Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rationally synthesized two-dimensional polymers

Abstract

Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the structures of one- and two-dimensional polymers, and strategies for 2D polymerization.
Figure 2: Thermodynamic synthesis of COFs.
Figure 3: Computational studies indicate that COFs adopt offset layered structures.
Figure 4: 2D COFs exhibit photoconductivity and variations in charge transport as a function of their structure.
Figure 5: COF thin films supported on single-layer graphene.
Figure 6: Synthesis of surface-supported single-layer 2D polymers.
Figure 7: Two-dimensional polymers prepared by surface-catalysed aryl–aryl coupling.
Figure 8: Two distinct polymerizable groups A and B were incorporated into a mesogen.
Figure 9: Irradiation of alkyne-containing monomers induces simultaneous topochemical polymerizations that yield a 2D polymer comprising linear polyacetylene and polydiacetylene chains linked by alkanes.
Figure 10: Topochemical polymerization in a layered crystal provides a multilayer 2D polymer.

Similar content being viewed by others

References

  1. Bielawski, C. W. & Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 32, 1–29 (2007).

    CAS  Google Scholar 

  2. Matyjaszewski, K. Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules 45, 4015–4039 (2012).

    CAS  Google Scholar 

  3. Matyjaszewski, K. & Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nature Chem. 1, 276–288 (2009).

    CAS  Google Scholar 

  4. Semsarilar, M. & Perrier, S. 'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization. Nature Chem. 2, 811–820 (2010).

    CAS  Google Scholar 

  5. Dienstmaier, J. F. et al. Synthesis of well-ordered COF monolayers: Surface growth of nanocrystalline precursors versus direct on-surface polycondensation. ACS Nano 5, 9737–9745 (2011).

    CAS  PubMed  Google Scholar 

  6. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    CAS  Google Scholar 

  7. Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nature Chem. 4, 215–220 (2012).

    CAS  Google Scholar 

  8. Zwaneveld, N. A. et al. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 130, 6678–6679 (2008).

    CAS  PubMed  Google Scholar 

  9. Stupp, S. I., Son, S., Lin, H. C. & Li, L. S. Synthesis of two-dimensional polymers. Science 259, 59–63 (1993).

    CAS  PubMed  Google Scholar 

  10. Schultz, M. J. et al. Synthesis of linked carbon monolayers: Films, balloons, tubes, and pleated sheets. Proc. Natl Acad. Sci. USA 105, 7353–7358 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sakamoto, J., van Heijst, J., Lukin, O. & Schluter, A. D. Two-dimensional polymers: Just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–1069 (2009).

    CAS  Google Scholar 

  12. Kissel, P. et al. A two-dimensional polymer prepared by organic synthesis. Nature Chem. 4, 287–291 (2012).

    CAS  Google Scholar 

  13. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  14. Whittell, G. R. & Manners, I. Advances with ammonia-borane: Improved recycling and use as a precursor to atomically thin BN films. Angew. Chem. Int. Ed. 50, 10288–10289 (2011).

    CAS  Google Scholar 

  15. Golberg, D. et al. Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010).

    CAS  PubMed  Google Scholar 

  16. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. U. S. A. 102, 10451–10453 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  PubMed  Google Scholar 

  18. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    CAS  PubMed  Google Scholar 

  20. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    CAS  PubMed  Google Scholar 

  21. Chen, L., Hernandez, Y., Feng, X. & Müllen, K. From nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012).

    CAS  Google Scholar 

  22. Pisula, W., Feng, X. & Müllen, K. Charge-carrier transporting graphene-type molecules. Chem. Mater. 23, 554–567 (2011).

    CAS  Google Scholar 

  23. Simpson, C. D. et al. Synthesis of a giant 222 carbon graphite sheet. Chem. Eur. J. 8, 1424–1429 (2002).

    CAS  PubMed  Google Scholar 

  24. Mas-Torrent, M. & Rovira, C. Role of molecular order and solid-state structure in organic field-effect transistors. Chem. Rev. 111, 4833–4856 (2011).

    CAS  PubMed  Google Scholar 

  25. Rivnay, J., Mannsfeld, S. C. B., Miller, C. E., Salleo, A. & Toney, M. F. Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488–5519 (2012).

    CAS  PubMed  Google Scholar 

  26. Peet, J., Senatore, M. L., Heeger, A. J. & Bazan, G. C. The role of processing in the fabrication and optimization of plastic solar cells. Adv. Mater. 21, 1521–1527 (2009).

    CAS  Google Scholar 

  27. Beaujuge, P. M. & Fréchet, J. M. J. Molecular design and ordering effects in functional materials for transistor and solar cell applications. J. Am. Chem. Soc. 133, 20009–20029 (2011).

    CAS  PubMed  Google Scholar 

  28. Tsao, H. N. & Müllen, K. Improving polymer transistor performance via morphology control. Chem. Soc. Rev. 39, 2372–2386 (2010).

    CAS  PubMed  Google Scholar 

  29. Carlucci, L., Ciani, G., Proserpio, D. M. & Porta, F. Open network architectures from the self-assembly of AgNO3 and 5,10,15,20-tetra(4-pyridyl)porphyrin (H2tpyp) building blocks: The exceptional self-penetrating topology of the 3D network of [Ag8(ZnIItpyp)7(H2O)2](NO3)8 . Angew. Chem. Int. Ed. 42, 317–322 (2003).

    CAS  Google Scholar 

  30. Dai, F., Dou, J., He, H., Zhao, X. & Sun, D. Self-assembly of metal-organic supramolecules: From a metallamacrocycle and a metal-organic coordination cage to 1D or 2D coordination polymers based on flexible dicarboxylate ligands. Inorg. Chem. 49, 4117–4124 (2010).

    CAS  PubMed  Google Scholar 

  31. Finke, A. D., Gross, D. E., Han, A. & Moore, J. S. Engineering solid-state morphologies in carbazole-ethynylene macrocycles. J. Am. Chem. Soc. 133, 14063–14070 (2011).

    CAS  PubMed  Google Scholar 

  32. Bartels, L. Tailoring molecular layers at metal surfaces. Nature Chem. 2, 87–95 (2010).

    CAS  Google Scholar 

  33. Lehn, J. M. et al. Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: Structure of an inorganic double helix. Proc. Natl. Acad. Sci. USA 84, 2565–2569 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Baxter, P. N. W., Lehn, J.-M., Fischer, J. & Youinou, M.-T. Self-assembly and structure of a 3 × 3 inorganic grid from nine silver ions and six ligand components. Angew. Chem. Int. Ed. Engl. 33, 2284–2287 (1994).

    Google Scholar 

  35. Hoskins, B. F. & Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 111, 5962–5964 (1989).

    CAS  Google Scholar 

  36. Simard, M., Su, D. & Wuest, J. D. Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers. J. Am. Chem. Soc. 113, 4696–4698 (1991).

    CAS  Google Scholar 

  37. Wang, X., Simard, M. & Wuest, J. D. Molecular tectonics. Three-dimensional organic networks with zeolitic properties. J. Am. Chem. Soc. 116, 12119–12120 (1994).

    CAS  Google Scholar 

  38. Fujita, M., Yazaki, J. & Ogura, K. Preparation of a macrocyclic polynuclear complex, [(en)Pd(4,4′-bpy)]4(NO3)8 (en = ethylenediamine, bpy = bipyridine), which recognizes an organic molecule in aqueous media. J. Am. Chem. Soc. 112, 5645–5647 (1990).

    CAS  Google Scholar 

  39. Stock, N. & Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012).

    CAS  PubMed  Google Scholar 

  40. Bae, Y.-S. & Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed. 50, 11586–11596 (2011).

    CAS  Google Scholar 

  41. Zhou, H.-C., Long, J. R. & Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 112, 673–674 (2012).

    CAS  PubMed  Google Scholar 

  42. Bétard, A. & Fischer, R. A. Metal-organic framework thin films: From fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012).

    PubMed  Google Scholar 

  43. Li, J.-R., Sculley, J. & Zhou, H.-C. Metal-organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    CAS  PubMed  Google Scholar 

  44. Sumida, K. et al. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012).

    CAS  PubMed  Google Scholar 

  45. Kreno, L. E. et al. Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    CAS  PubMed  Google Scholar 

  46. Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002).

    Google Scholar 

  47. Mastalerz, M. Shape-persistent organic cage compounds by dynamic covalent bond formation. Angew. Chem. Int. Ed. 49, 5042–5053 (2010).

    CAS  Google Scholar 

  48. Jin, Y., Jin, A., McCaffrey, R., Long, H. & Zhang, W. Design strategies for shape-persistent covalent organic polyhedrons (COPs) through imine condensation/metathesis. J. Org. Chem. 77, 7392–7400 (2012).

    CAS  PubMed  Google Scholar 

  49. Nishiyabu, R., Kubo, Y., James, T. D. & Fossey, J. S. Boronic acid building blocks: Tools for self assembly. Chem. Commun. 47, 1124–1150 (2011).

    CAS  Google Scholar 

  50. Hartley, C. S., Elliott, E. L. & Moore, J. S. Covalent assembly of molecular ladders. J. Am. Chem. Soc. 129, 4512–4513 (2007).

    CAS  PubMed  Google Scholar 

  51. Hartley, C. S. & Moore, J. S. Programmed dynamic covalent assembly of unsymmetrical macrocycles. J. Am. Chem. Soc. 129, 11682–11683 (2007).

    CAS  PubMed  Google Scholar 

  52. Lehn, J.-M. Dynamers: Dynamic molecular and supramolecular polymers. Prog. Polym. Sci. 30, 814–831 (2005).

    CAS  Google Scholar 

  53. Maeda, T., Otsuka, H. & Takahara, A. Dynamic covalent polymers: Reorganizable polymers with dynamic covalent bonds. Prog. Polym. Sci. 34, 581–604 (2009).

    CAS  Google Scholar 

  54. Montarnal, D., Capelot, M., Tournilhac, F. & Leibler, L. Silica-like malleable materials from permanent organic networks. Science 334, 965–968 (2011).

    CAS  PubMed  Google Scholar 

  55. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    PubMed  Google Scholar 

  56. Zheng, C. & Zhong, C. Estimation of framework charges in covalent organic frameworks using connectivity-based atom contribution method. J. Phys. Chem. C 114, 9945–9951 (2010).

    CAS  Google Scholar 

  57. Spitler, E. L. et al. A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking. J. Am. Chem. Soc. 133, 19416–19421 (2011).

    CAS  PubMed  Google Scholar 

  58. Lukose, B., Kuc, A., Frenzel, J. & Heine, T. On the reticular construction concept of covalent organic frameworks. Beilstein J. Nanotechnol. 1, 60–70 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lukose, B., Kuc, A. & Heine, T. The structure of layered covalent-organic frameworks. Chem. Eur. J. 17, 2388–2392 (2010).

    Google Scholar 

  60. Zhou, W., Wu, H. & Yildirim, T. Structural stability and elastic properties of prototypical covalent organic frameworks. Chem. Phys. Lett. 499, 103–107 (2010).

    CAS  Google Scholar 

  61. Koo, B. T., Dichtel, W. R. & Clancy, P. A classification scheme for the stacking of two-dimensional boronate ester-linked covalent organic frameworks. J. Mater. Chem. 22, 17460–17469 (2012).

    CAS  Google Scholar 

  62. Chen, X., Addicoat, M., Irle, S., Nagai, A. & Jiang, D. Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J. Am. Chem. Soc. 135, 546–549 (2013).

    CAS  PubMed  Google Scholar 

  63. El-Kaderi, H. M. et al. Designed synthesis of 3D covalent organic frameworks. Science 316, 268–272 (2007).

    CAS  PubMed  Google Scholar 

  64. Hunt, J. R., Doonan, C. J., LeVangie, J. D., Côté, A. P. & Yaghi, O. M. Reticular synthesis of covalent organic borosilicate frameworks. J. Am. Chem. Soc. 130, 11872–11873 (2008).

    CAS  PubMed  Google Scholar 

  65. Bunck, D. N. & Dichtel, W. R. Internal functionalization of three-dimensional covalent organic frameworks. Angew. Chem. Int. Ed. 51, 1885–1889 (2012).

    CAS  Google Scholar 

  66. Yu, J.-T., Chen, Z., Sun, J., Huang, Z.-T. & Zheng, Q.-Y. Cyclotricatechylene based porous crystalline material: Synthesis and applications in gas storage. J. Mater. Chem. 22, 5369–5373 (2012).

    CAS  Google Scholar 

  67. Kahveci, Z., Islamoglu, T., Shar, G. A., Ding, R. & El-Kaderi, H. M. Targeted synthesis of a mesoporous triptycene-derived covalent organic framework. CrystEngComm 15, 1524–1527 (2013).

    CAS  Google Scholar 

  68. Côté, A. P., El-Kaderi, H. M., Furukawa, H., Hunt, J. R. & Yaghi, O. M. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 129, 12914–12915 (2007).

    PubMed  Google Scholar 

  69. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. Int. Ed. 47, 8826–8830 (2008).

    CAS  Google Scholar 

  70. Nagai, A. et al. Pore surface engineering in covalent organic frameworks. Nature Commun. 2, 1–8 (2011).

    Google Scholar 

  71. Du, Y. et al. Experimental and computational studies of pyridine-assisted post-synthesis modified air stable covalent-organic frameworks. Chem. Commun. 48, 4606–4608 (2012).

    CAS  Google Scholar 

  72. Ding, X. et al. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew. Chem. Int. Ed. 50, 1289–1293 (2011).

    CAS  Google Scholar 

  73. Spitler, E. L. & Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nature Chem. 2, 672–677 (2010).

    CAS  Google Scholar 

  74. Ding, X. et al. An n-channel two-dimensional covalent organic framework. J. Am. Chem. Soc. 133, 14510–14513 (2011).

    CAS  PubMed  Google Scholar 

  75. Feng, X., Chen, L., Dong, Y. & Jiang, D. Porphyrin-based two-dimensional covalent organic frameworks: Synchronized synthetic control of macroscopic structures and pore parameters. Chem. Commun. 47, 1979–1981 (2011).

    CAS  Google Scholar 

  76. Tilford, R. W., Gemmill, W. R., zur Loye, H.-C. & Lavigne, J. J. Facile synthesis of a highly crystalline, covalently linked porous boronate network. Chem. Mater. 18, 5296–5301 (2006).

    CAS  Google Scholar 

  77. Tilford, R. W., Mugavero, S. J., Pellechia, P. J. & Lavigne, J. J. Tailoring microporosity in covalent organic frameworks. Adv. Mater. 20, 2741–2746 (2008).

    CAS  PubMed  Google Scholar 

  78. Lanni, L. M., Tilford, R. W., Bharathy, M. & Lavigne, J. J. Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 133, 13975–13983 (2011).

    CAS  PubMed  Google Scholar 

  79. Spitler, E. L., Giovino, M. R., White, S. L. & Dichtel, W. R. A mechanistic study of Lewis acid-catalyzed covalent organic framework formation. Chem. Sci. 2, 1588–1593 (2011).

    CAS  Google Scholar 

  80. Feng, X., Dong, Y. & Jiang, D. Star-shaped two-dimensional covalent organic frameworks. CrystEngComm 15, 1508–1511 (2013).

    CAS  Google Scholar 

  81. Dogru, M. et al. Facile synthesis of a mesoporous benzothiadiazole-COF based on a transesterification process. CrystEngComm 15, 1500–1502 (2013).

    CAS  Google Scholar 

  82. Rabbani, M. G. et al. A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications. Chem. Eur. J. 19, 3324–3328 (2013).

    CAS  PubMed  Google Scholar 

  83. Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

    CAS  Google Scholar 

  84. Ding, S. Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011).

    CAS  PubMed  Google Scholar 

  85. Uribe-Romo, F. J., Doonan, C. J., Furukawa, H., Oisaki, K. & Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 133, 11478–11481 (2011).

    CAS  PubMed  Google Scholar 

  86. Kandambeth, S. et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012).

    CAS  PubMed  Google Scholar 

  87. Jackson, K. T., Reich, T. E. & El-Kaderi, H. M. Targeted synthesis of a porous borazine-linked covalent organic framework. Chem. Commun. 48, 8823–8825 (2012).

    CAS  Google Scholar 

  88. Han, S. S., Furukawa, H., Yaghi, O. M. & Goddard, W. A. III Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc. 130, 11580–11581 (2008).

    CAS  PubMed  Google Scholar 

  89. Furukawa, H. & Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009).

    CAS  PubMed  Google Scholar 

  90. Doonan, C. J., Tranchemontagne, D. J., Glover, T. G., Hunt, J. R. & Yaghi, O. M. Exceptional ammonia uptake by a covalent organic framework. Nature Chem. 2, 235–238 (2010).

    CAS  Google Scholar 

  91. Benanti, T. & Venkataraman, D. Organic solar cells: An overview focusing on active layer morphology. Photosynth. Res. 87, 73–81 (2006).

    CAS  PubMed  Google Scholar 

  92. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A photoconductive covalent organic framework: Self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem. Int. Ed. 48, 5439–5442 (2009).

    CAS  Google Scholar 

  93. Wan, S. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011).

    CAS  Google Scholar 

  94. Jin, S. et al. Charge dynamics in a donor–acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions. Angew. Chem. Int. Ed. 52, 2017–2021 (2013).

    CAS  Google Scholar 

  95. Dogru, M. et al. A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew. Chem. Int. Ed. 52, 2920–2924 (2013).

    CAS  Google Scholar 

  96. Patwardhan, S., Kocherzhenko, A. A., Grozema, F. C. & Siebbeles, L. D. A. Delocalization and mobility of charge carriers in covalent organic frameworks. J. Phys. Chem. C 115, 11768–11772 (2011).

    CAS  Google Scholar 

  97. Senthilkumar, K., Grozema, F. C., Bickelhaupt, F. M. & Siebbeles, L. D. A. Charge transport in columnar stacked triphenylenes: Effects of conformational fluctuations on charge transfer integrals and site energies. J. Chem. Phys. 119, 9809–9817 (2003).

    CAS  Google Scholar 

  98. Spitler, E. L. et al. Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. Angew. Chem. Int. Ed. 51, 2623–2627 (2012).

    CAS  Google Scholar 

  99. Dogru, M., Sonnauer, A., Gavryushin, A., Knochel, P. & Bein, T. A covalent organic framework with 4 nm open pores. Chem. Commun. 47, 1707–1709 (2011).

    CAS  Google Scholar 

  100. Feng, X. et al. High-rate charge-carrier transport in porphyrin covalent organic frameworks: Switching from hole to electron to ambipolar conduction. Angew. Chem. Int. Ed. 51, 2618–2622 (2012).

    CAS  Google Scholar 

  101. Feng, X. et al. An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering. Adv. Mater. 24, 3026–3031 (2012).

    CAS  PubMed  Google Scholar 

  102. Colson, J. W. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011).

    CAS  PubMed  Google Scholar 

  103. Pang, S., Hernandez, Y., Feng, X. & Müllen, K. Graphene as transparent electrode material for organic electronics. Adv. Mater. 23, 2779–2795 (2011).

    CAS  PubMed  Google Scholar 

  104. Berlanga, I. et al. Delamination of layered covalent organic frameworks. Small 7, 1207–1211 (2011).

    CAS  PubMed  Google Scholar 

  105. Clair, S., Ourdjini, O., Abel, M. & Porte, L. Two-dimensional polymer as a mask for surface nanopatterning. Adv. Mater. 24, 1252–1254 (2012).

    CAS  PubMed  Google Scholar 

  106. Gutzler, R. et al. Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). Chem. Commun. 45, 4456–4458 (2009).

    Google Scholar 

  107. Ourdjini, O. et al. Substrate-mediated ordering and defect analysis of a surface covalent organic framework. Phys. Rev. B 84, 125421–125429 (2011).

    Google Scholar 

  108. Marele, A. C. et al. Formation of a surface covalent organic framework based on polyester condensation. Chem. Commun. 48, 6779–6781 (2012).

    CAS  Google Scholar 

  109. Faury, T. et al. Sequential linking to control growth of a surface covalent organic framework. J. Phys. Chem. C 116, 4819–4823 (2012).

    CAS  Google Scholar 

  110. Dienstmaier, J. F. et al. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 6, 7234–7242 (2012).

    CAS  PubMed  Google Scholar 

  111. Guan, C. Z., Wang, D. & Wan, L. J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 48, 2943–2945 (2012).

    CAS  Google Scholar 

  112. Slater, A. G., Beton, P. H. & Champness, N. R. Two-dimensional supramolecular chemistry on surfaces. Chem. Sci. 2, 1440–1448 (2011).

    CAS  Google Scholar 

  113. Lipton-Duffin, J. A., Ivasenko, O., Perepichka, D. F. & Rosei, F. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5, 592–597 (2009).

    CAS  PubMed  Google Scholar 

  114. Lipton-Duffin, J. A. et al. Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction. Proc. Natl Acad. Sci. USA 107, 11200–11204 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    CAS  PubMed  Google Scholar 

  116. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    CAS  PubMed  Google Scholar 

  117. Abel, M., Clair, S., Ourdjini, O., Mossoyan, M. & Porte, L. Single layer of polymeric Fe-phthalocyanine: An organometallic sheet on metal and thin insulating film. J. Am. Chem. Soc. 133, 1203–1205 (2011).

    CAS  PubMed  Google Scholar 

  118. Bieri, M. et al. Two-dimensional polymer formation on surfaces: Insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010).

    CAS  PubMed  Google Scholar 

  119. Treier, M., Richardson, N. V. & Fasel, R. Fabrication of surface-supported low-dimensional polyimide networks. J. Am. Chem. Soc. 130, 14054–14055 (2008).

    CAS  PubMed  Google Scholar 

  120. Weigelt, S. et al. Surface synthesis of 2D branched polymer nanostructures. Angew. Chem. Int. Ed. 47, 4406–4410 (2008).

    CAS  Google Scholar 

  121. Jensen, S., Früchtl, H. & Baddeley, C. J. Coupling of triamines with diisocyanates on Au(111) leads to the formation of polyurea networks. J. Am. Chem. Soc. 131, 16706–16713 (2009).

    CAS  PubMed  Google Scholar 

  122. Blunt, M. O., Russell, J. C., Champness, N. R. & Beton, P. H. Templating molecular adsorption using a covalent organic framework. Chem. Commun. 46, 7157–7159 (2010).

    CAS  Google Scholar 

  123. Ozaki, H. et al. Formation of atomic cloth observed by penning ionization electron spectroscopy. J. Chem. Phys. 103, 1226–1228 (1995).

    CAS  Google Scholar 

  124. Takami, T. et al. Periodic structure of a single sheet of a clothlike macromolecule (atomic cloth) studied by scanning tunneling microscopy. Angew. Chem. Int. Ed. Engl. 36, 2755–2757 (1997).

    CAS  Google Scholar 

  125. Miura, A. et al. Light- and STM-tip-induced formation of one-dimensional and two-dimensional organic nanostructures. Langmuir 19, 6474–6482 (2003).

    CAS  Google Scholar 

  126. Okawa, Y. & Aono, M. Nanoscale control of chain polymerization. Nature 409, 683–684 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Science Foundation (CHE-1056657 and CHE-1124754), a Sloan Research Fellowship, the Arnold and Mabel Beckman Foundation, and the Research Corporation for Science Advancement. J.W.C. acknowledges the National Science Foundation for a Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Dichtel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colson, J., Dichtel, W. Rationally synthesized two-dimensional polymers. Nature Chem 5, 453–465 (2013). https://doi.org/10.1038/nchem.1628

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1628

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing