFP fluorescence depends on the amino acid and the 

mutation site24,25. The 6-TAG mutant also produced full-length protein in JX33 (Fig. 2d), 

but with a lower yield than other TAG mutants (Supplementary Table 1) and exhibited no 

green fluorescence (Fig. 2e and 2f). The introduction of 6 pActF into EGFP may affect its 

folding and stability, thus reducing protein yields and abolishing fluorescence.

Overexpression of the C-terminus of ribosomal protein L11 (L11C) has been reported to 

enable Uaa incorporation into GFP at 1–3 TAG sites26. For comparison, we incorporated 
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pActF into EGFP at identical 1-TAG and 3-TAG sites with the same pAIO plasmids using 

the L11C method and our approach, respectively (Fig. 2g). After Ni-NTA purification, JX33 

afforded 27 mg/L of EGFP for 1-TAG mutant and 23 mg/L for 3-TAG mutant; while 

coexpression of the L11C in BL21(DE3) afforded 4.6 mg/L for 1-TAG mutant and 1.2 mg/L 

for 3-TAG mutant. JX33 provides 5.9-fold protein for the 1-TAG mutant and 19-fold for the 

3-TAG mutant, showing a marked increase for 1 UAG site and more dramatic increase at 3 

UAG sites. With RF1 intact, the L11C overexpression method still suffers quick reduction 

of incorporation efficiency when more than one UAG codon is introduced. These results 

further demonstrate that RF1 is the primary competitor preventing high incorporation 

efficiency at the UAG codons.

Mass spectrometry (MS) was used to confirm the incorporation of pActF at UAG sites in 

JX33. Electrospray ionization MS (ESI-MS) of intact EGFP protein expressed by the 1-TAG 

reporter in JX33 showed two peaks (27801 and 27897 Da), corresponding to the mature 

pActF-containing EGFP minus the N-terminal methionine (theoretical mass 27799.2 Da) 

and the pActF-containing EGFP with an immature chromophore (theoretical mass 27899.2 

Da), respectively. ESI-MS analysis of EGFP expressed by the 2- and 3-TAG reporters 

showed a single peak at 27898 and 27924 Da, respectively. These peaks lie within ±2 Da of 

the theoretical masses of the 2 and 3 pActF-containing mature EGFP minus the N-terminal 

methionine (27896.3 and 27922.3 Da, respectively). No peaks were observed in any sample 

corresponding to mutant EGFP containing any natural amino acid at the UAG position. 

These results corroborate our Western blot and in-cell fluorescence data showing no 

significant EGFP expression in the absence of pActF (Fig. 2d and 2e). Liquid 

chromatography tandem MS (LC-MS/MS) of chymotrypsin-digested protein samples was 

performed to identify the amino acid incorporated at the UAG sites. The fragment ion 

masses were unambiguously assigned confirming the site-specific incorporation of pActF at 

the UAG site for all 1-, 2-, and 3-TAG EGFP mutants (Fig. 3a). Extracted ion 

chromatograms (EIC) showed that the peptide with pActF incorporated at the UAG site was 

the dominant species, with only trace amounts of Gln-containing peptide (Fig. 3b). Because 

both pActF and Gln have neutral side chains, we expect the two peptides containing pActF 

or Gln at the UAG site to be similar in ionization efficiency27. Therefore, we used the 

peptide intensity calculated from peak area in EIC to determine the incorporation fidelity of 

pActF. Incorporation of pActF in JX33 was found >99.81% at all UAG sites 

(Supplementary Table 2), consistent with the reported incorporation fidelity (>99.8%) of 

pActF at a single UAG site in DH10β23. Taken together, these results demonstrate that the 

JX33 strain enables the efficient and specific incorporation of the Uaa pActF into a protein 

at multiple UAG sites.

Simultaneous suppression of ten UAG sites in JX33

To assess if more UAG sites can be suppressed simultaneously for amino acid incorporation 

in JX33, we synthesized two EGFP reporters: one contains 10 TAGs across various loops 

(10-TAG) and the other has 10 tandem TAGs inserted in one loop (10-TAGtd, Fig. 4a). 

Using the  to incorporate pActF into these mutants, we found that despite 

a substantial increase in truncated products full-length EGFP was still produced (Fig. 4b). 

Expression of 10-TAGtd reporter was lower than the 10-TAG reporter, possibly because 10 
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consecutive pActFs would more negatively affect EGFP folding and stability. To facilitate 

protein yield quantification, the His6 tag was moved to the C-terminus, and proteins were 

purified by Ni-NTA chromatography followed by FPLC. Incorporation of tyrosine using the 

 yielded full-length EGFP for both 10 TAG mutants, with a similar 

decrease in expression of the 10-TAGtd reporter (Fig. 4b). For the 10-TAG mutant, protein 

yields were 0.4 mg/L for tyrosine incorporation and 0.5 mg/L for pActF incorporation. 

Fluorescence was abolished in all 10-TAG mutants regardless of identity of the amino acid 

incorporated. Expression level of the 10-TAG reporter was reduced compared to the 1-, 2-, 

and 3-TAG reporters, presumably due to folding and stability issues caused by the large 

number of mutations. Nonetheless, the ability to produce any level of protein with 10 Uaas 

selectively incorporated is a novel property of JX33, and has never been accomplished 

before in any cells. So long as chosen incorporation sites do not negatively affect protein 

folding and stability, JX33 should permit Uaa incorporation at more than 10 UAG sites.

Multi-site incorporation of various Uaas in JX33

To ascertain if incorporation at multiple UAG sites in JX33 was generally applicable, we 

assayed the expression of the 3-TAG EGFP reporter with various Uaas. EGFP was 

efficiently expressed with Nε-acetyl-L-lysine (ActK)28, p-azido-L-phenylalanine (pAzdF), 

p-carboxymethyl-phenylalanine (pCmF)29, and p-iodo-phenylalanine (pIodF)30 incorporated 

as shown by Western blot (Fig. 5a) and in-cell fluorescence (Fig. 5b). No full-length EGFP 

was detected by Western blot in the absence of the Uaa. We obtained about 1 mg/L of 

purified protein containing ActK, pAzdF, and pIodF at 3 UAG positions (Supplementary 

Table 1). JX33 was compatible for use with orthogonal tRNA/aaRS pairs derived from the 

M. barkeri tRNAPyl/PylRS (for ActK) and the M. jannaschii tRNATyr/TyrRS (for other 3 

Uaas).

Multi-site incorporation of Uaa into various proteins

To demonstrate the use of JX33 in expressing other proteins, we expressed human histone 

H3a in JX33 with ActK and pActF incorporated at 1, 2, 3, and 4 UAG codons placed at 

known acetylation sites (Fig. 5c). In JX2.0, no expression of H3a protein was detected when 

more than 1 UAG sites were introduced. In JX33, all H3a mutants were successfully 

expressed in full length in the presence of pActF or ActK (Fig. 5d). Protein yields were 

sufficient for most in vitro studies.

We also incorporated pActF into glutathione S-transferase (GST) at 1, 2, and 3 UAG sites in 

JX33 (Fig. 5e). The protein yields were 67 (±11), 57 (±12), and 68 (±9) mg/L for 1-, 2-, and 

3-TAG mutants, respectively. Similar to EGFP, the GST expression yield did not decrease 

when the number of UAG sites increased from 1 to 3. Taken together, these results indicate 

that JX33 can encode Uaas at multiple UAG sites into different proteins.

Suppression of endogenous UAG codons is RF1 dependent

Over 300 endogenous genes end with TAG in the E. coli genome. What would happen to 

these legitimate TAG sites upon the introduction of an orthogonal amber suppressor tRNA/

synthetase pair and upon the removal of RF1? We divided these genes into two categories 
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defined by their downstream context (Fig. 6a). The majority of the TAG-ending genes have 

a secondary in-frame stop codon (UAA or UGA) downstream before a transcriptional 

terminator, as represented by sufA. To facilitate detection, we scarlessly appended a FLAG-

tag to the N-terminus of the sufA gene in the genomes of JX2.0 and JX33. Surprisingly, 

Western analysis showed no detectable extension of SufA protein in JX2.0 harboring pAIO-

TyrRS (Fig. 6b), suggesting that suppression of its UAG codon is inefficient in the presence 

of RF1. In contrast, SufA protein purified from JX33 harboring pAIO-TyrRS showed an 

increase in size corresponding to the expected molecular weight increase for extension to the 

next stop codon (Fig. 6b); LC-MS/MS analysis of this SufA protein identified numerous 

extended peptide fragments (Supplementary Table 3), confirming that translation extended 

to the next stop codon and that the UAG codon was suppressed with Tyr.

The second category of genes has a transcriptional terminator between the UAG and the 

next in frame UAA or UGA, as exemplified by yfiA (Fig. 6a). The terminator will generate 

the 3′-end of the mRNA at the distal poly-U portion of the terminator hairpin31 (Fig. 6a). 

We appended a scarless N-terminal FLAG tag to the yfiA gene in the genomes of JX2.0 and 

JX33. In JX2.0 harboring pAIO-TyrRS, YfiA expression showed a single band on Western 

without extension to the next stop codon, suggesting that its UAG codon was also 

inefficiently suppressed. In JX33 harboring pAIO-TyrRS, however, YfiA expression 

showed three bands on Western as well as a dramatic protein reduction compared to JX2.0 

(Fig. 6c). This difference can be explained by efficient UAG suppression in JX33. 

Suppression of the UAG in yfiA causes the ribosome to stall at the mRNA end as defined by 

the terminator. tmRNA recognizes stalled ribosomes and induces degradation of the 

extended polypeptide12. In JX2.0, RF1 allows stoppage at the UAG to produce wild-type 

YfiA. Therefore, JX33 had much less YfiA protein than JX2.0. To verify this, we analyzed 

YfiA purified from JX33 using LC-MS/MS (Supplementary Table 4). Both Western blot 

and MS did not reveal peptides extended to the next in-frame UGA stop codon, consistent 

with that the mRNA is ended at the terminator hairpin without the UGA codon. No proteins 

extended to the end of mRNA were detected either, suggesting that they were efficiently 

degraded by the tmRNA12. The three bands resolved in Fig. 6c correspond to extensions of 

0, 2, or 6 amino acids away from the UAG site, respectively. Terminator hairpin structure 

and ribosome stalling at the mRNA end can result in early release of ribosomes, yielding 

small amount of proteins containing these peptides, which are not tagged by tmRNA for 

degradation. Our results corroborate a previous report on tmRNA-induced degradation of 

non-stop mRNA from plasmid-borne exogenous genes32, except that we studied endogenous 

genes. In all extended YfiA proteins expressed in JX33, the TAG site was incorporated with 

tyrosine by the orthogonal .

In short, legitimate UAG codons of endogenous genes were not efficiently suppressed in 

RF1-containing JX2.0 but were efficiently suppressed in the RF1-knockout JX33. This 

difference was also reflected on cell growth. When the orthogonal  was 

expressed to incorporate Tyr at UAG sites, JX2.0 cells showed slight decrease in growth rate 

(doubling time 27.1 vs. 30.7 min) whereas the growth of JX33 was significantly retarded 

(doubling time 27.5 vs. 36.6 min) (Supplementary Fig. 1).

Johnson et al. Page 8

Nat Chem Biol. Author manuscript; available in PMC 2012 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

JX33 is a novel RF1 knockout strain with unique properties for Uaa incorporation. 

Generated 3.5 years ago, JX33 has been stable and autonomous without major growth or 

deleterious defects. Without RF1 competition, JX33 increases the amino acid incorporation 

efficiency at a single TAG site more than 100% than the parental RF1-containing JX2.0. 

More important, JX33 enables amino acids to be incorporated at multiple TAG sites without 

decreasing efficiency. This ability has not been achieved in any cells before, and is an 

essential trait for UAG being completely reassigned as a sense codon.

Although RF1 competition no longer exists in JX33, the efficiency of UAG functioning as a 

sense codon depends on multiple factors. Orthogonal synthetases evolved for Uaas are often 

less active than wild type synthetases5,6, and thus may generate less aminoacylated 

orthogonal tRNAs. In addition, the binding of natural aminoacyl-tRNAs to elongation factor 

Tu and to ribosome has been evolutionary tuned for optimal decoding33,34, yet the Uaa 

loaded orthogonal tRNA has not been fully optimized toward either. Moreover, many 

tRNAs are subjected to post-transcriptional modifications for specific and efficient decoding 

of cognate codons35. The orthogonal tRNA, with its anticodon artificially mutated to CUA, 

has not evolutionary optimized for UAG decoding. All these factors could make the UAG 

codon less efficient than canonical sense codons in encoding amino acids. For these reasons, 

the four UAG codons placed closely in the N-terminus of the H3a may behave as a cluster of 

“rare” codons. In E. coli, a rare-codon cluster lowers protein expression level36, which may 

account for the drop-off in yields with additional UAG observed for H3a expression. These 

non-optimal factors would also explain why Uaa-containing mutant proteins have not yet 

reached the same expression level as the wt protein.

A long-standing question for genetically encoding Uaas with a stop codon is how 

endogenous genes ending with the stop codon are affected. By studying two representative 

endogenous genes, we found that an amber suppressor tRNA/synthetase did not efficiently 

incorporate its cognate amino acid at the legitimate TAG site in the presence of RF1. This 

surprising finding suggests that an unknown mechanism may prevent these legitimate stop 

codons from being suppressed. The inefficient suppression of endogenous TAGs in JX2.0 

explains why no significant adverse effect to E. coli is observed when orthogonal amber 

suppressor tRNA/synthetase pairs are used to incorporate Uaas. However, we discovered 

that upon RF1 removal in JX33 the TAG codon of endogenous genes was efficiently 

suppressed by the tRNA/synthetase pair. Translation then extended to the next in-frame 

different stop codon when there is no transcription terminator before the next stop codon; 

when there is a transcription terminator, translation was terminated between the TAG and 

the mRNA end defined by the terminator hairpin. Endogenous UAG suppression in JX33 

also led to a slower growth phenotype. Studying UAG suppression in more endogenous 

genes would confirm whether the above observations are general.

RF1 is reported to be essential for E. coli, but our results argue against this paradigm. We 

showed that RF1 can be knocked out when wild type RF2 expression is not auto-regulated. 

The resultant JX31 strain has no compensatory mutations anywhere in the genome. 

Although JX31 has a slower growth rate, it is an independent and stable strain with RF1 
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deleted, which suggests that RF1 is nonessential for E. coli. Interestingly, the A293E 

mutation of RF2 found in JX33 restores the growth rate of JX33 to the same level of the 

parental JX2.0. However, the RF2(A293E) is unable to substitute RF1 in terminating UAG 

codons because it could not rescue the RF1 temperature sensitive phenotype in MRA8 cells. 

We note that non-stop incorporation of pActF into EGFP was also observed in JX31, which 

has no RF2(A293E) mutation; the protein yields for 1-, 2- and 3-TAG EGFP mutants from 

JX31 were 5.7 (±0.4), 6.1 (±0.5) and 7.0 (±0.5) mg/L, respectively. This result suggests that 

the RF2(A293E) mutation is not required for efficient incorporation of Uaa at multiple TAG 

sites. Nonetheless, how A293E mutation contributes to the fast growth of JX33 warrants 

further studies.

When this paper was being prepared, it was reported that RF1 can be knocked out after 

supplying 7 essential genes and a suppressor tRNA on a plasmid37. The dependence on 

simultaneous change of many essential genes is consistent with the previous conclusion that 

RF1 is essential. A major difference of our work is that the knockout of RF1 is independent 

of supplying any other genes or a suppressor tRNA. More important, the generation of JX31 

suggests that RF1 is nonessential. To our best knowledge, this work represents the first 

unconditional knockout of RF1 and the generation of an autonomous stable RF1 deletion 

strain.

Selective incorporation of Uaas at multiple sites will open up new possibilities in protein 

research and laboratory evolution. For instance, multisite incorporation of posttranslational 

modification mimics (e.g., ActK and pCmF) will be valuable for studying epigenetics and 

signal transductions. JX33 may enable laboratory evolution of bacteria in search for new 

protein properties or organismal functions by exploiting the novel properties of Uaas. Such 

experiments were not feasible or effective before, as the Uaa is incorporated at a single site 

with low efficiency; novel functions may require an Uaa at multiple positions 

simultaneously. Moreover, the presence of RF1 generates truncated protein products, which 

may interfere with selection and evolution. JX33 resolves all these problems and should 

prove valuable in harnessing the expanding Uaa repertoire for directed evolution.

RF1 knockout strains can also be valuable for investigating the evolution of the genetic 

code. Organisms in different taxa have been found to reassign stop codons to sense 

codons1,2, yet they represent the reassignment endpoint and provide limited information on 

the reassignment process and organismal adaptation. This study demonstrates the feasibility 

of reassigning the UAG stop codon to a sense codon in the extant organism E. coli, 

providing empirical evidence in support of such codon reassignment events. E. coli is 

tolerant of codon reassignment and unexpectedly flexible in adapting to a new code, 

suggesting that the code can evolve in modern organisms. JX3.0 affords a previously 

unavailable model system for experimentally studying the physiological change and 

adaptation of a living organism to codon reassignment on a laboratory time scale.
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METHODS

Strain construction

All strains in this study were created using the λ-red recombinase system17,18, and are 

described in detail in the Supplementary Methods.

Growth assay

A colony was picked for each E. coli strain and grown overnight with appropriate antibiotic. 

Cells were normalized to an OD600 of 1 and diluted 1:50 in fresh media without antibiotic. 

OD600 was then measured every 20 minutes for 10 hours.

Plasmid construction

All plasmids were assembled by standard cloning methods and confirmed by DNA 

sequencing. pAIO plasmids containing EGFP gene with different TAG codons were 

synthesized as the following: EGFP cassettes with an N-terminal His6 tag, containing 

TAG’s at various positions were created using overlapping PCRs. The following sites were 

used: Y182 for 1-TAG; Y39 and Y182 for 2-TAG; Y39, Y182 and Y151 for 3-TAG; Y39, 

Y74, Y143, Y151, Y182 and Y200 for 6-TAG; Y39, K101, D102, E132, D133, K140, 

E172, D173, D190 and V193 for 10-TAG; a 10 tandem TAG codons in place of E172 and 

D173 for 10-TAGtd. These cassettes were first cloned into pBP-Blunt (Biopioneer, San 

Diego, CA), and then digested and ligated into pBK-AIO vectors containing the orthogonal 

 and the M. jannaschii TyrRS5 or the LW1RS23 using Spe I and Bgl II.

Human histone H3a was expressed using two plasmids: pTak-tRNA-H3 and pBKt-ActKRS. 

The pTak plasmid contained the M. barkeri tRNAPyl and the human histone H3a gene with a 

His6 tag appended at the C-terminus. tRNAPyl was driven by the lpp promoter and 

terminated with the rrnC terminator. The gene for human histone H3a was codon-optimized 

using Gene Design38, and synthesized by overlapping PCRs using multiple 40 bp primers. 

The optimized gene was cloned into pTak using Spe I and Bgl II sites, and was driven by the 

T5 promoter. Various mutant forms of histone H3a were then synthesized and also cloned 

into the pTak plasmid. The following histone H3a mutants were cloned: 1TAG – K9; 2TAG, 

K9 and K14; 3TAG – K9, K14, and K18; 4TAG – K9, K14, K18, and K23. The second 

plasmid pBKt-ActKRS expresses the ActK-specific synthetase. Six mutations (D76G, 

L266V, L270I, Y271F, L273A, and C313F) were introduced into the wild-type M. barkeri 

PylRS using overlapping PCR to generate the ActKRS. This cassette was digested with Nde 

I and Pst I and ligated into the precut pBK-JYRS vector 5. The GlnRS promoter originally in 

pBK-JYRS was replaced with the trc promoter from pTrc (Invitrogen, Carlsbad, CA) to 

drive the expression of ActKRS.

GST was expressed with plasmids pVL-GST and pBK-LW1RS23. TAG codons were 

introduced at residue Y58 (1-TAG), Y58 and Y111 (2-TAG), Y58, Y111 and Y164 (3-

TAG) of the Schistosoma japonicum GST gene. TAG-containing GST genes were cloned 

into pLEIZ23 using Spe I and Bgl II to afford pVL-GST. pVL-GST encodes the orthogonal 

 under the control of the lpp promoter and the rrnC terminator, and the GST(TAG) 

gene driven by the T5 promoter with a His6 tag appended at the C-terminus.
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Western analyses

E. coli cells expressing EGFP or histone H3a were lysed, and proteins were separated on 

12% or 15% SDS polyacrylamide gel, respectively. After transfer, EGFP and histone H3a 

were detected using the HRP-conjugate penta-His antibody (Qiagen, Valencia, CA). Protein 

purification of YfiA and SufA was performed using established procedures39,40 with minor 

modifications. Purified YfiA and SufA were run on 15% or 20% SDS polyacrylamide gel, 

and detected by using a monoclonal FLAG M2 antibody (Sigma, St. Louis, MO). Blots were 

developed using the pico chemiluminescence kit (Thermo Scientific, Rockford, IL) 

according to manufacturer’s specifications. See Supplementary Methods for details.

In-cell fluorescence assay

In-cell fluorescence intensity was determined using a FluoroLog-3 (Horiba Jobin Yvon). E. 

coli colonies were picked and grown 16 hours with or without Uaas. Cells were washed two 

times in PBS buffer, and diluted in PBS to an OD600 of 0.1. The emission spectrum of EGFP 

was measured using an excitation wavelength of 488 nm scanning emission from 503 to 560 

nm. Fluorescence intensity of each sample was compared using the intensity at the maximal 

emission at 511 nm. Slit widths and integration times remained constant between all 

readings.

Protein purification

EGFP extracted from E. coli cells was first purified by Ni-NTA affinity chromatography 

(see Supplementary Methods), and further purified using 1 mL Resource Q anion exchange 

column on a UPC-900 FPLC (GE healthcare, Piscataway, NJ). The column was equilibrated 

with a low salt buffer (20 mM Tris·HCl, pH 8.0), and proteins were eluted with a linear 

gradient of 0 – 0.5 M NaCl. Peak fractions were analyzed by SDS-PAGE and pooled for 

further analysis. Purification of human histone H3a was performed using established 

procedures41 and following the protocol of using Ni-NTA resin (Qiagen) under denaturing 

conditions (see Supplementary Methods). All protein concentrations and total yields were 

determined using the Bio-Rad protein assay kit (Hercules, CA) according to manufacturer’s 

specifications.

Mass spectrometry

Intact proteins were analyzed by ESI-MS using a LTQ Velos mass spectrometer (Thermo 

Scientific, Rockford, IL). Automated 2D nanoflow LC-MS/MS analysis was performed 

using LTQ tandem mass spectrometer (Thermo Electron Corporation, San Jose, CA). See 

Supplementary Methods for details.

Genomic sequencing of E. coli strains

Genomic DNA from JX2.0, JX31 and JX33 was harvested, purified, and prepared into 

libraries. These genomic DNA libraries were sequenced using the Illumina Genome 

Analyzer II (Illumina, San Diego, CA) as per manufacturer’s instructions. Sequence 

alignments and SNP analysis were performed using the SHORE package42 according to the 

documentation provided with the software. See Supplementary Methods for details.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. RF1 can be knocked out from E. coli after RF2 is fixed
(a) Features of the RF2-encoding prfB gene in K-12 E. coli strains: an in-frame UGA stop 

codon (magenta) for autoregulation of RF2 expression and the Ala246Thr mutation (green) 

impairing RF2’s release activity for the UAA codon. In prfBf, the UGA regulation was 

removed and residue 246 reverted to Ala. A Shine-Dalgarno like sequence (blue) in prfB 

was silently mutated to a Sac II site (blue) in prfBf to facilitate the screening of prfBf knock-

in. (b) Generation of the JX2.0 strain. The prfB gene in MDS42 was first replaced with prfBf 

followed by a Cm resistant cat cassette. The cat cassette was subsequently removed by 

pACBSR (see Supplementary Methods). (c) Generation of the JX3.0 strain. The RF1-

encoding prfA gene was successfully knocked out with a cat cassette in JX2.0 to afford 

JX3.0. (d) Illustration of main features of the three strains, MDS42, JX2.0 and JX3.0.
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Figure 2. RF1 knockout enables incorporation of natural or unnatural amino acids at multiple 
UAG sites in JX33
(a) Features of the All-in-One plasmid and structures of Tyr and pActF. (b) Western 

analysis of EGFP expression when UAG codons were decoded as Tyr by pAIO-TyrRS. The 

same number of cells were used for each sample, and the blot was probed with a penta-His 

antibody. (c) In-cell fluorescence assay of EGFP intensity when UAG codons were decoded 

as Tyr by pAIO-TyrRS. The same number of cells was used for each sample. Measurement 

was performed on 3 independent batches of cells and error bars represent s.e.m.. (d) Western 

analysis of EGFP expression when UAG codons were decoded as the Uaa pActF by pAIO-

LW1RS. Conditions are the same in (b). For each sample, a duplicate of cultures were 

grown in the presence or absence of pActF in the growth media. (e) In-cell fluorescence 

assay of EGFP intensity when UAG codons were decoded as pActF by pAIO-LW1RS. 

Measurements were performed as in (c), n = 3, error bars represent s.e.m. (f) Fluorescence 

images of cells when UAG was decoded as Tyr or pActF. (g) SDS-PAGE analysis of EGFP 

proteins with pActF incorporated in JX33 or in BL21(DE3) coexpressing plasmid pET-

L11C26. The same pAIO-LW1RS plasmids containing 1- or 3-TAG EGFP mutant gene 

were used in both cells. EGFP was purified with Ni-NTA chromatography. Loading was 

normalized to the same number of cells, and the gel was stained with Coomassie blue.
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Figure 3. Mass spectrometric analyses of EGFP expressed in JX33 show that pActF was 
selectively incorporated at multiple UAG sites with high fidelity
(a) MS/MS spectrum of EGFP peptide ADHUQQNTPIGDGPVLLPDNHY. U represents 

the UAG codon at residue 182. Star (*) in the spectrum denotes peptide fragments 

containing pActF, which unambiguously indicate that pActF was incorporated at the UAG 

site. (b) Extracted ion chromatograms (EIC) of the above peptide containing pActF (top) or 

Gln (bottom) at the UAG 182 position. The peak areas are indicated.
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Figure 4. Ten UAG sites are simultaneously suppressed with natural or unnatural amino acids in 
JX33
(a) GFP structure (PDB 1GFL) illustrating the sites where 10 UAG codons were introduced. 

(b) Western blot analysis of the expression of 10-TAG and 10-TAGtd EGFP in JX33. The 

UAG codons were decoded as Tyr by  or as pActF by . 

Cell lysates from same number of cells were separated by SDS-PAGE and probe with a 

penta-His antibody.
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Figure 5. JX33 enables multisite incorporation of various Uaas and in different proteins
(a) Western analysis of the expression of 3-TAG EGFP reporter in JX33 with the UAG 

codon decoded as different Uaas. The same number of cells was used for each sample. After 

cell lysis, proteins were separated on SDS-PAGE and probed with a penta-His antibody. 

Densitometric analysis of Western blot bands and purified protein yields (Supplementary 

Table 1) were consistent on incorporation efficiency. (b) In-cell fluorescence assay of these 

mutant EGFP proteins containing different Uaas at 3 UAG sites. Measurements were 

performed using 3 independent batches of cells. Error bars represent s.e.m.. (c) The N-

terminal sequence of human histone H3a and UAG codons introduced at the known 

acetylation sites. (d) Western analysis showing that full-length histone H3a was expressed 

for 1-, 2-, 3-, and 4-TAG H3a constructs in the presence of pActF or ActK in JX33 cells. For 

pActF, the sample loading ratio was 1:1:3:3; for ActK, the sample loading ratio was 1:3:7:9. 

Yields of H3a proteins were calculated after purification and shown at the bottom. (e) SDS-

PAGE analysis of GST proteins expressed in JX33 with pActF incorporated at 1, 2, and 3 

UAG sites. GST was purified with Ni-NTA chromatography, separated on the gel and 

stained with Coomassie blue. Loading was normalized to the same number of cells. 

Measurements of GST yields were performed on 3 independent batches of cells and errors 

represent s.e.m..
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Figure 6. Legitimate UAG codons of endogenous genes are suppressed efficiently after RF1 
knockout, and protein extension beyond the UAG codon is dependent on mRNA context
(a) Two categories of endogenous genes ending in TAG: sufA representing those with an in-

frame, non-UAG stop codon downstream before a transcription terminator (shown as a 

hairpin); yfiA representing those with a terminator before the next in-frame, non-UAG stop 

codon. A FLAG-tag (DYKDDDDK) was inserted scarlessly to the N-terminus of these two 

proteins in the genome to facilitate protein detection. Red arrow indicates the end of the 

mRNA as defined by the terminator. (b) Western analysis of SufA purified from cells. 

Extension of SufA to its next stop codon occurred only in lanes 4 and 6; all other lanes 

showed a band corresponding to the wild type SufA. Loading was normalized to the same 

number of cells in lane 1–4. Lane 5 and 6 were duplicates of lane 2 and 4, respectively, with 

increasing amounts. An anti-FLAG antibody was used for detection. (c) Western analysis of 

YfiA purified from cells. Loading in lane 1, 2, 3 and 5 were normalized to the same number 

of cells. Loading in lane 4 is 1/50 of lane 3, which showed it is a single band. Lane 6 is a re-

run of lane 5 sample in a higher percentage gel (20% vs. 15%) for longer time to achieve 

better separation. Lane 5 and 6 showed 3 predominant bands, while other samples showed 

only one band.
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