Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Graphene oxide as a chemically tunable platform for optical applications

Abstract

Chemically derived graphene oxide (GO) is an atomically thin sheet of graphite that has traditionally served as a precursor for graphene, but is increasingly attracting chemists for its own characteristics. It is covalently decorated with oxygen-containing functional groups — either on the basal plane or at the edges — so that it contains a mixture of sp2- and sp3-hybridized carbon atoms. In particular, manipulation of the size, shape and relative fraction of the sp2-hybridized domains of GO by reduction chemistry provides opportunities for tailoring its optoelectronic properties. For example, as-synthesized GO is insulating but controlled deoxidation leads to an electrically and optically active material that is transparent and conducting. Furthermore, in contrast to pure graphene, GO is fluorescent over a broad range of wavelengths, owing to its heterogeneous electronic structure. In this Review, we highlight the recent advances in optical properties of chemically derived GO, as well as new physical and biological applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical and atomic structures of GO and rGO.
Figure 2: Optoelectronic and field effect properties of reduced graphene oxide.
Figure 3: Fluorescence properties of GO and rGO.
Figure 4: Electronic structure and fluorescence of GO.
Figure 5: Fluorescent GO for biological applications.
Figure 6: Fluorescence quenching with GO and rGO and Raman enchancement.
Figure 7: Biosensing by fluorescence quenching in GO.
Figure 8: Nonlinear optical properties of GO and its derivatives.

Similar content being viewed by others

References

  1. Brodie, B. C. On the atomic weight of graphite. Phil. Trans. R. Soc. Lond. A 149, 249–259 (1859).

    Article  Google Scholar 

  2. Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes. Nature Nanotech. 4, 217–224 (2009).

    Article  CAS  Google Scholar 

  3. Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Loh, K. P., Bao, Q., Ang, P. K. & Yang, J. The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010).

    Article  CAS  Google Scholar 

  5. Eda, G. & Chhowalla, M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Eda, G., Mattevi, C., Yamaguchi, H., Kim, H. & Chhowalla, M. Insulator to semi-metal transition in graphene oxide. J. Phys. Chem. C 113, 15768–15771 (2009).

    Article  CAS  Google Scholar 

  7. Yang, D. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47, 145–152 (2009).

    Article  CAS  Google Scholar 

  8. Mkhoyan, K. A. et al. Atomic and electronic structure of graphene-oxide. Nano Lett. 9, 1058–1063 (2009).

    Article  CAS  Google Scholar 

  9. Mattevi, C. et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19, 2577–2583 (2009).

    Article  CAS  Google Scholar 

  10. Gómez-Navarro, C. et al. Atomic structure of reduced graphene oxide. Nano Lett. 10, 1144–1148 (2010).

    Article  PubMed  CAS  Google Scholar 

  11. Jung, I. et al. Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption. J. Phys. Chem. C 113, 18480–18486 (2009).

    Article  CAS  Google Scholar 

  12. Kang, H., Kulkarni, A., Stankovich, S., Ruoff, R. S. & Baik, S. Restoring electrical conductivity of dielectrophoretically assembled graphite oxide sheets by thermal and chemical reduction techniques. Carbon 47, 1520–1525 (2009).

    Article  CAS  Google Scholar 

  13. Jung, I., Dikin, D. A., Piner, R. D. & Ruoff, R. S. Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett. 8, 4283–4287 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, S. et al. High mobility, printable, and solution-processed graphene electronics. Nano Lett. 10, 92–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Kudin, K. et al. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8, 36–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Paredes, J. I., Villar-Rodil, S., Solís-Fernández, P., Martínez-Alonso, A. & Tascón, J. M. D. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25, 5957–5968 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Wilson, N. R. et al. Graphene oxide: Structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3, 2547–2556 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Kaiser, A. B., Gómez-Navarro, C., Sundaram, R. S., Burghard, M. & Kern, K. Electrical conduction mechanism in chemically derived graphene monolayers. Nano Lett. 9, 1787–1792 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Jung, I. et al. Characterization of thermally reduced graphene oxide by imaging ellipsometry. J. Phys. Chem. C 112, 8499–8506 (2008).

    Article  CAS  Google Scholar 

  21. Akhavan, O. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48, 509–519 (2010).

    Article  CAS  Google Scholar 

  22. Buchsteiner, A., Lerf, A. & Pieper, J. Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 110, 22328–22338 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Sun, X. et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203–212 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eda, G. & Chhowalla, M. Graphene-based composite thin films for electronics. Nano Lett. 9, 814–818 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. He, H. Y., Klinowski, J., Forster, M. & Lerf, A. A new structural model for graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998).

    Article  CAS  Google Scholar 

  26. Lerf, A., He, H., Forster, M. & Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998).

    Article  CAS  Google Scholar 

  27. Cai, W. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Gao, W., Alemany, L. B., Ci, L. & Ajayan, P. M. New insights into the structure and reduction of graphite oxide. Nature Chem. 1, 403–408 (2009).

    Article  CAS  Google Scholar 

  29. Bagri, A. et al. Structural evolution during the reduction of chemically derived graphene oxide. Nature Chem. 2, 581–587 (2010).

    Article  CAS  Google Scholar 

  30. Li, J.-L. et al. Oxygen-driven unzipping of graphitic materials. Phys. Rev. Lett. 96, 176101 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. Wang, S. et al. Room-temperature synthesis of soluble carbon nanotubes by the sonication of graphene oxide nanosheets. J. Am. Chem. Soc 131, 16832–16837 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Lu, J. et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3, 2367–2375 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Pan, D., Zhang, J., Li, Z. & Wu, M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734–738 (2010).

    Article  PubMed  CAS  Google Scholar 

  34. Jian-Hao, C., Cullen, W. G., Jang, C., Fuhrer, M. S. & Williams, E. D. Defect scattering in graphene. Phys. Rev. Lett. 102, 236805 (2009).

    Article  CAS  Google Scholar 

  35. Kim, K. et al. Electric property evolution of structurally defected multilayer graphene. Nano Lett. 8, 3092–3096 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Chipman, A. A commodity no more. Nature 449, 131–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Eda, G. et al. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92, 233305 (2008).

    Article  CAS  Google Scholar 

  38. Wu, J. et al. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302 (2008).

    Article  CAS  Google Scholar 

  39. Wu, J. et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4, 43–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Wassei, J. K. & Kaner, R. B. Graphene, a promising transparent conductor. Mater. Today 13, 52 (2010).

    Article  CAS  Google Scholar 

  41. Wang, X., Zhi, L. & Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Becerril, H. A. et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Li, D., Müller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech. 3, 101–105 (2008).

    Article  CAS  Google Scholar 

  44. Li, X. et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nature Nanotech. 3, 538–542 (2008).

    Article  CAS  Google Scholar 

  45. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    Article  CAS  Google Scholar 

  46. Tung, V. C., Allen, M. J., Yang, Y. & Kaner, R. B. High-throughput solution processing of large-scale graphene. Nature Nanotech. 4, 25–29 (2009).

    Article  CAS  Google Scholar 

  47. Su, Q. et al. Composites of graphene with large aromatic molecules. Adv. Mater. 21, 1–5 (2009).

    Google Scholar 

  48. Shin, H.-J. et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater 19, 1987–1992 (2009).

    Article  CAS  Google Scholar 

  49. Tung, V. C. et al. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 9, 1949–1955 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Li, X. et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. De, S. & Coleman, J. N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4, 2713–2720 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Matyba, P. et al. Graphene and mobile ions: The key to all-plastic, solution-processed light-emitting devices. ACS Nano 4, 637–642 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Essig, S. et al. Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene. Nano Lett. 10, 1589–1594 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Sun, X. et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203–212 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, Z., Robinson, J. T., Sun, X. & Dai, H. PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luo, Z. T., Vora, P. M., Mele, E. J., Johnson, A. T. C. & Kikkawa, J. M. Photoluminescence and band gap modulation in graphene oxide. Appl. Phys. Lett. 94, 111909 (2009).

    Article  CAS  Google Scholar 

  58. Eda, G. et al. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2009).

    Article  CAS  Google Scholar 

  59. Cuong, T. V. et al. Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide. Mater. Lett. 64, 399–401 (2010).

    Article  CAS  Google Scholar 

  60. Subrahmanyam, K. S., Kumar, P., Nag, A. & Rao, C. N. R. Blue light emitting graphene-based materials and their use in generating white light. Solid State Commun. 150, 1774–1777 (2010).

    Article  CAS  Google Scholar 

  61. Chen, J.-L. & Yan, X.-P. A dehydration and stabilizer-free approach to production of stable water dispersions of graphene nanosheets. J. Mater. Chem. 20, 4328–4332 (2010).

    Article  CAS  Google Scholar 

  62. Demichelis, F., Schreiter, S. & Tagliaferro, A. Photoluminescence in a-C:H films. Phys. Rev. B 51, 2143 (1995).

    Article  CAS  Google Scholar 

  63. Rusli, Robertson, J. & Amaratunga, G. A. J. Photoluminescence behavior of hydrogenated amorphous carbon. J. Appl. Phys. 80, 2998–3003 (1996).

    Article  Google Scholar 

  64. Koos, M., Veres, M., Fule, M. & Pocsik, I. Ultraviolet photoluminescence and its relation to atomic bonding properties of hydrogenated amorphous carbon. Diamond Relat. Mater. 11, 53–58 (2002).

    Article  CAS  Google Scholar 

  65. Lin, Y. et al. Visible luminescence of carbon nanotubes and dependence on functionalization. J. Phys. Chem. B 109, 14779–14782 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Sun, Y.-P. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Liu, H., Ye, T. & Mao, C. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 46, 6473–6475 (2007).

    Article  CAS  Google Scholar 

  68. Zhou, J. et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 129, 744–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Luo, Y. et al. Highly visible-light luminescence properties of the carboxyl-functionalized short and ultrashort MWNTs. J. Solid State Chem. 180, 1928–1933 (2007).

    Article  CAS  Google Scholar 

  70. Gokus, T. et al. Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963–3968 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Kanemitsu, Y., Okamoto, S., Otobe, M. & Oda, S. Photoluminescence mechanism in surface-oxidized silicon nanocrystals. Phys. Rev. B 55, R7375–R7378 (1997).

    Article  CAS  Google Scholar 

  72. Dong, L., Joseph, K. L., Witkowski, C. M. & Craig, M. M. Cytotoxicity of single-walled carbon nanotubes suspended in various surfactants. Nanotechnology 19, 255702 (2008).

    Article  PubMed  CAS  Google Scholar 

  73. Yang, K. et al. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10, 3318–3323 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Kagan, M. R. & McCreery, R. L. Reduction of fluorescence interference in Raman spectroscopy via analyte adsorption on graphitic carbon. Anal. Chem. 66, 4159–4165 (1994).

    Article  CAS  Google Scholar 

  75. Treossi, E. et al. High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. J. Am. Chem. Soc. 131, 15576–15577 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Kim, J., Cote, L. J., Kim, F. & Huang, J. Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc. 132, 260–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, Z. et al. Organic photovoltaic devices based on a novel acceptor material: graphene. Adv. Mater. 20, 3924–3930 (2008).

    Article  CAS  Google Scholar 

  78. Wang, Y., Kurunthu, D., Scott, G. W. & Bardeen, C. J. Fluorescence quenching in conjugated polymers blended with reduced graphitic oxide. J. Phys. Chem. C 114, 4153–4159 (2010).

    Article  CAS  Google Scholar 

  79. Dong, H., Gao, W., Yan, F., Ji, H. & Ju, H. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal. Chem. 82, 5511–5517 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Xie, L., Ling, X., Fang, Y., Zhang, J. & Liu, Z. Graphene as a substrate to suppress fluorescence in resonance raman spectroscopy. J. Am. Chem. Soc. 131, 9890–9891 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Kim, J., Kim, F. & Huang, J. Seeing graphene-based sheets. Mater. Today 13, 28–38.

  82. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  CAS  Google Scholar 

  83. Swathi, R. S. & Sebastian, K. L. Resonance energy transfer from a dye molecule to graphene. J. Chem. Phys. 129, 054703 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Swathi, R. S. & Sebastian, K. L. Long range resonance energy transfer from a dye molecule to graphene has (distance)−4 dependence. J. Chem. Phys. 130, 086101 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Ling, X. et al. Can graphene be used as a substrate for Raman enhancement? Nano Lett. 10, 553–561 (2009).

    Article  CAS  Google Scholar 

  86. Balapanuru, J. et al. A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew. Chem. Int. Ed. 49, 6549–6553 (2010).

    Article  CAS  Google Scholar 

  87. Lu, C.-H., Yang, H.-H., Zhu, C.-L., Chen, X. & Chen, G.-N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 48, 4785–4787 (2009).

    Article  CAS  Google Scholar 

  88. He, S. et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 20, 453–459 (2010).

    Article  CAS  Google Scholar 

  89. Chang, Y. R. et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotech. 3, 284–288 (2008).

    Article  CAS  Google Scholar 

  90. Fu, C. C. et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl Acad. Sci. USA 104, 727–732 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Satishkumar, B. C. et al. Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing. Nature Nanotech. 2, 560–564 (2007).

    Article  CAS  Google Scholar 

  92. Dedecker, P., Hofkens, J. & Hotta, J-i. Diffraction-unlimited optical microscopy. Mater. Today 11, 12–21 (2008).

    Article  Google Scholar 

  93. Liu, Z. B. et al. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl. Phys. Lett. 94, 021902 (2009).

    Article  CAS  Google Scholar 

  94. Xu, Y. et al. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 21, 1275–1279 (2009).

    Article  CAS  Google Scholar 

  95. Liu, Y. S. et al. Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material. Carbon 47, 3113–3121 (2009).

    Article  CAS  Google Scholar 

  96. Liu, Z. B. et al. Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B 113, 9681–9686 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Kumar, S. et al. Femtosecond carrier dynamics and saturable absorption in graphene suspensions. Appl. Phys. Lett. 95, 191911 (2009).

    Article  CAS  Google Scholar 

  98. Bao, Q. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009).

    Article  CAS  Google Scholar 

  99. Bao, Q. et al. Graphene–polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 20, 782–791 (2010).

    Article  CAS  Google Scholar 

  100. Wang, J., Hernandez, Y., Lotya, M., Coleman, J. N. & Blau, W. J. Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 21, 2430–2435 (2009).

    Article  CAS  Google Scholar 

  101. Fan, F. R. F., Park, S., Zhu, Y. W., Ruoff, R. S. & Bard, A. J. Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles. J. Am. Chem. Soc. 131, 937–939 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.P.L. is supported by the NRF-CRP grant 'Graphene Related Materials and Devices', R-143-000-360-281. M.C. acknowledges funding from the US NSF CAREER Award (ECS 0543867). G.E. and M.C. also acknowledge financial support from the Center for Advanced Structural Ceramics (CASC) at Imperial College London. G.E. acknowledges the Royal Society for the Newton International Fellowship. M.C. acknowledges support from the Royal Society through the Wolfson Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kian Ping Loh or Manish Chhowalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loh, K., Bao, Q., Eda, G. et al. Graphene oxide as a chemically tunable platform for optical applications. Nature Chem 2, 1015–1024 (2010). https://doi.org/10.1038/nchem.907

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.907

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing