Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Metal-catalysed 1,2-diamination reactions

Abstract

The 1,2-diamine motif is present in a number of natural products with interesting biological activity and in many important pharmaceutical agents. Chiral 1,2-diamines are also widely used as the control elements in asymmetric synthesis and catalysis. Such compounds are thus an attractive target for the synthetic chemist. Although the diamination of an alkene seems an obvious route to these structures, far less research has been devoted to it than to the analogous dihydroxylation or aminohydroxylation reactions that are well-established processes in asymmetric synthesis. Here, we examine recent advances in metal-catalysed diamination reactions and their asymmetric variants. Given the prevalence of these structures, it seems likely that they will find extensive application in the construction of natural products and drug molecules in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ubiquity of the 1,2-diamine motif.
Figure 2: Diaminations of alkenes through three-component reactions.
Figure 3: Pd(II)- and Ni(II)-catalysed intramolecular diaminations of alkenes.
Figure 4: Metal-catalysed intermolecular diaminations of conjugated dienes.
Figure 5: Metal-catalysed intermolecular diaminations of terminal alkenes and related amination of esters.
Figure 6: Metal-catalysed asymmetric diaminations of conjugated dienes and terminal alkenes.

Similar content being viewed by others

References

  1. Lucet, D., Le Gall, T. & Mioskowski, C. The chemistry of vicinal diamines. Angew. Chem. Int. Ed. 37, 2580–2627 (1998).

    Article  CAS  Google Scholar 

  2. Kotti, S. R. S. S., Timmons, C. & Li, G. Vicinal diamino functionalities as privileged structural elements in biologically active compounds and exploitation of their synthetic chemistry. Chem. Biol. Drug Des. 67, 101–114 (2006).

    Article  CAS  Google Scholar 

  3. Kim, H., So, S. M., Chin, J. & Kim, B. M. Preparation of chiral diamines by the diaza-Cope rearrangement (DCR). Aldrichim. Acta 41, 77–88 (2008).

    Google Scholar 

  4. Nakayama, K. & Maruoka, K. Complete switch of product selectivity in asymmetric direct aldol reaction with two different chiral organocatalysts from a common chiral source. J. Am. Chem. Soc. 130, 17666–17667 (2008).

    Article  CAS  Google Scholar 

  5. Lemaire, M. & Mangeney, P. (eds) Chiral Diazaligands for Asymmetric Synthesis. Topics in Organometallic Chemistry, Vol. 15 (Springer, 2005).

    Book  Google Scholar 

  6. Kolb, H. C. & Sharpless, K. B. in Transition Metals for Organic Synthesis Vol. 2 (eds Beller, M. & Bolm, C.) 275–300 (Wiley-VCH, 2004).

    Book  Google Scholar 

  7. Kolb, H. C., vanNieuwenhze, M. S. & Sharpless, K. B. Catalytic asymmetric dihydroxylation. Chem. Rev. 94, 2483–2547 (1994).

    Article  CAS  Google Scholar 

  8. Kolb, H. C. & Sharpless, K. B. in Transition Metals for Organic Synthesis Vol. 2 (eds Beller, M. & Bolm, C.) 309–326 (Wiley-VCH, 2004).

    Book  Google Scholar 

  9. Gómez Aranda, V., Barluenga, J. & Aznar, F. The addition of aromatic amines to alkenes in the presence of thallium(III) acetate. Synthesis 504–505 (1974).

  10. Chong, A. O., Oshima, K. & Sharpless, K. B. Synthesis of dioxobis(tert-alkylimido)osmium(VIII) and oxotris(tert-alkylimido)osmium(VIII) complexes. Stereospecific vicinal diamination of olefins. J. Am. Chem. Soc. 99, 3420–3426 (1977).

    Article  CAS  Google Scholar 

  11. Bäckvall, J.-E. Stereospecific palladium-promoted vicinal diamination of olefins. Tetrahedron Lett. 19, 163–166 (1978).

    Article  Google Scholar 

  12. Barluenga, J., Alonso-Cires, L. & Asensio, G. Mercury(II) oxide/tetrafluoroboric acid—a new reagent in organic synthesis; a convenient diamination of olefins. Synthesis 962–964 (1979).

  13. Becker, P. N., White, M. A. & Bergman, R. G. A new method for 1,2-diamination of alkenes using cyclopentadienylnitrosylcobalt dimer/NO/LiAlH4 . J. Am. Chem. Soc. 102, 5676–5677 (1980).

    Article  CAS  Google Scholar 

  14. Fristad, W. E., Brandvold, T. A., Peterson, J. R. & Thompson, S. R. Conversion of alkenes to 1,2-diazides and 1,2-diamines. J. Org. Chem. 50, 3647–3649 (1985).

    Article  CAS  Google Scholar 

  15. Zabawa, T. P., Kasi, D. & Chemler, S. R. Copper(II) acetate promoted intramolecular diamination of unactivated olefins. J. Am. Chem. Soc. 127, 11250–11251 (2005).

    Article  CAS  Google Scholar 

  16. Zabawa, T. P. & Chemler, S. R. Copper(II) carboxylate promoted intramolecular diamination of terminal alkenes: Improved reaction conditions and expanded substrate scope. Org. Lett. 9, 2035–2038 (2007).

    Article  CAS  Google Scholar 

  17. Li, G., Wie, H.-X., Kim, S. H. & Carducci, M. D. A novel electrophilic diamination reaction of alkenes. Angew. Chem. Int. Ed. 40, 4277–4280 (2001).

    Article  CAS  Google Scholar 

  18. Wie, H.-X., Kim, S. H. & Li, G. Electrophilic diamination of alkenes by using FeCl3–PPh3 complex as catalyst. J. Org. Chem. 67, 4777–4781 (2002).

    Article  Google Scholar 

  19. Han, J., Li, T., Pan, Y., Kattuboina, A. & Li, G. Catalytic diamination of alkenes using N,N-dibromo-p-toluensulfonamide as electrophile and nitriles as nucleophiles. Chem. Biol. Drug Des. 71, 71–77 (2008).

    Article  CAS  Google Scholar 

  20. Timmons, C., Mcpherson, L. M., Chen, D., Wei, H.-X. & Li, G. Manganese (IV) oxide-catalyzed electrophilic diamination of electrondeficient alkenes provides an easy synthesis of α,β-diamino acid and ketone derivatives for peptidomimetic studies. J. Peptide Res. 66, 249–254 (2005).

    Article  CAS  Google Scholar 

  21. Chen, D., Timmons, C., Wei, H.-X. & Li, G. Direct electrophilic diamination of functionalized alkenes without the use of any metal catalysts. J. Org. Chem. 58, 5742–5745 (2003).

    Article  Google Scholar 

  22. Pei, W., Wei, H. X., Chen, D., Headley, A. D. & Li, G. N,N-Dichloro-2-nitrobenzensulfonamide as the electrophilic nitrogen source for direct diamination of enones. J. Org. Chem. 68, 8404–8408 (2003).

    Article  CAS  Google Scholar 

  23. Booker-Milburn, K. I., Guly, D. J., Cox, B. & Procopiou, P. A. Ritter-type reactions of N-chlorosaccharin: A method for the electrophilic diamination of alkenes. Org. Lett. 5, 3313–3315 (2003).

    Article  CAS  Google Scholar 

  24. Jiang, H., Nielsen, J. B., Nielsen, M. & JØrgensen, K. A. Organocatalysed asymmetric β-amination and multicomponent syn-selective diamination of α,β-unsaturated aldehydes. Chem. Eur. J. 13, 9068–9075 (2007).

    Article  CAS  Google Scholar 

  25. Streuff, J., Hövelmann, C. H., Nieger, M. & Muñiz, K. Palladium(II)-catalysed intramolecular diamination of unfunctionalized alkenes. J. Am. Chem. Soc. 127, 14586–14587 (2005).

    Article  CAS  Google Scholar 

  26. Muñiz, K., Hövelmann, C. H. & Streuff, J. Oxidative diamination of alkenes with ureas as nitrogen sources: mechanistic pathways in the presence of a high oxidation state palladium catalyst. J. Am. Chem. Soc. 130, 763–773 (2008).

    Article  Google Scholar 

  27. Muñiz, K. Advancing palladium-catalyzed C–N bond formation: bisindoline construction from successive amide transfer to internal alkenes. J. Am. Chem. Soc. 129, 14542–14543 (2007).

    Article  Google Scholar 

  28. Hövelmann, C. H., Streuff, J., Brelot, L. & Muñiz, K. Direct synthesis of bicyclic guanidines through unprecedented palladium(II) catalyzed diamination with copper chloride as oxidant. Chem. Commun. 2334–2336 (2008).

  29. Muñiz, K. et al. Intramolecular diamination of alkenes with palladium(II)/copper(II) bromide and IPy2BF4: The role of halogenated intermediates. Chem. Asian J. 3, 776–788 (2008).

    Article  Google Scholar 

  30. Muñiz, K., Streuff, J., Chávez, P. & Hövelmann, C. H. Synthesis of diamino carboxylic esters by palladium-catalyzed oxidative intramolecular diaminations of acrylates. Chem. Asian J. 3, 1248–1255 (2008).

    Article  Google Scholar 

  31. Muñiz, K., Streuff, J., Hövelmann, C. H. & Núñez, A. Exploring the nickel-catalyzed oxidation of alkenes: A diamination by sulphamide transfer. Angew. Chem. Int. Ed. 46, 7125–7127 (2007).

    Article  Google Scholar 

  32. Bar, G. L. J., Lloyd-Jones, G. C. & Booker-Milburn, K. I. Pd(II)-catalyzed intermolecular 1,2-diamination of conjugated dienes. J. Am. Chem. Soc. 127, 7308–7309 (2005).

    Article  CAS  Google Scholar 

  33. Du, H., Zhao, B. & Shi, Y. A facile Pd(0)-catalyzed regio- and stereoselective diamination of conjugated dienes and trienes. J. Am. Chem. Soc. 129, 762–763 (2007).

    Article  CAS  Google Scholar 

  34. Xu, L., Du, H. & Shi, Y. Diamination of conjugated dienes and trienes catalyzed by N-heterocyclic carbene–Pd(0) complexes. J. Org. Chem. 72, 7038–7041 (2007).

    Article  CAS  Google Scholar 

  35. Yuan, W., Du, H., Zhao, B. & Shi, Y. A mild Cu(I)-catalyzed regioselective diamination of conjugated dienes. Org. Lett. 9, 2589–2591 (2007).

    Article  CAS  Google Scholar 

  36. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    Article  CAS  Google Scholar 

  37. Godula, K. & Sames, D. C–H Bond functionalization in complex organic synthesis. Science 312, 67–72 (2006).

    Article  CAS  Google Scholar 

  38. Bergman, R. G. Organometallic chemistry: C–H activation. Nature 446, 391–393 (2007).

    Article  CAS  Google Scholar 

  39. Du, H., Yuan, W., Zhao, B. & Shi, Y. A Pd(0)-catalyzed diamination of terminal olefins at allylic and homoallylic carbons via formal C–H activation under solvent-free conditions. J. Am. Chem. Soc. 129, 7496–7497 (2007).

    Article  CAS  Google Scholar 

  40. Wang, B., Du, H. & Shi, Y. A palladium-catalyzed dehydrogenative diamination of terminal olefins. Angew. Chem. Int. Ed. 47, 8224–8227 (2008).

    Article  CAS  Google Scholar 

  41. Zhao, B., Yuan, W., Du, H. & Shi, Y. Cu(I)-catalyzed intermolecular diamination of activated terminal olefins. Org. Lett. 9, 4943–4945 (2007).

    Article  CAS  Google Scholar 

  42. Zhao, B., Du, H. & Shi, Y. Cu(I)-catalyzed cycloguanidination of olefins. Org. Lett. 10, 1087–1090 (2008).

    Article  CAS  Google Scholar 

  43. Zhao, B., Du, H. & Shi, Y. A Cu(I)-catalyzed C–H α-amination of esters. Direct synthesis of hydantoins. J. Am. Chem. Soc. 130, 7220–7221 (2008).

    Article  CAS  Google Scholar 

  44. Muñiz, K. & Nieger, M. A first asymmetric diamination of olefins. Synlett 211–214 (2003).

  45. Muñiz, K., Iesato, A. & Nieger, M. Diamination of olefins: Synthesis, structures and reactivity of osmaimidazolidines. Chem. Eur. J. 9, 5581–5596 (2003).

    Article  Google Scholar 

  46. Muñiz, K. & Nieger, M. Enantioselective catalytic diamination of alkenes with a bisimidoosmium oxidant. Chem. Commun. 2729–2731 (2005).

  47. Almodovar, I., Hövelmann, C. H., Streuff, J., Nieger, M. & Muñiz, K. Enantioselective diamination of alkenes by use of a bisimidoosmium reagent with the aid of a chiral catalyst. Eur. J. Org. Chem. 704–712 (2006).

  48. Muñiz, K. The development of asymmetric diamination of alkenes with imido-osmium reagents. New J. Chem. 29, 1371–1385 (2005).

    Article  Google Scholar 

  49. Du, H., Yuan, W., Zhao, B. & Shi, Y. Catalytic asymmetric diamination of conjugated dienes and triene. J. Am. Chem. Soc. 129, 11688–11689 (2007).

    Article  CAS  Google Scholar 

  50. Xu, L. & Shi, Y. Chiral N-heterocyclic carbene-Pd(0)-catalyzed asymmetric diamination of conjugated dienes and triene. J. Org. Chem. 73, 749–751 (2008).

    Article  CAS  Google Scholar 

  51. Du, H., Zhao, B. & Shi, Y. Catalytic asymmetric allylic and homoallylic diamination of terminal olefins via formal C–H activation. J. Am. Chem. Soc. 130, 8590–8591 (2008).

    Article  CAS  Google Scholar 

  52. Du, H., Zhao, B., Yuan, W. & Shi, Y. Cu(I)-catalyzed asymmetric diamination of conjugated dienes. Org. Lett. 10, 4231–4234 (2008).

    Article  CAS  Google Scholar 

  53. Sharpless, K. B. et al. The osmium-catalyzed asymmetric dihydroxylation: a new ligand class and a process improvement. J. Org. Chem. 57, 2768–2771 (1992).

    Article  CAS  Google Scholar 

  54. Li, G., Angert, H. H. & Sharpless, K. B. N-Halocarbamate salts lead to more efficient catalytic asymmetric aminohydroxylation. Angew. Chem. Int. Ed. Engl. 35, 2813–2817 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

Research conducted in the Goti laboratories was supported by the Ministry of Instruction, University and Research, Italy, and Ente Cassa di Risparmio di Firenze, Italy.

Author information

Authors and Affiliations

Authors

Contributions

F.C. and A.G. contributed equally to this collaborative writing project.

Corresponding author

Correspondence to Andrea Goti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardona, F., Goti, A. Metal-catalysed 1,2-diamination reactions. Nature Chem 1, 269–275 (2009). https://doi.org/10.1038/nchem.256

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing