
A clamp-like biohybrid catalyst for DNA oxidation
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In processive catalysis, a catalyst binds to a substrate and remains bound as it performs several consecutive reactions, as
exemplified by DNA polymerases. Processivity is essential in nature and is often mediated by a clamp-like structure that
physically tethers the catalyst to its (polymeric) template. In the case of the bacteriophage T4 replisome, a dedicated
clamp protein acts as a processivity mediator by encircling DNA and subsequently recruiting its polymerase. Here we use
this DNA-binding protein to construct a biohybrid catalyst. Conjugation of the clamp protein to a chemical catalyst with
sequence-specific oxidation behaviour formed a catalytic clamp that can be loaded onto a DNA plasmid. The catalytic
activity of the biohybrid catalyst was visualized using a procedure based on an atomic force microscopy method that
detects and spatially locates oxidized sites in DNA. Varying the experimental conditions enabled switching between
processive and distributive catalysis and influencing the sliding direction of this rotaxane-like catalyst.

E
nzymes that are able to thread onto biopolymers and to
perform stepwise reactions along the polymer chain, such as
toroidal processive enzymes, are among the most fascinating

tools involved in the cellular machinery. Processive catalysis is ubi-
quitous in nature, whereas non-templated distributive catalysis is
the most common mode of operation for both homogeneous and
heterogeneous catalysts1. Examples of processive catalysts are
DNA polymerases and exonucleases, which play crucial roles in
numerous events during the life cycle of a cell, including most of
the replication, transcription and repair processes2–7. Clamp-
shaped proteins are central components in these metabolic pro-
cesses. They encircle DNA and can tether other proteins or
enzymes through specific binding interactions. Clamp proteins
can track along DNA, either as a single entity or as an enzyme
carrier, and are loaded at recognition sites by clamp-loader proteins.
Therefore, the clamp enhances the association of its recruited
enzyme, which confers processivity to the latter’s catalytic action.
A well-studied example is the replication system of the bacterio-
phage T4, which employs a trimeric ring-shaped clamp (gp45) to
associate with the replication polymerase (gp43) to DNA, and
thereby dramatically enhances the processivity of the latter
enzyme8,9. Although the clamp itself has no catalytic function, effec-
tively it enables the polymerase to switch from a distributive to a
processive mode of action, paramount to the efficiency of the
replication process.

In the past, many studies reported on synthetic systems that
model the catalytic action of enzymes10–12. In contrast, very few
efforts were made to mimic the processive properties of these bio-
macromolecules13. In previous papers, we described a synthetic cat-
alyst based on a macrocyclic porphyrin complex that can thread
onto a synthetic polymer chain (polybutadiene) and oxidize its
double bonds via a hopping mechanism14–16, and thereby act as a
primitive model of a processive enzyme. In the present paper we
report on a biohybrid mimic derived from the T4 sliding clamp
protein. The mimic is equipped with a porphyrin derivative to

yield an artificial enzyme that can oxidize DNA substrates.
Depending on the reaction conditions, its mode of catalysis can
be influenced from a distributive to a processive mode of action.
The oxidation reactions are monitored at the single-molecule level
using a novel streptavidin-labelling procedure in combination
with atomic force microscopy (AFM), which provides a tool that
can not only detect catalytic events, but also spatially relate them
to each other. As a catalyst we used the manganese tetramethyl pyr-
idinium porphyrin complex (Mn-TMPyP, 1, see Fig. 1), which
together with an oxygen donor can cleave selectively double-
stranded DNA (dsDNA) templates at sequences that contain three
consecutive adenosine–thymine (A-T) base pairs17–19. The main
pathway of this oxidation process entails hydroxylation at the C5′

position of the deoxyribose ring of the DNA backbone, which
leads to a nick at the 3′ end of the AAA sequence. This nick contains
an aldehyde group at its 5′ end, which forms a suitable target for the
above-mentioned streptavidin assay. Combining the activity of this
porphyrin with the DNA-tracking behaviour of the T4 clamp
protein thus effectively creates a biohybrid catalyst with a
processive character.

Results and discussion
Design of the clamp-shaped biohybrid catalyst. A maleimide-
functionalized porphyrin based on Mn-TMPyP (2, see Fig. 1) was
synthesized as described in the Supplementary Information. We
used a gp45 E212C mutant of the T4 clamp as a scaffold for
conjugation with 2, because it features a conveniently located
cysteine residue on each of the protein monomer subunits, which
can be reacted with the maleimide moiety of 2. The porphyrin
catalyst needs to have sufficient flexibility to bind to the minor
groove of DNA. To achieve this, the porphyrin moiety was
separated from the gp45 clamp by a short water-soluble ethylene
glycol segment. The labelling of the gp45 mutant with 2 was
carried out with an excess (10 equiv.) of the latter compound for
five hours. Owing to the trimeric nature of the clamp and the
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presence of a single available cysteine group on each subunit, the
resulting gp45–2 conjugate can contain up to three porphyrin
catalysts. Anion-exchange chromatography allowed for the
separation of the different compounds containing 1, 2 or 3
porphyrins per trimer. The species with the highest porphyrin
content was used for experiments described in this report, and
will hereafter be called a ‘catalytic clamp’.

Additionally, we synthesized an octapeptide (3, Fig. 1) with a
sequence similar to the C-terminus of the T4 polymerase
(gp43)20. This peptide simulates the effect of gp43, leading to
clamp-loader departure and effective closure of the gp45 clamp
on DNA. Alternatively, the peptide may complete the ring structure
of the clamp by binding in the open subunit interface and thus block
access by the clamp loader and prevent association of the clamp
with DNA substrates.

Interaction of the clamp protein with DNA. Two methods exist to
allow gp45 to associate with DNA: it can either be assembled onto
DNA via nonspecific binding, or it can be loaded by a specific T4
clamp-loader protein complex (gp44/62)21,22. Both techniques
have been used to load the clamp successfully onto various DNA
substrates. The latter requires the hydrolysis of adenosine
triphosphate (ATP) and a suitable DNA template that contains a
primer–template site. This gp44/62-mediated loading process can
be monitored using an enzyme-coupled adenosine triphosphatase
assay20. We used this assay to investigate the interaction between
octapeptide 3 and the clamp protein. Using a small forked DNA
substrate22, we found that the ATP hydrolysis rate decreased when
the octapeptide was titrated into a solution that contained the
DNA, gp45 and the clamp–loader complex (see Supplementary
Fig. S7). This indicates that less-successful loading events take
place, which suggests the alternative explanation above, in which
the peptide inhibits clamp loading, applies.

AFM as a tool for detecting the oxidation of DNA. We performed
oxidation experiments with the labelled clamp on supercoiled DNA
plasmid substrates that consisted of 3,540 base pairs based on a
commercially available plasmid (pGEM, see Supplementary
Information). The supercoiled form of the plasmid (Form I)
provides a sensitive method to probe for oxidation events:
introduction of a single-stranded break resulted in uncoiling of
the plasmid to the relaxed circular form (Form II)23. This
transition is monitored easily by conventional agarose gel
electrophoresis, owing to the large difference in relative mobility
of the two species. Further oxidation events only result in a
difference in mobility when a double-stranded break occurs and
the plasmid is converted into the linear form (Form III), which
requires two oxidation events on opposite strands that are no
more than 16 nucleotides apart24, which is a rare occurrence
because of the sequence specificity of our catalyst. Consequently,
gel electrophoresis is not a suitable technique if detailed analysis
of plasmid oxidations is needed. Furthermore, if nicked DNA is
used as starting material, gel electrophoresis cannot detect any
oxidations that do not lead to a double-strand break.

As we required a more sensitive oxidation assay, we looked into
alternative ways of analysing the reaction products. The group of
Meunier has shown that the aldehydes in porphyrin-oxidized
DNA oligonucleotides are available for chemical modifications
such as reductive amination25. An aldehyde-reactive probe (ARP,
4, Fig. 1) based on hydroxylamine-derived biotin was used to
allow a more detailed investigation of the oxidized sites. Through
the interaction between biotin and streptavidin, oxidized sites in
the plasmid can be marked by a protein, which is a large structural
feature compared to the DNA strand (streptavidin has a molecular
weight of �60 kDa and an apparent height of �4.4 nm, as
compared to a typical height of �1.2 nm for dsDNA). AFM can
be used to identify these protein labels26. Here, we identify
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Figure 1 | Molecular structures and schematic representation of the concept for a catalytic clamp. a, Structural formulae, colloquial names and shape

representations of small molecules. b, Shape representations and colloquial names of proteins and protein conjugates. The E212C mutant of gp45 is shown,

and its cysteine residues are emphasized in red. Its structure is based on PDB-file 1CZD with the E212C mutation performed in silico. c, The concept for a

clamp-shaped biohybrid catalyst is based on synthetic catalyst 2, which is conjugated to the gp45 clamp protein to form a catalytic clamp. This biohybrid

catalyst can associate with DNA and slide along it, which confers processivity to the catalytic behaviour of 2.
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streptavidin to determine the number of oxidation events and to
elucidate their spatial distribution. A schematic representation
of this strategy is presented in Fig. 2a. In the fast-growing body of
literature that describes DNA oxidation by porphyrins, the
aldehydes have not been used for the quantization of oxidation
damage. Moreover, information regarding the spatial distribution
of the reactions, to detect processivity in substrate oxidation,
could hitherto not be obtained because a suitable assay was
not available.

To validate this technique, we incubated DNA with Mn-TMPyP
1 in the presence of KHSO5 as an oxygen donor. After one minute,
the reaction was quenched and ARP was added to biotinylate any
oxidized sites. The purified solution was supplemented with a strep-
tavidin solution to achieve protein labelling of reaction sites, after
which it was analysed by AFM. Figure 2b shows a representative
AFM height image that displays two relaxed circular DNA strands
with a number of globular features. A profile analysis of this
image is given in Fig. 2c. The globular features have apparent
heights that range from 3.3 to 5.4 nm, which is in agreement with
the height measured for streptavidin (�4.4 nm). This experiment
demonstrated that the combination of ARP, streptavidin and AFM
provides an alternative tool for assaying DNA oxidation by
Mn-porphyrins such as 1.

Influence of the octapeptide on the catalytic clamp. Supercoiled
DNA plasmid was incubated with the catalytic clamp and KHSO5

as an oxygen donor, with or without octapeptide 3 present. Gel
electrophoresis confirmed that nearly all supercoiled DNA was
converted into the nicked form (see Fig. 3a). As expected, the
addition of peptide resulted in a decrease in oxidation efficiency:
the binding of the clamp protein to DNA is inhibited by the
binding of the peptide to the open subunit interface of a clamp
trimer. This suggests that the peptide acts like a switch,
reminiscent of the peptide switch in the Escherichia coli
replication mechanism that mediates processivity by regulating
polymerase association with DNA6. Plasmids treated with the
incubation mixture for one minute were analysed by AFM, and
the number of oxidation events per plasmid was recorded for
conditions with or without the octapeptide present. Without the
peptide, 80+5% of the plasmids were found to be oxidized in this
time span. Oxidized plasmids were observed to have an average of
2.3 bound streptavidin molecules. The histogram shown in Fig. 3b
appears to consist of two Poissonian curves with maxima at one
or five oxidation events per plasmid. Individual analysis of
plasmids from the latter subset revealed that bound streptavidin
molecules were often found in clusters (see Fig. 3c). If only
distributive oxidation had taken place, these streptavidins would
have been uniformly randomly distributed over the plasmids.
Statistical analysis of the distances between events suggests that
there is a clear difference between the threaded and the non-
threaded oxidation mechanisms (see Supplementary Information).
We did not detect any clustering in experiments when
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Figure 2 | AFM-based method for detecting DNA oxidation. a, Schematic representation of the detection strategy: (1) DNA oxidation produces an aldehyde,

(2) the aldehyde reacts with the ARP reagent 4 to produce a biotinylated site, (3) treatment with streptavidin results in a large object that is connected to

the oxidation site, which can be detected by AFM. b, Typical AFM height image showing two relaxed circular DNA plasmids with a number of globular
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or a DNA strand with a globular feature (#). Streptavidin has an apparent height of �4.4 nm (3.3–5.4 nm), which corresponds to the height of the globular

features labelled by a hatch sign.
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octapeptide 3 was present, and fewer oxidation events took place
overall: 55+5% of the plasmids were oxidized, and no more than
four streptavidin labels were found on any single plasmid (see
Fig. 3c, bottom panel, for a representative plasmid). This reduced
catalytic activity suggests that the clamp has a lower affinity for
DNA when 3 is present, which corroborates the finding that 3
effectively closes the clamp (Fig. 3d and Supplementary Fig. S7).

The direction of the catalytic clamp can be guided. In nature, the
loading of the gp45 clamp protein onto its DNA substrate is
mediated by the clamp–loader complex (gp44/62) in an ATP-
dependent process27. First, the clamp–loader complex associates
with the gp45 clamp protein. Subsequently, the clamp is loaded
onto DNA at a preferential binding site. These sites can vary from
simple nicks in dsDNA to a 5′ extended single overhang28. When
a nick is used as a loading site, the clamp–loader complex binds
to the 3′ end of the nick, and it remains bound as the clamp itself
is free to slide over the DNA. Thus, the nick effectively

determines the direction in which the clamp will translocate,
because one of the two possible paths is physically blocked by the
gp44/62 complex (Fig. 4a).

Nicks in plasmids can be created with exact precision by engin-
eered restriction enzymes29. Wild-type restriction enzymes are
nucleases that recognize and cut fixed DNA sequences, which
causes double-stranded breaks. One such restriction enzyme is
BbvCI. Its recognition sequence and cut sites are shown in
Fig. 4b. Two engineered versions of BbvCI that cut only one of
the two strands of the recognition site exist. These two
mutants, Nt.BbvCI and Nb.BbvCI, do not cause double-
stranded breaks and thus effectively only produce nicks in one
of the two strands29. Their cut sites are also shown in Fig. 4b.
We were interested in whether nicks generated by one of these
engineered restriction enzymes could, in effect, create loading
sites that, through their predetermined interaction with the
clamp–loader complex, specifically direct the catalytic clamp in
either the 3′ or the 5′ direction of the plasmid. We selected our
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pGEM-derived plasmid as the template because, conveniently, it con-
tains only a single recognition site for BbvCI, which lies between two
regions that have either low or high AAA-site densities (Fig. 4c). If
Nb.BbvCI is used to nick the plasmid, the catalytic clamp should
be directed towards a region sparse in potential oxidation sites,
whereas a nick caused by Nt.BbvCI should direct the plasmid
towards a region with many potential oxidation sites.

To verify this, the plasmid was nicked with either the Nt.BbvCI
or the Nb.BbvCI endonuclease, and the catalytic clamp was loaded
by the clamp loader. Streptavidin-labelling analysis was successful in
identifying oxidation reactions on the nicked substrates. As can be
seen in Fig. 5a,b, the different effects of the two BbvCI variants
are immediately apparent. When the Nt.BbvCI-nicked substrate
was used, the average number of streptavidin molecules per
plasmid was 6.1+1.6. For the Nb.BbvCI substrate, this number
was significantly lower, namely 1.9+1.2 (see Fig. 5c). This obser-
vation correlates with the situation outlined in Fig. 4, in which the

clamp is loaded and subsequently migrates towards regions with
either a high or a low number of oxidation sites. Moreover, visual
inspection of the location of streptavidin labels on Nt.BbvCI-
nicked substrates revealed that oxidations consistently occurred in
clusters. To reach the first cluster of AAA sites in the 5′ direction
of the loading site, the catalytic clamp would have to slide across
more than 40 base pairs on the substrate, which clearly demon-
strates the processive nature of this hybrid catalyst.

Conclusion
We constructed a novel biohybrid artificial enzyme based on the T4
clamp protein and a conjugated cationic manganese-porphyrin cat-
alyst. The resulting catalytic clamp is capable of translocating along
a DNA template and oxidizing AAA sites. To analyse its activity, we
developed an AFM-based method in which oxidized sites on the
plasmid are labelled with streptavidin. Identification of the strepta-
vidin labels on the DNA substrate by AFM successfully detected
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oxidation events and gathered information about their relative
location, which hitherto had not been possible.

Dependent on the reaction conditions, the biohybrid catalyst dis-
played either distributive or processive catalytic behaviour on DNA
substrates. In cases where the protein was bound to DNA through
nonspecific binding, clusters of streptavidin labels in close proximity
could be observed on the same plasmid, which implies processive
catalysis. Such clusters were not found when the catalytic clamp
was ‘closed’ by octapeptide 3, a structural mimic of the sequence
that naturally completes the circular shape of the clamp. In this
closed state, the catalytic clamp could not associate with its DNA
template and thus all reaction products were the result of
distributive actions.

In nature, the T4 clamp protein is loaded onto recognition sites
in DNA by a clamp–loader complex (gp44/62). The orientation of
the recognition site determines the direction in which the clamp
will slide along the DNA template. We could generate enzymatically
two mirrored loading sites, guiding the clamp to stretches of DNA
that were either rich or poor in potential reaction sites. The unique
ability of our AFM method to detect catalytic events allowed us to
verify that when this directed enzymatic loading strategy was
applied, the catalyst would, indeed, slide towards the chosen
region. If the catalytic clamp was guided towards the substrate-
rich region, we could detect that many streptavidin labels appeared
in clusters. When the clamp slid over the substrate-poor region, a
lower total amount of oxidation events was found, and no clusters
of two or more labels were detected.

Combined, this report shows that using concepts from nature,
such as toroidal mediators, the performance of catalytic reactions
may be influenced and guided, which allows the development of
more-efficient life-like catalysts for the modification of linear sub-
strates, and eventually synthetic polymers also.

Methods
Oxidation of supercoiled DNA by the catalytic clamp. As shown in Supplementary
Fig. S8, various oxygen-donor concentrations were tried. The catalytic clamp, at a
concentration of 400 nM, was incubated with supercoiled plasmid (25 ng ml21) in
the presence of 50 mg ml21 bovine serum albumin (BSA). When indicated, peptide 3
(10 mM) was added. After five minutes, the reaction was started by the addition of
KHSO5 to final concentrations of 5, 10 or 20 mM, always taking care to bring the
total volume of the reaction to 60 ml. At the indicated times, the reactions were
quenched, extracted and analysed by SDS–polyacrylamide gel electrophoresis (see
Supplementary Fig. S8) or AFM (see Fig. 3.)

Oxidation of nicked DNA by the catalytic clamp. The catalytic clamp at a
concentration of 250 nM was incubated with Nt.BbvCI- or Nb.BbvCI-nicked DNA

(25 ng ml21) in the presence of 50 mg ml21 BSA, 2 mM ATP and 125 nM gp44/62.
After five minutes, the reaction was started by the addition of KHSO5 to a
concentration of 20 mM to bring the total volume of the reaction to 25 ml. After five
minutes the reactions were quenched, extracted and analysed by AFM as described
below, the results of which are shown in Fig. 5.

Biotinylation and AFM-analysis of oxidized plasmids. Quenched samples from
oxidation reactions were incubated with 4 mM ARP reagent 4, biotinylating
aldehydes in DNA with a sensitivity down to 2.4 aldehydes per 107 base pairs30.
After 1.5 hours, the amination reaction was quenched by the addition of a dilute
NaCNBH3 solution. The reactions were then incubated for 15 minutes, and the
DNA was precipitated in ethanol by the addition of 0.1 volume 3M NaOAc pH 5.3
and 2.5 volumes EtOH, followed by incubation at 220 8C for 30 minutes. Then the
solutions were centrifuged at 16,000g for 15 minutes, after which the pellets were
resuspended in ice-cold EtOH (70%) followed by an additional ten minutes of
centrifugation. The pellets were then dried in air and dissolved in AFM buffer
(40 mM HEPES pH 7.4, 10 mM MgCl2) and 10 equiv. streptavidin were added per
total amount of potential oxidation sites (�190 per plasmid). After the addition of
streptavidin, the samples were incubated for another 30 minutes before they were
purified from excess streptavidin by a G100 Sephadex column equilibrated in AFM
buffer. The fraction with the highest amount of DNA was analysed by AFM. A
sample (2 ml) of the first protein-containing fraction was incubated for five minutes
on freshly cleaved mica, washed with 1 ml MilliQ water, dried by air flow and
analysed by AFM. For Fig. 3b, 23 plasmids were analysed. For Fig. 5c, 13 Nt.BbvCI-
nicked plasmids and 15 Nb.BbvCI-nicked plasmids were analysed. Circular plasmids
may sometimes break and become linear during sample preparation for AFM
analysis; linear plasmids were not necessarily formed by oxidative catalysis.
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