Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heterogeneity in the chemistry, structure and function of plant cell walls

Abstract

Higher plants resist the forces of gravity and powerful lateral forces through the cumulative strength of the walls that surround individual cells. These walls consist mainly of cellulose, noncellulosic polysaccharides and lignin, in proportions that depend upon the specific functions of the cell and its stage of development. Spatially and temporally controlled heterogeneity in the physicochemical properties of wall polysaccharides is observed at the tissue and individual cell levels, and emerging in situ technologies are providing evidence that this heterogeneity also occurs across a single cell wall. We consider the origins of cell wall heterogeneity and identify contributing factors that are inherent in the molecular mechanisms of polysaccharide biosynthesis and are crucial for the changing biological functions of the wall during growth and development. We propose several key questions to be addressed in cell wall biology, together with an alternative two-phase model for the assembly of noncellulosic polysaccharides in plants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterogeneity in cell shape in a leaf from Nicotiana benthamiana.
Figure 2: Heterogeneity in structures of wall polysaccharides in plants.
Figure 3: Heterogeneity in the compositions of cell walls.
Figure 4: The effects of (1,3;1,4)-β-glucan fine structure on aggregation and solubility.
Figure 5: Fine structural analysis of the (1,3;1,4)-β-glucan from barley.
Figure 6: An alternative, two-phase mechanism for noncellulosic polysaccharide assembly.

Katherine Vicari

Similar content being viewed by others

References

  1. Günl, M., Gille, S. & Pauly, M. OLIgo mass profiling (OLIMP) of extracellular polysaccharides. J. Vis. Exp. 40, published online, doi:10.3791/2046 (20 June 2010).

  2. Moller, I. et al. High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconj. J. 25, 37–48 (2008).

    Article  CAS  Google Scholar 

  3. Pattathil, S. et al. A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol. 153, 514–525 (2010).

    Article  CAS  Google Scholar 

  4. Round, A.N., Rigby, N.M., MacDougall, A.J. & Morris, V.J. A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy. Carbohydr. Res. 345, 487–497 (2010).

    Article  CAS  Google Scholar 

  5. Gierlinger, N. et al. Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging. J. Exp. Bot. 61, 587–595 (2010).

    Article  CAS  Google Scholar 

  6. Paredez, A.R., Somerville, C.R. & Ehrhardt, D.W. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491–1495 (2006).

    Article  CAS  Google Scholar 

  7. Cosgrove, D.J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861 (2005).

    Article  CAS  Google Scholar 

  8. Somerville, C. et al. Toward a systems approach to understanding plant cell walls. Science 306, 2206–2211 (2004).

    Article  CAS  Google Scholar 

  9. Ralph, J. et al. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem. Rev. 3, 29–60 (2004).

    Article  CAS  Google Scholar 

  10. Aouar, L., Chebli, Y. & Geitmann, A. Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes. Sex. Plant Reprod. 23, 15–27 (2010).

    Article  Google Scholar 

  11. Morrall, P. & Briggs, D. Changes in cell wall polysaccharides of germinating barley grains. Phytochemistry 17, 1495–1502 (1978).

    Article  CAS  Google Scholar 

  12. Roulin, S., Buchala, A.J. & Fincher, G.B. Induction of (1–3,1–4)-β-D-glucan hydrolases in leaves of dark-incubated barley seedlings. Planta 215, 51–59 (2002).

    Article  CAS  Google Scholar 

  13. Cantu, D., Vicente, A.R., Labavitch, J.M., Bennett, A.B. & Powell, A.L.T. Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends Plant Sci. 13, 610–617 (2008).

    Article  CAS  Google Scholar 

  14. Lionetti, V. et al. Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol. 143, 1871–1880 (2007).

    Article  CAS  Google Scholar 

  15. Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11, 266–277 (2008).

    Article  CAS  Google Scholar 

  16. Carpita, N.C. & Gibeaut, D.M. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1–30 (1993).

    Article  CAS  Google Scholar 

  17. Reid, J.S.G., Edwards, M., Gidley, M.J. & Clark, A.H. Enzyme specificity in galactomannan biosynthesis. Planta 195, 489–495 (1995).

    CAS  Google Scholar 

  18. Knox, J.P. & Kwang, W.J. The use of antibodies to study the architecture and developmental regulation of plant cell walls. in International Review of Cytology 79–120 (Academic Press, 1997).

  19. Gierlinger, N. & Schwanninger, M. Chemical imaging of poplar wood cell walls by confocal raman microscopy. Plant Physiol. 140, 1246–1254 (2006).

    Article  CAS  Google Scholar 

  20. Jones, L., Milne, J.L., Ashford, D., McCann, M.C. & McQueen-Mason, S.J. A conserved functional role of pectic polymers in stomatal guard cells from a range of plant species. Planta 221, 255–264 (2005).

    Article  CAS  Google Scholar 

  21. Verhertbruggen, Y. et al. Developmental complexity of arabinan polysaccharides and their processing in plant cell walls. Plant J. 59, 413–425 (2009).

    Article  CAS  Google Scholar 

  22. Doblin, M.S., Pettolino, F. & Bacic, A. Plant cell walls: the skeleton of the plant world. Funct. Plant Biol. 37, 357–381 (2010).

    Article  CAS  Google Scholar 

  23. Hayashi, T. Xyloglucans in the primary cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 139–168 (1989).

    Article  CAS  Google Scholar 

  24. Viëtor, R.J. et al. Structures of small oligomers liberated from barley arabinoxylans by endoxylanase from Aspergillus awamori. Carbohydr. Res. 254, 245–255 (1994).

    Article  Google Scholar 

  25. Fincher, G.B. Exploring the evolution of (1,3;1,4)-β-D-glucans in plant cell walls: comparative genomics can help! Curr. Opin. Plant Biol. 12, 140–147 (2009).

    Article  CAS  Google Scholar 

  26. Woodward, J.R., Fincher, G.B. & Stone, B. Water-soluble (1,3;1,4)-β-D-glucans from barley (Hordeum vulgare) endosperm. II. Fine structure. Carbohydr. Polym. 3, 207–225 (1983).

    Article  CAS  Google Scholar 

  27. Woodward, J.R., Phillips, D.R. & Fincher, G.B. Water-soluble (1,3;1,4)-β-glucans from barley (Hordeum vulgare) endosperm. I. Physicochemical properties. Carbohydr. Polym. 3, 143–156 (1983).

    Article  CAS  Google Scholar 

  28. York, W.S. & O'Neill, M.A. Biochemical control of xylan biosynthesis—which end is up? Curr. Opin. Plant Biol. 11, 258–265 (2008).

    Article  CAS  Google Scholar 

  29. Pear, J.R., Kawagoe, Y., Schreckengost, W.E., Delmer, D.P. & Stalker, D.M. Higher plants contain homologs of the bacterial Cela genes encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. USA 93, 12637–12642 (1996).

    Article  CAS  Google Scholar 

  30. Dhugga, K.S. et al. Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Science 303, 363–366 (2004).

    Article  CAS  Google Scholar 

  31. Liepman, A.H., Wilkerson, C.G. & Keegstra, K. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc. Natl. Acad. Sci. USA 102, 2221–2226 (2005).

    Article  CAS  Google Scholar 

  32. Cocuron, J.C. et al. A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase. Proc. Natl. Acad. Sci. USA 104, 8550–8555 (2007).

    Article  CAS  Google Scholar 

  33. Hazen, S.P., Scott-Craig, J.S. & Walton, J.D. Cellulose synthase-like genes of rice. Plant Physiol. 128, 336–340 (2002).

    Article  CAS  Google Scholar 

  34. Richmond, T.A. & Somerville, C. The cellulose synthase superfamily. Plant Physiol. 124, 495–498 (2000).

    Article  CAS  Google Scholar 

  35. Sterling, J.D. et al. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc. Natl. Acad. Sci. USA 103, 5236–5241 (2006).

    Article  CAS  Google Scholar 

  36. Mitchell, R.A.C., Dupree, P. & Shewry, P.R. A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol. 144, 43–53 (2007).

    Article  CAS  Google Scholar 

  37. Zhong, R. et al. Arabidopsis Fragile Fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17, 3390–3408 (2005).

    Article  CAS  Google Scholar 

  38. Zabotina, O.A. et al. Arabidopsis XXT5 gene encodes a putative alpha-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis. Plant J. 56, 101–115 (2008).

    Article  CAS  Google Scholar 

  39. Edwards, M.E. et al. Molecular characterisation of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis. Plant J. 19, 691–697 (1999).

    Article  CAS  Google Scholar 

  40. Peña, M.J. et al. Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19, 549–563 (2007).

    Article  Google Scholar 

  41. Edwards, M.E. et al. The seeds of Lotus japonicus lines transformed with sense, antisense, and sense/antisense galactomannan galactosyltransferase constructs have structurally altered galactomannans in their endosperm cell walls. Plant Physiol. 134, 1153–1162 (2004).

    Article  CAS  Google Scholar 

  42. Reid, J.S.G., Edwards, M.E., Dickson, C.A., Scott, C. & Gidley, M.J. Tobacco transgenic lines that express fenugreek galactomannan galactosyltransferase constitutively have structurally altered galactomannans in their seed endosperm cell walls. Plant Physiol. 131, 1487–1495 (2003).

    Article  CAS  Google Scholar 

  43. Caffall, K.H. & Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344, 1879–1900 (2009).

    Article  CAS  Google Scholar 

  44. Ridley, B.L., O'Neill, M.A. & Mohnen, D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57, 929–967 (2001).

    Article  CAS  Google Scholar 

  45. Scheller, H.V., Jensen, J.K., Sørensen, S.O., Harholt, J. & Geshi, N. Biosynthesis of pectin. Physiol. Plant. 129, 283–295 (2007).

    Article  CAS  Google Scholar 

  46. Williams, M.A.K., Cucheval, A., Nasseri, A.T. & Ralet, M.-C. Extracting intramolecular sequence information from intermolecular distributions: highly nonrandom methylester substitution patterns in Homogalacturonans generated by pectinmethylesterase. Biomacromolecules 11, 1667–1675 (2010).

    Article  CAS  Google Scholar 

  47. Willats, W.G.T., McCartney, L., Mackie, W. & Knox, J.P. Pectin: cell biology and prospects for functional analysis. Plant Mol. Biol. 47, 9–27 (2001).

    Article  CAS  Google Scholar 

  48. Fincher, G.B. & Stone, B.A. Chemistry of nonstarch polysaccharides. in Encyclopedia of Grain Science (eds. Wrigley, C., Corke, H. & Walker, C.E.) 206–223 (Elsevier, Oxford, UK, 2004).

  49. Scheller, H.V. & Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289 (2010).

    Article  CAS  Google Scholar 

  50. Hervé, C., Rogowski, A., Gilbert, H.J. & Knox, J.P. Enzymatic treatments reveal differential capacities for xylan recognition and degradation in primary and secondary plant cell walls. Plant J. 58, 413–422 (2009).

    Article  Google Scholar 

  51. Saulnier, L. et al. Wheat endosperm cell walls: spatial heterogeneity of polysaccharide structure and composition using micro-scale enzymatic fingerprinting and FT-IR microspectroscopy. J. Cereal Sci. 50, 312–317 (2009).

    Article  CAS  Google Scholar 

  52. Whitney, S.E.C. et al. Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose. Am. J. Bot. 93, 1402–1414 (2006).

    Article  CAS  Google Scholar 

  53. Hoffman, M. et al. Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohydr. Res. 340, 1826–1840 (2005).

    Article  CAS  Google Scholar 

  54. Obel, N. et al. Microanalysis of plant cell wall polysaccharides. Mol. Plant 2, 922–932 (2009).

    Article  CAS  Google Scholar 

  55. Tiné, M.A.S., Silva, C.O., Lima, D.U.d., Carpita, N.C. & Buckeridge, M.S. Fine structure of a mixed-oligomer storage xyloglucan from seeds of Hymenaea courbaril. Carbohydr. Polym. 66, 444–454 (2006).

    Article  Google Scholar 

  56. Marcus, S.E. et al. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol. 8, 60–72 (2008).

    Article  Google Scholar 

  57. Buliga, G.S., Brant, D. & Fincher, G. The sequence statistics and solution configuration of barley (1,3;1,4)-beta-D-glucan. Carbohydr. Res. 157, 139–156 (1986).

    Article  CAS  Google Scholar 

  58. Burton, R.A. & Fincher, G.B. (1,3;1,4)-β-D-glucans in cell walls of the Poaceae, lower plants, and fungi: a tale of two linkages. Mol. Plant 2, 873–882 (2009).

    Article  CAS  Google Scholar 

  59. Lazaridou, A. & Biliaderis, C.G. Molecular aspects of cereal beta-glucan functionality: Physical properties, technological applications and physiological effects. J. Cereal Sci. 46, 101–118 (2007).

    Article  CAS  Google Scholar 

  60. Staudte, R., Woodward, J., Fincher, G. & Stone, B. Water-soluble (1,3;1,4)-β-D-glucans in barley (Hordeum vulgare) endosperm. III. Distribution of celltriosyl and cellotetraosyl residues. Carbohydr. Polym. 3, 299–312 (1983).

    Article  CAS  Google Scholar 

  61. Harris, P. & Fincher, G.B. Distribution, fine structure and function of (1,3;1,4)-β-glucans in the grasses and other taxa. in Chemistry, Biochemistry, and Biology of 1–3 Beta Glucans and Related Polysaccharides (eds. Bacic, A., Fincher, G.B. & Stone, B.A.) 621–654 (Elsevier Academic Press, Burlington, Massachusetts, USA, 2009).

  62. Buckeridge, M.S., Vergara, C.E. & Carpita, N.C. Insight into multi-site mechanisms of glycosyl transfer in (1,4)-β-D-glycans provided by the cereal mixed-linkage (1,3;1,4)-β-D-glucan synthase. Phytochemistry 57, 1045–1053 (2001).

    Article  CAS  Google Scholar 

  63. Doblin, M.S. et al. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-β-D-glucan synthesis in transgenic Arabidopsis. Proc. Natl. Acad. Sci. USA 106, 5996–6001 (2009).

    Article  CAS  Google Scholar 

  64. Burton, R.A. et al. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-D-glucans. Science 311, 1940–1942 (2006).

    Article  CAS  Google Scholar 

  65. Wilson, S.M. et al. Temporal and spatial appearance of wall polysaccharides during cellularization of barley (Hordeum vulgare) endosperm. Planta 224, 655–667 (2006).

    Article  CAS  Google Scholar 

  66. Carpita, N.C. & McCann, M.C. The maize mixed-linkage (1,3;1,4)-β-D-glucan polysaccharide is synthesized at the Golgi membrane. Plant Physiol. 153, 1362–1371 (2010).

    Article  CAS  Google Scholar 

  67. Bacic, A., Churms, S.C., Stephen, A.M., Cohen, P.B. & Fincher, G.B. Fine structure of the arabinogalactan-protein from Lolium multiflorum. Carbohydr. Res. 162, 85–93 (1987).

    Article  CAS  Google Scholar 

  68. Szyjanowicz, P.M.J. et al. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J. 37, 730–740 (2004).

    Article  CAS  Google Scholar 

  69. Gibeaut, D.M. & Carpita, N.C. Tracing cell wall biogenesis in intact cells and plants selective turnover and alteration of soluble and cell wall polysaccharides in grasses. Plant Physiol. 97, 551–561 (1991).

    Article  CAS  Google Scholar 

  70. Gibeaut, D.M., Pauly, M., Bacic, A. & Fincher, G.B. Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles. Planta 221, 729–738 (2005).

    Article  CAS  Google Scholar 

  71. Suzuki, K., Kitamura, S., Kato, Y. & Itoh, T. Highly substituted glucuronoarabinoxylans (hsGAXs) and low-branched xylans show a distinct localization pattern in the tissues of Zea mays L. Plant Cell Physiol. 41, 948–959 (2000).

    Article  CAS  Google Scholar 

  72. Lee, R.C., Burton, R.A., Hrmova, M. & Fincher, G.B. Barley arabinoxylan arabinofuranohydrolases: purification, characterization and determination of primary structures from cDNA clones. Biochem. J. 356, 181–189 (2001).

    Article  CAS  Google Scholar 

  73. Burton, R.A. et al. Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-D-glucans and alters their fine structure. Plant Biotechnol. J. published online, doi:10.1111/j.1467-7652.2010.00532.x (28 June 2010).

  74. Carroll, A. & Somerville, C. Cellulosic biofuels. Annu. Rev. Plant Biol. 60, 165–182 (2009).

    Article  CAS  Google Scholar 

  75. Collins, H.M. et al. Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: potential importance in human health and nutrition. Cereal Chemistry 87, 272–282 (2010).

    Article  CAS  Google Scholar 

  76. Burton, R.A. et al. Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12, 691–706 (2000).

    Article  CAS  Google Scholar 

  77. Fincher, G.B. Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiol. 149, 27–37 (2009).

    Article  CAS  Google Scholar 

  78. Peng, L., Kawagoe, Y., Hogan, P. & Delmer, D. Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science 295, 147–150 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our work has been supported for many years through grants from the Australian Research Council, the Grains Research and Development Corporation and the CSIRO Flagship Collaboration Fund. We are also indebted to many enthusiastic and dedicated postdoctoral scientists and postgraduate students who have worked in our laboratories. We particularly thank N. Kibble and A. Little for their assistance with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey B Fincher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burton, R., Gidley, M. & Fincher, G. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat Chem Biol 6, 724–732 (2010). https://doi.org/10.1038/nchembio.439

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.439

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing