Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts

Abstract

The periodic layers and ordered nanochannels of covalent organic frameworks (COFs) make these materials viable open catalytic nanoreactors, but their low stability has precluded their practical implementation. Here we report the synthesis of a crystalline porous COF that is stable against water, strong acids and strong bases, and we demonstrate its utility as a material platform for structural design and functional development. We endowed a crystalline and porous imine-based COF with stability by incorporating methoxy groups into its pore walls to reinforce interlayer interactions. We subsequently converted the resulting achiral material into two distinct chiral organocatalysts, with the high crystallinity and porosity retained, by appending chiral centres and catalytically active sites on its channel walls. The COFs thus prepared combine catalytic activity, enantioselectivity and recyclability, which are attractive in heterogeneous organocatalysis, and were shown to promote asymmetric C–C bond formation in water under ambient conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and structure of stable crystalline porous COFs.
Figure 2: Crystallinity, porosity and stability.
Figure 3: Channel-wall structure of the chiral organocatalytic COFs.
Figure 4: Crystallinity and porosity of chiral COFs.
Figure 5: Scope of reactants.

Similar content being viewed by others

References

  1. Feng, X., Ding, X. & Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012).

    Article  CAS  Google Scholar 

  2. Ding, S. Y. & Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42, 548–568 (2013).

    Article  CAS  Google Scholar 

  3. Cote, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  CAS  Google Scholar 

  4. Tilford, R. W., Gemmill, W. R., zur Loye, H. C. & Lavigne, J. J. Facile synthesis of a highly crystalline, covalently linked porous boronate network. Chem. Mater. 18, 5296–5301 (2006).

    Article  CAS  Google Scholar 

  5. Belowich, M. E. & Stoddart, J. F. Dynamic imine chemistry. Chem. Soc. Rev. 41, 2003–2024 (2012).

    Article  CAS  Google Scholar 

  6. Xiang, Z. H., Cao, D. P. & Dai, L. M. Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications. Polym. Chem. 6, 1896–1911 (2015).

    Article  CAS  Google Scholar 

  7. Cote, A. P., El-Kaderi, H. M., Furukawa, H., Hunt, J. R. & Yaghi, O. M. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 129, 12914–12915 (2007).

    Article  CAS  Google Scholar 

  8. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. Int. Ed. 47, 8826–8830 (2008).

    Article  CAS  Google Scholar 

  9. Tilford, R. W., Mugavero, S. J., Pellechia, P. J. & Lavigne, J. J. Tailoring microporosity in covalent organic frameworks. Adv. Mater. 20, 2741–2746 (2008).

    Article  CAS  Google Scholar 

  10. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem. Int. Ed. 48, 5439–5442 (2009).

    Article  CAS  Google Scholar 

  11. Campbell, N. L., Clowes, R., Ritchie, L. K. & Cooper, A. I. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem. Mater. 21, 204–206 (2009).

    Article  CAS  Google Scholar 

  12. Spitler, E. L. & Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nature Chem. 2, 672–677 (2010).

    Article  CAS  Google Scholar 

  13. Wan, S. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011).

    Article  CAS  Google Scholar 

  14. Uribe-Romo, F. J., Doonan, C. J., Furukawa, H., Oisaki, K. & Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 133, 11478–11481 (2011).

    Article  CAS  Google Scholar 

  15. Kandambeth, S. et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012).

    Article  CAS  Google Scholar 

  16. Dalapati, S. et al. An azine-linked covalent organic framework. J. Am. Chem. Soc. 135, 17310–17313 (2013).

    Article  CAS  Google Scholar 

  17. Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

    Article  CAS  Google Scholar 

  18. Guo, J. et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nature Commun. 4, 2736 (2013).

    Article  Google Scholar 

  19. Lukose, B., Kuc, A. & Heine, T. The structure of layered covalent-organic frameworks. Chem. Eur. J. 17, 2388–2392 (2011).

    Article  CAS  Google Scholar 

  20. Nagai, A. et al. Pore surface engineering in covalent organic frameworks. Nature Commun. 2, 536 (2011).

    Article  Google Scholar 

  21. Dogru, M., Sonnauer, A., Gavryushin, A., Knochel, P. & Bein, T. A covalent organic framework with 4 nm open pores. Chem. Commun. 47, 1707–1709 (2011).

    Article  CAS  Google Scholar 

  22. Chen, X., Addicoat, M., Irle, S., Nagai, A. & Jiang, D. Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J. Am. Chem. Soc. 135, 546–549 (2013).

    Article  CAS  Google Scholar 

  23. Biswal, B. P. et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 135, 5328–5331 (2013).

    Article  CAS  Google Scholar 

  24. Kandambeth, S. et al. Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds. Angew. Chem. Int. Ed. 52, 13052–13056 (2013).

    Article  CAS  Google Scholar 

  25. Chandra, S. et al. Phosphoric acid loaded azo-based covalent organic framework for proton conduction. J. Am. Chem. Soc. 136, 6570–6573 (2014).

    Article  CAS  Google Scholar 

  26. Du, Y. et al. Experimental and computational studies of pyridine-assisted post-synthesis modified air stable covalent-organic frameworks. Chem. Commun. 48, 4606–4608 (2012).

    Article  CAS  Google Scholar 

  27. Ding, S. Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011).

    Article  CAS  Google Scholar 

  28. Rabbani, M. G. et al. A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications. Chem. Eur. J. 19, 3324–3328 (2013).

    Article  CAS  Google Scholar 

  29. Xu, H. et al. Catalytic covalent organic frameworks via pore surface engineering. Chem. Commun. 50, 1292–1294 (2014).

    Article  CAS  Google Scholar 

  30. MacMillan, D. W. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    Article  CAS  Google Scholar 

  31. List, B. Proline-catalyzed asymmetric reactions. Tetrahedron 58, 5573–5590 (2002).

    Article  CAS  Google Scholar 

  32. Benaglia, M., Puglisi, A. & Cozzi, F. Polymer-supported organic catalysts. Chem. Rev. 103, 3401–3429 (2003).

    Article  CAS  Google Scholar 

  33. Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  Google Scholar 

  34. Yoon, M., Srirambalaji, R. & Kim, K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 112, 1196–1231 (2012).

    Article  CAS  Google Scholar 

  35. Banerjee, M. et al. Postsynthetic modification switches an achiral framework to catalytically active homochiral metal–organic porous materials. J. Am. Chem. Soc. 131, 7524–7525 (2009).

    Article  CAS  Google Scholar 

  36. Dang, D., Wu, P., He, C., Xie, Z. & Duan, C. Homochiral metal–organic frameworks for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 132, 14321–14323 (2010).

    Article  CAS  Google Scholar 

  37. Lun, D. J., Waterhouse, G. I. & Telfer, S. G. A general thermolabile protecting group strategy for organocatalytic metal–organic frameworks. J. Am. Chem. Soc. 133, 5806–5809 (2011).

    Article  CAS  Google Scholar 

  38. Notz, W., Tanaka, F. & Barbas, C. F. III . Enamine-based organocatalysis with proline and diamines: the development of direct catalytic asymmetric aldol, Mannich, Michael, and Diels–Alder reactions. Acc. Chem. Res. 37, 580–591 (2004).

    Article  CAS  Google Scholar 

  39. Berner, O. M., Tedeschi, L. & Enders, D. Asymmetric Michael additions to nitroalkenes. Eur. J. Org. Chem. 2002, 1877–1894 (2002).

    Article  Google Scholar 

  40. Bock, D. A., Lehmann, C. W. & List, B. Crystal structures of proline-derived enamines. Proc. Natl Acad. Sci. USA 107, 20636–20641 (2010).

    Article  CAS  Google Scholar 

  41. Luo, S., Li, J., Zhang, L., Xu, H. & Cheng, J. P. Noncovalently supported heterogeneous chiral amine catalysts for asymmetric direct aldol and Michael addition reactions. Chem. Eur. J. 14, 1273–1281 (2008).

    Article  CAS  Google Scholar 

  42. Wang, C. A. et al. ‘Bottom-up’ embedding of the Jorgensen–Hayashi catalyst into a chiral porous polymer for highly efficient heterogeneous asymmetric organocatalysis. Chem. Eur. J. 18, 6718–6723 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.J. acknowledges the support of a Grant-in-Aid for Scientific Research (A) (24245030) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Contributions

D.J. conceived the project, designed the experiments and provided funding. H.X. conducted the experiments and J.G. performed computational calculations. D.J. and H.X. wrote the manuscript.

Corresponding author

Correspondence to Donglin Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Gao, J. & Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nature Chem 7, 905–912 (2015). https://doi.org/10.1038/nchem.2352

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2352

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing