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Abstract

There is a direct correlation between protein levels and disease states in human serum making it an 

attractive target for sensors and diagnostics. However this is made challenging because serum 

features more than 20,000 proteins with an overall protein content of greater than 1 mM. Here we 

report a hybrid synthetic-biomolecule based sensor that uses green fluorescent protein-

nanoparticle arrays to detect proteins at biorelevant concentrations in both buffer and human 

serum. Distinct and reproducible fluorescence response patterns were obtained from five serum 

proteins (human serum albumin, immunoglobulin G, transferrin, fibrinogen and α-antitrypsin) in 

buffer and when spiked into human serum. Using linear discriminant analysis we identified these 

proteins with an identification accuracy of 100% in buffer and 97% in human serum. The arrays 

were also able to discriminate between different concentrations of the same protein as well as a 

mixture of different proteins in human serum.

The rapid and efficient identification of protein imbalances in serum (the clear yellowish 

solution obtained after removal of blood cells and clotting factors from whole blood), is an 

important tool for disease diagnosis1, 2. It contains >20,000 different proteins ranging from 

50 gL−1 (serum albumin)3, 4 to less than 1 ngL−1 (troponin)5, with an overall protein 

concentration of ~1 mM. The relative and absolute level of these proteins is directly related 

to specific disease states. Two different approaches have been employed for serum-based 

diagnostics: specific recognition of biomarkers and techniques that focus on the overall 

levels of serum proteins. Proteins present in small quantities are specifically detected by 

monoclonal antibodies. With this method each monoclonal antibody has to be developed and 

can detect only one specific protein6,7, and technical difficulties in regard to quantification 
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are significant8. Alternatively, electrophoresis is the current tool of choice in clinics for 

overall serum analysis, despite the relative insensitivity, lack of resolution, and difficulty in 

quantification of this method9. Better resolution is provided by 2D-SDS-PAGE 

electrophoresis. However, quantification and slow analysis times remain an issue. Mass 

spectrometry (SELDI) likewise provides a potentially powerful tool10, 11, but the expensive 

instrumentation, low throughput and the limited dynamic range restrict its applicability. The 

indicator displacement assay (IDA) has also been used to detect the key biological targets 

(e.g. heparin,12 inorganic phosphate13) in serum. In spite of the convenience, sensitivity 

and promptness of these systems, the specificity of the sensor for particular analytes limits 

its applicability in multiple analyte detection in undiluted serum.

A “chemical nose/tongue” strategy14,15 provides an alternative strategy to the above 

methods for protein sensing. In the “nose” approach, differential interactions of analytes 

with a receptor array generate a pattern that is used for identification. A variety of scaffolds 

have been employed for array-based sensing of proteins, including oligopeptide-

functionalized resins16, substituted porphyrins17, polymers18, 19 and synthetic polymer-

nanoparticle systems20, 21. While highly effective at identifying proteins, these systems 

generally feature high limits of detection (generally 8–40 μM) and require a large number of 

detector elements relative to the number of proteins sensed. Moreover, these methods have 

not been applied to sensing in challenging matrices such as biofluids.

To provide a more effective system suitable for protein sensing in serum, we created hybrid 

synthetic-biomolecular sensor elements. In the sensing process an array of green fluorescent 

protein (GFP)-nanoparticle (NP) complexes generates a signature that can be employed to 

identify proteins in human serum. Compared to our previous sensor array using polymers, 

the biocompatibility of both the nanoparticles and GFP allows us to use this system without 

affecting the target protein conformation during their detection22,23. In addition, the GFP-

NP conjugate mimics protein-protein surface interactions, which is instrumental in reaching 

much lower detection limits and thus enabling detection of biomedically relevant changes in 

protein concentration in undiluted human serum.

Our sensing strategy relies on the electrostatic complementarity between GFP and the NPs. 

GFP is a beta barrel shaped marker protein that is negatively charged at physiological 

conditions (3.0 diameter × 4.0 nm length, MW = 27 KDa, pH 7.4, pI = 5.92) 24, 25, with an 

excitation peak at 490 nm and emission peak at 510 nm. Due to their positive charges, the 

gold NPs complex the anionic GFP, resulting in fluorescence quenching. We hypothesized 

that in the presence of analyte proteins the binding equilibrium between GFP and NP would 

be altered due to competitive binding, thus modulating the fluorescence response (Figure 

1b). The fluorescence response can be positive or negative depending on the binding affinity 

of analyte proteins towards NPs and GFP. A higher affinity of the protein to NPs produces 

positive response, while a higher affinity to GFP generates a negative response as a result of 

analyte protein-GFP aggregation (Figure S17). To confirm this hypothesis, five cationic gold 

NPs (NP1–NP5) were fabricated as sensor elements. In addition to their cationic charges, 

the ligand shells of these NPs differ in hydrophobicity, aromaticity, and hydrogen bonding 

ability (Figure 1a).
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RESULT AND DISCUSSION

Roughly 20 serum proteins with different charge and molecular weights constitute 99% by 

mass of the serum protein content26. We choose five of the most abundant serum proteins 

for our studies: albumin, immunoglobulin G (IgG), transferrin, fibrinogen and α-antitrypsin 

(Table 1).

Preliminary studies were performed in buffer. We optimized the binding ratio between GFP 

and NPs (NP1–NP5) through fluorescence titration. The fluorescence of GFP was 

significantly quenched for all NPs and the change of fluorescence intensity against 

increasing NP concentrations was plotted (Figure S2). The complex stability constants (KS) 

and association stoichiometries (n) were obtained through nonlinear least-squares curve-

fitting analysis (Table S1)27. The variation in complex stabilities and the binding 

stoichiometry demonstrate the significant effect of head groups in NP-protein affinity.

Once the binding ratio that provided maximum quenching of fluorescence was determined, 

we tested the ability of our sensor to detect serum proteins in 5 mM sodium phosphate 

buffer using a solution of 100 nM of both NPs and GFP. Testing at varying protein 

concentrations demonstrated that complete differentiation of the five analyte proteins was 

obtained at 25 nM (Figure 2a).

Linear discriminant analysis (LDA) was used to quantitatively differentiate the fluorescence 

response patterns of the GFP-NP conjugates with the serum proteins28. LDA is a statistical 

technique that maximizes the ratio between-class variance to the within-class variance, 

allowing the differentiation of response patterns. We generated the fluorescence responses 

six times for each protein against the five GFP-NP conjugates for this purpose. After the 

analysis, four canonical factors were generated (91.5%, 6.8%, 1.2% and 0.5%) that represent 

linear combinations of the response matrices obtained from the fluorescence response 

patterns (5 GFP-NP conjugates × 5 proteins × 6 replicates). The 30 training cases (5 proteins 

× 6 replicates) are separated in five respective groups with 100% accuracy according to the 

jackknifed classification matrix derived from analysis of subsets of the datasets, and the 

most significant two factors are plotted in 2D (Figure 2b). This detection efficiency was 

validated through identification of unknowns from our training set, where a randomized set 

of the five proteins from the training set were identified with 97% accuracy (Table S6).

Protein sensing in human serum provides a far more demanding testbed than pure proteins in 

buffer solution. The high overall protein content (~1 mM, 71 mg/mL) and multianalyte 

nature of human serum generates a complex matrix that is challenging for sensor design. To 

provide a controlled model for testing our methodology, we spiked physiologically relevant 

concentrations of the above five proteins into commercially available human serum. We first 

optimized the concentration and ratio of GFP-NP conjugates. Because of the optical density 

of pure human serum, a higher concentration of GFP (250 nM) was required to get sufficient 

response. The titration data (Figure 3) indicates that saturation in fluorescence quenching 

was not observed even at a 8:1 NP/GFP ratio due to the presence of the other proteins in 

human serum that compete with GFP for NP binding. To provide reproducible quenching 
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and a high level of sensitivity, we used a particle concentration of 500 nM, corresponding to 

the inflexion point observed in the titration curves (Figure 3).

Using the conditions optimized above, 500 nM was the minimum amount of spiked analyte 

required for reproducible differentiation of the target proteins. We created a training matrix 

(5 GFP-NP conjugates × 5 proteins × 6 replicates) with GFP-NP conjugates and each of the 

proteins. Similar to the buffer studies, each of the proteins generated distinct fluorescence 

response. As before, these patterns were further subjected to LDA analysis, providing a 97% 

identification accuracy, as α-antitrypsin slightly overlaps with IgG. The four canonical 

factors are 76.9%, 20.3%, 2.7%, 0.1% and the plot of the first two factors with 95% 

confidence ellipses is presented in Figure 4b. We next tested the system against unknowns 

taken from the training set. Out of 30 samples 28 samples were correctly identified affording 

a 93% identification accuracy (see Table S7 for raw data). We identified target proteins in 

the complex serum matrix at physiologically relevant submicromolar concentrations. As a 

point of reference, we were able to detect and identify the analyte proteins between 0.06 to 

8.4% (by molarity) of total serum protein concentration (Table 2).

After successful detection of serum proteins in human serum, the next challenge arises from 

the detection of a protein at variable concentration level and in mixture with other proteins. 

One of the limitations of immunosensing as well as other approaches is the differentiation 

between the variable concentration levels of a single protein. To probe the ability of our 

system in this dimension, we performed spiking experiments with HSA and IgG at different 

concentrations (500 nM, 1 μM and 2 μM). We observed that the LDA plots for various 

concentrations are not random, but rather follow certain patterns and can be differentiated 

from each other for many concentrations (Figure 5a). Essentially, the responses from 

different concentrations form clusters around a common center which are distinct for each 

protein (Figure 5b).

After obtaining differentiation at varying level of protein concentration we continued our 

investigation towards the detection of mixture of proteins in serum. We mixed HSA and IgG 

in serum at 1:1 molar ratio with 250 nM each as well as 500 nM each and compared with 

500 nM of individual proteins. When subjected to the LDA analysis of the fluorescence 

responses, it shows that the canonical score plots revolve around the HSA and IgG plots and 

are clearly distinct (Figure 5c). Although we can discriminate the mixture of proteins at 

different concentration from each other, no correlation between the plots could be drawn 

since the complex equillibria among the serum proteins, GFP and NP make the system 

behave differently. However, these studies indicate that profiles of mixtures of proteins can 

be generated that could enable detection of disease states featuring altered levels of proteins.

In conclusion, a GFP-NP array combining synthetic and biological elements provides a 

highly sensitive array-based sensor system. Significantly, this approach allowed 

identification of proteins in serum at physiologically relevant concentrations using only five 

NP/GFP constructs. Furthermore, the sensor has potential in discriminating different 

concentrations of same protein and a mixture of proteins. Current studies are exploring the 

use of approach to the profiling of serum samples for the diagnosis of disease states.
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METHODS

Green fluorescence protein (GFP) was expressed according to known procedure29. In brief, 

starter cultures from a glycerol stock of GFP in BL21(DE3) was grown overnight in 50 ml 

culture media at 37 °C. The following day, 5 ml of the starter cultures was added to a 

Fernbach flask containing 1 L culture media and shaken until the OD600 = 0.6 – 0.7. The 

culture was then induced by adding isopropyl-β-D-thiogalactopyranoside (IPTG) (1 mM 

final concentration) and shaken at 28 °C. After three hours, the cells were harvested by 

centrifugation and the pellet was then resuspended in lysis buffer. Once lysed, the solution 

was pelleted and the supernatant was further purified using HisPur Cobalt columns. The 

analyte proteins, serum albumin (HSA), immunoglobulins (IgG), transferrin, fibrinogen and 

α-antitrypsin all from human serum were purchased from Sigma-Aldrich and used as 

received. Cationic NPs NP1, NP2 were synthesized according to the reported procedure and 

NP3 – NP5 were prepared following the similar procedure which is elaborately described in 

supporting information. 5 mM sodium phosphate buffer, pH 7.4 was used as a solvent for 

the experiment in buffer solution. The commercial human serum from untransfused male 

donors was purchased from MP Biomedicals, LLC and used without further treatment.

In the fluorescence titration between NPs and GFP, the change of fluorescence intensity at 

510 nm was measured with an excitation wavelength of 475 nm at various concentrations of 

nanoparticles from 0 to 100 nM on a Molecular Devices SpectaMax M5 microplate reader at 

25 °C in 5 mM sodium phosphate buffer. The change of fluorescence intensity against 

increasing NP concentrations was plotted (Figure S2), using a non-interacting gold NP (e.g. 

PEG-NP) as a control to compensate for particle absorption. Nonlinear least-squares curve-

fitting analysis was employed to estimate the binding constant (Ks) and association 

stoichiometry (n) using the model in which the nanoparticle is assumed to possess n 

equivalent of independent binding sites. In case of human serum, similar procedure was 

followed, but the only modification was the concentration of GFP (250 nM) and the 

nanoparticles (0–2 μM).

To create the training matrix, GFP and NPs are mixed in the ratio obtained from 

fluorescence titration. In case of 5 mM sodium phosphate buffer solution the final 

concentration of NP and GFP were 100 nM each. On the other hand, in serum studies the 

final concentration of NP and GFP were 500 nM and 250 nM respectively. After 30 min of 

incubation 200 μL of each solution was loaded into a well on a 96-well plate (300 μL 

Whatman black bottom micropalte) and the fluorescence intensity at 510 nm recorded using 

fluorescence microplate reader (Molecular Devices SpectraMax M5). Subsequently, 10 μL 

of protein solution, 0.525 μM for buffer solution and 10.5 μM for serum solution, was added 

so that the final concentrations were 25 nM and 500 nM in buffer and serum respectively. 

After incubation for 30 min the fluorescence intensity at 510 nm was recorded again. The 

difference between the two intensities before and after addition of proteins was considered 

as the fluorescence response (Table S1 and S3). This process was repeated for five serum 

proteins with five selective cationic NP in six replicates. This data was used to generate the 

6 × 5 × 5 (6 replicates × 5 proteins × 5 NPs) training matrix. This training matrix was used 

for classical linear discriminant analysis (LDA) in SYSTAT (version 11.0).
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For the unknown detection, we prepared the protein solutions (0.525 μM or 10.5 μM) out of 

the five serum proteins according to buffer or serum study. From this prepared solution we 

randomly choose 30 samples for each system (buffer or serum) and the same method was 

followed using the GFP-NP motif. We replicated each unknown samples three times instead 

of six for preparing training matrix. We considered the average response of three replicates 

for a single unknown sample and analyzed with five known proteins in LDA analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Structural features of nanoparticles (NPs) and modes of sensor response
(a) Chemical structures of cationic gold NPs. NP1 features primarily cationic charge, NP2 
and NP4 feature groups capable of hydrophobic interaction, NP3 features groups capable of 

hydrogen bonding and NP5 has aromatic recognition unit capable of π-π interaction. (b) 

Schematic illustration of the competitive binding between protein and quenched GFP-NP 

complexes and protein aggregation leading to the fluorescence light-up or further quenching.
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Figure 2. Array based sensing of five serum proteins in 5 mM sodium phosphate buffer (pH 7.40)
(a) Fluorescence response (ΔI) patterns of five GFP-NP adducts in the presence of five high 

abundant serum proteins at 25 nM concentration (responses are averages of six 

measurements and error bars are standard deviations). (b) Canonical score plot for the 

fluorescence patterns as obtained from LDA against five protein analytes at fixed 

concentration of 25 nM, with 95% confidence ellipses.
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Figure 3. Determination of the optimum ratio of fluorophore to NP
Change in fluorescence intensities of GFP (250 nM) at 510 nm were measured after the 

addition of cationic NPs (0–2 μM) with an excitation wavelength of 475 nm. The absorption 

effect from gold core was subtracted by using non-interacting tetra(ethylene glycol)-

functionalized gold NPs. Inset shows the change of Fluorescence intensity of GFP (100 nM) 

at 510 nm upon addition of cationic NP3 in 5 mM sodium phosphate buffer. The red solid 

lines represent the best curve fitting using the model of single set of identical binding sites 

and the arrow indicates the optimum binding ratio used for our study.
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Figure 4. Array based sensing of five serum proteins in human serum
(a) Fluorescence response (ΔI) pattern of five GFP-NP adducts in the presence of serum 

proteins spiked in human serum at 500 nM concentration (responses are average of six 

measurements and error bars are standard deviations of the measurements). (b) Canonical 

score plot for the fluorescence patterns as obtained from LDA against five protein analytes 

at fixed concentration (500 nM) with 95% confidence ellipses.
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Figure 5. Discrimination of HSA and IgG at different concentrations and mixture of proteins
(a) Canonical score plot for the fluorescence patterns as obtained from LDA for human 

serum albumin (HSA) and immunoglobulin G (IgG) at different concentrations (500 nM, 1 

μM and 2 μM) with 95% confidence ellipses. (b) Clustering of all the data for the three 

concentrations mentioned for each protein as obtained from LDA analysis. (c) HSA and IgG 

were mixed at 1:1 molar ratio with 250 nM each and 500 nM each and added to five GFP-

NP complexes. The canonical score plots obtained from LDA analysis were compared with 

that for the 500 nM of the individual proteins.
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Table 1

Molecular weight, isoelectric point and concentration of five analyte serum proteins26 in human serum.

Protein μML−1 Mwa pIb %c

Albumin 769 65 5.2 70

IgG 66.7 150 7.5–7.8 14

Transferrin 25–50 80 5.6 5.7

Fibrinogen 5.9 340 5.6 2.8

α-Antitrypsin 9.6 52 5.4 0.7

a
) molecular weight in kDa

b
) isoelectric point

c
) weight percent in human serum.
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Table 2

Change of protein concentration as a percentage of its typical concentration in normal serum detected by the 

sensor array.

Protein μML−1 %a

Albumin 769 0.06

IgG 66.7 0.75

Transferrin 25–50 1–2

Fibrinogen 5.9 8.4

α-Antitrypsin 9.6 5.2

a
Change in protein concentrations in molarity.
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