Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biodegradable nanostructures with selective lysis of microbial membranes

Abstract

Macromolecular antimicrobial agents such as cationic polymers and peptides have recently been under an increased level of scrutiny because they can combat multi-drug-resistant microbes. Most of these polymers are non-biodegradable and are designed to mimic the facially amphiphilic structure of peptides so that they may form a secondary structure on interaction with negatively charged microbial membranes. The resulting secondary structure can insert into and disintegrate the cell membrane after recruiting additional polymer molecules. Here, we report the first biodegradable and in vivo applicable antimicrobial polymer nanoparticles synthesized by metal-free organocatalytic ring-opening polymerization of functional cyclic carbonate. We demonstrate that the nanoparticles disrupt microbial walls/membranes selectively and efficiently, thus inhibiting the growth of Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and fungi, without inducing significant haemolysis over a wide range of concentrations. These biodegradable nanoparticles, which can be synthesized in large quantities and at low cost, are promising as antimicrobial drugs, and can be used to treat various infectious diseases such as MRSA-associated infections, which are often linked with high mortality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and micelle formation of cationic amphiphilic polycarbonates.
Figure 2: Dose-dependent growth inhibition of a range of bacteria and a fungus in the presence of polymer 3.
Figure 3: Comparative TEM images of microbes in the absence and presence of polymer 3.

Similar content being viewed by others

References

  1. Hancock, R. E. W. & Sahl, H. G. Antimicrobial and host–defence peptides as new anti-infective therapeutic strategies. Nature Biotechnol. 24, 1551–1557 (2006).

    Article  CAS  Google Scholar 

  2. Radzishevsky, I. S. et al. Improved antimicrobial peptides based on acyl-lysine oligomers. Nature Biotechnol. 25, 657–659 (2007).

    Article  CAS  Google Scholar 

  3. Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nature Rev. Microbiol. 3, 238–250 (2005).

    Article  CAS  Google Scholar 

  4. Boman, H. G. Antibacterial peptides: key components needed in immunity. Cell 65, 205–207 (1991).

    Article  CAS  Google Scholar 

  5. Lehrer, R. I. & Ganz, T. Antimicrobial peptides in mammalian and insect host defense. Curr. Opin. Immunol. 11, 23–27 (1999).

    Article  CAS  Google Scholar 

  6. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).

    Article  CAS  Google Scholar 

  7. Oren, Z. et al. Structures and mode of membrane interaction of a short α helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy. Eur. J. Biochem. 269, 3869–3880 (2002).

    Article  CAS  Google Scholar 

  8. Oren, Z. & Shai, Y. Cyclization of a cytolytic amphipathic α-helical peptide and its diastereomer: effect on structure, interaction with model membranes, and biological function. Biochemistry 39, 6103–6114 (2000).

    Article  CAS  Google Scholar 

  9. Shai, Y. Mode of action of membrane-active antimicrobial peptides. Biopolymers (Peptide Science) 66, 236–248 (2002).

    Article  CAS  Google Scholar 

  10. Fernandez-Lopez, S. et al. Antibacterial agents based on the cyclic D,L-α-peptide architecture. Nature 412, 452–455 (2001).

    Article  CAS  Google Scholar 

  11. Jerold Gordon, Y. & Romanowski, E. G. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res. 30, 505–515 (2005).

    Article  Google Scholar 

  12. Lienkamp, K. et al. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach. J. Am. Chem. Soc. 130, 9836–9843 (2008).

    Article  CAS  Google Scholar 

  13. AL-Badri, Z. M. et al. Investigating the effect if increasing charge density on the hemolytic activity of synthetic antimicrobial polymers. Biomacromolecules 9, 2805–2810 (2008).

    Article  CAS  Google Scholar 

  14. Ilker, M. F., Nüsslein, K., Tew, G. N. & Coughlin, E. B. Tuning the hemolytic and antimicrobial activities of amphiphilic polynorbornene derivatives. J. Am. Chem. Soc. 126, 15870–15875 (2004).

    Article  CAS  Google Scholar 

  15. Kenawy, E.-R., Worley, S. D. & Broughton, R. The chemistry and application of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8, 1359–1384 (2007).

    Article  CAS  Google Scholar 

  16. Kuroda, K. & DeGrado, W. F. Amphiphilic polymethacrylate derivatives as antimicrobial agents. J. Am. Chem. Soc. 127, 4128–4129 (2005).

    Article  CAS  Google Scholar 

  17. Ivanov, I. et al. Characterization of nonbiological antimicrobial polymers in aqueous solution and at water–lipid interfaces from all-atom molecular dynamics. J. Am. Chem. Soc. 128, 1778–1779 (2006).

    Article  CAS  Google Scholar 

  18. Tew, G. N. et al. De novo design of biomimetic antimicrobial polymers. Proc. Natl Acad. Sci. USA 99, 5110–5114 (2002).

    Article  CAS  Google Scholar 

  19. Mowery, B. P. et al. Mimicry of antimicrobial host–defense peptides by random copolymers. J. Am. Chem. Soc. 129, 15474–15476 (2007).

    Article  CAS  Google Scholar 

  20. Sambhy, V., Peterson, B. R. & Sen, A. Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail. Angew. Chem. Int. Ed. 47, 1250–1254 (2008).

    Article  CAS  Google Scholar 

  21. Chan, D. I., Prenner, E. J. & Vogel, H. J. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim. Biophys. Acta Biomembranes 1758, 1184–1202 (2006).

    Article  CAS  Google Scholar 

  22. Liu, L. H. et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nature Nanotech. 4, 457–463 (2009).

    Article  CAS  Google Scholar 

  23. Mei, H., Zhong, Z., Long, F. & Zhuo, R. Synthesis and characterization of novel glycol-derived polycarbonates with pendant hydroxyl groups. Macromol. Rapid Commun. 27, 1894–1899 (2006).

    Article  CAS  Google Scholar 

  24. Zhu, K. J., Hendren, R. W., Jensen, K. C. & Pitt, G. Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate). Macromolecules 24, 1736–1740 (1991).

    Article  CAS  Google Scholar 

  25. Watanabe, J., Kotera, H. & Akashi, M. Reflective interfaces of poly(trimethylene carbonate)-based polymers: enzymatic degradation and selective adsorption. Macromolecules 40, 8731–8736 (2007).

    Article  CAS  Google Scholar 

  26. Edlund, U., Albertsson, A.-C., Singh, S. K., Fogelberg, I. & Lundgren, B. O. Sterilization, storage stability and in vivo biocompatibility of poly(trimethylene carbonate)/poly(adipic anhydride) blends. Biomaterials 21, 945–955 (2000).

    Article  CAS  Google Scholar 

  27. Nederberg, F. et al. Organocatalytic ring opening polymerization of trimethylene carbonate. Biomacromolecules 8, 153–160 (2007).

    Article  CAS  Google Scholar 

  28. Pratt, R. C., Nederberg, F., Waymouth, R. M. & Hedrick, J. L. Tagging alcohols with cyclic carbonate: a versatile equivalent of (meth)acrylate for ring-opening polymerization. Chem. Commun. 114–116 (2008).

  29. Hunter, A. C. Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. Adv. Drug Deliv. Rev. 58, 1523–1531 (2006).

    Article  CAS  Google Scholar 

  30. Deguchi, K. & Meguro, K. The determination of critical micelle concentrations of nonionic surfactants by charge-transfer solubilization of 7,7,8,8-tetracyanoquinodimethane. J. Colloid Interface Sci. 38, 596–600 (1972).

    Article  CAS  Google Scholar 

  31. Ryjkina, E., Kuhn, H., Rehage, H., Muller, F. & Peggau, J. Molecular dynamic computer simulations of phase behavior of non-ionic surfactants. Angew. Chem. Int. Ed. 41, 983–986 (2002).

    Article  CAS  Google Scholar 

  32. Guo, X. D., Zhang, L. J., Qian, Y. & Zhou, J. Effect of composition on the formation of poly(DL-lactide) microspheres for drug delivery systems: mesoscale simulations. Chem. Eng. J. 131, 195–201 (2007).

    Article  CAS  Google Scholar 

  33. Srinivas, G. & Pitera, J. W. Soft patchy nanoparticles from solution-phase self-assembly of binary diblock copolymers. Nano Lett. 8, 611–618 (2008).

    Article  CAS  Google Scholar 

  34. Barbara, E. & Murray, M. D. Vancomycin-resistant Enterococcal infections. N. Engl. J. Med. 342, 710–721 (2000).

    Article  Google Scholar 

  35. Chang, S. et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med. 348, 1342–1347 (2003).

    Article  Google Scholar 

  36. Hiramatsu, K. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect. Dis. 1, 147–155 (2001).

    Article  CAS  Google Scholar 

  37. Kelly, S. L. et al. Resistance to amphotericin B associated with defective sterol Δ8→7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol. Lett. 122, 39–42 (1994).

    Article  CAS  Google Scholar 

  38. Cho, S. et al. Structural insights into the bactericidal mechanism of human peptidoglycan recognition proteins. Proc. Natl Acad. Sci. USA 104, 8761–8766 (2007).

    Article  CAS  Google Scholar 

  39. Som, A. & Tew, G. N. Influence of lipid composition on membrane activity of antimicrobial phenylene ethynylene oligomers. J. Phys. Chem. B 112, 3495–3502 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (NSF) Center for Polymer Interface and Macromolecular Assemblies (CPIMA; NSF-DMR-0213618) and the Institute of Bioengineering and Nanotechnology (Biomedical Research Council, Agency for Science, Technology and Research, Singapore). F.N. thanks the Swedish research council (VR) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.L.H. and Y.Y.Y. conceived and designed the study. F.N., K.F. and C.Y. synthesized and characterized the polymers. Y.Z., J.P.K.T., K.X. and H.W. performed in vitro experiments, and S.G. carried out in vivo experiments. S.G., K.X., H.W. and L.L. contributed to in vivo data analysis. X.D.G. performed the simulation. J.L.H. and Y.Y.Y. wrote the paper, with contributions from the other authors for the Methods.

Corresponding authors

Correspondence to James L. Hedrick or Yi-Yan Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 586 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nederberg, F., Zhang, Y., Tan, J. et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nature Chem 3, 409–414 (2011). https://doi.org/10.1038/nchem.1012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1012

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology