Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The ubiquitin-specific protease USP28 is required for MYC stability

Abstract

The MYC proto-oncogene encodes a transcription factor that has been implicated in the genesis of many human tumours. Here, we used a bar-code short hairpin RNA (shRNA) screen to identify multiple genes that are required for MYC function. One of these genes encodes USP28, an ubiquitin-specific protease. USP28 is required for MYC stability in human tumour cells. USP28 binds to MYC through an interaction with FBW7α, an F-box protein that is part of an SCF-type ubiquitin ligase. Therefore, it stabilizes MYC in the nucleus, but not in the nucleolus, where MYC is degraded by FBW7γ. High expression levels of USP28 are found in colon and breast carcinomas, and stabilization of MYC by USP28 is essential for tumour-cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A bar-code shRNA screen identifies USP28 as a gene required for MYC function.
Figure 2: Stabilization and deubiquitination of MYC by USP28.
Figure 3: USP28 antagonizes the function of FBW7.
Figure 4: USP28 binds to MYC via FBW7α.
Figure 5: Depletion of USP28 inhibits growth and proliferation via regulation of MYC protein levels.
Figure 6: Regulation of proliferation and differentiation of colon carcinoma cells by USP28.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Oster, S. K., Ho, C. S., Soucie, E. L. & Penn, L. Z. The myc oncogene: MarvelouslY Complex. Adv. Cancer Res. 84, 81–154 (2002).

    Article  CAS  Google Scholar 

  2. Salghetti, S. E., Kim, S. Y. & Tansey, W. P. Destruction of MYC by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize MYC. EMBO J. 18, 717–726 (1999).

    Article  CAS  Google Scholar 

  3. Bahram, F., von der Lehr, N., Cetinkaya, C. & Larsson, L. G. c-MYC hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95, 2104–2110 (2000).

    CAS  PubMed  Google Scholar 

  4. Welcker, M. et al. The FBW7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-MYC protein degradation. Proc. Natl Acad. Sci. USA 101, 9085–9090 (2004).

    Article  CAS  Google Scholar 

  5. Yada, M. et al. Phosphorylation-dependent degradation of c-MYC is mediated by the F-box protein FBW7. EMBO J. 23, 2116–2125 (2004).

    Article  CAS  Google Scholar 

  6. Yeh, E. et al. A signalling pathway controlling c-MYC degradation that impacts oncogenic transformation of human cells. Nature Cell Biol. 6, 308–318 (2004).

    Article  CAS  Google Scholar 

  7. Gregory, M. A. & Hann, S. R. c-MYC proteolysis by the ubiquitin-proteasome pathway: stabilization of c-MYC in Burkitt's lymphoma cells. Mol. Cell Biol. 20, 2423–2435 (2000).

    Article  CAS  Google Scholar 

  8. Malempati, S. et al. Aberrant stabilization of c-MYC protein in some lymphoblastic leukemias. Leukemia 20, 1572–1581 (2006).

    Article  CAS  Google Scholar 

  9. Kim, S. Y., Herbst, A., Tworkowski, K. A., Salghetti, S. E. & Tansey, W. P. Skp2 regulates myc protein stability and activity. Mol. Cell 11, 1177–1188 (2003).

    Article  CAS  Google Scholar 

  10. von der Lehr, N. et al. The F-box protein Skp2 participates in c-MYC proteosomal degradation and acts as a cofactor for c-MYC-regulated transcription. Mol. Cell 11, 1189–1200 (2003).

    Article  CAS  Google Scholar 

  11. Gross-Mesilaty, S. et al. Basal and human papillomavirus E6 oncoprotein-induced degradation of MYC proteins by the ubiquitin pathway. Proc. Natl Acad. Sci. USA 95, 8058–8063 (1998).

    Article  CAS  Google Scholar 

  12. Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    Article  CAS  Google Scholar 

  13. Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).

    Article  CAS  Google Scholar 

  14. Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G. & Evan, G. I. A modified oestrogen receptor ligand binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690 (1995).

    Article  CAS  Google Scholar 

  15. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    Article  CAS  Google Scholar 

  16. Brummelkamp, T. R. et al. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nature Chem. Biol. 2, 202–206 (2006).

    Article  CAS  Google Scholar 

  17. Amati, B., Littlewood, T. D., Evan, G. I. & Land, H. The c-MYC protein induces cell cycle progression and apoptosis through dimerization with Max. EMBO J. 13, 5083–5087 (1993).

    Article  Google Scholar 

  18. Leone, G. et al. MYC requires distinct E2F activities to induce S phase and apoptosis. Mol. Cell 8, 105–113 (2001).

    Article  CAS  Google Scholar 

  19. Dansen, T. B., Whitfield, J., Rostker, F., Brown-Swigart, L. & Evan, G. I. Specific requirement for Bax, not Bak, in MYC-induced apoptosis and tumor suppression in vivo. J. Biol. Chem. 281, 10890–10895 (2006).

    Article  CAS  Google Scholar 

  20. Rothermund, K. et al. c-MYC-independent restoration of multiple phenotypes by two c-MYC target genes with overlapping functions. Cancer Res. 65, 2097–2107 (2005).

    Article  CAS  Google Scholar 

  21. Benitah, S. A., Frye, M., Glogauer, M. & Watt, F. M. Stem cell depletion through epidermal deletion of Rac1. Science 309, 933–935 (2005).

    Article  Google Scholar 

  22. Park, Y. B. et al. Alterations in the INK4a/ARF locus and their effects on the growth of human osteosarcoma cell lines. Cancer Genet. Cytogenet. 133, 105–111 (2002).

    Article  CAS  Google Scholar 

  23. Zhang, D., Zaugg, K., Mak, T. W. & Elledge, S. J. A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 126, 529–542 (2006).

    Article  CAS  Google Scholar 

  24. Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFBW7 ubiquitin ligase. Science 294, 173–177 (2001).

    Article  CAS  Google Scholar 

  25. Strohmaier, H. et al. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413, 316–322 (2001).

    Article  CAS  Google Scholar 

  26. Bhattacharya, S. et al. SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells. Oncogene 22, 2443–2451 (2003).

    Article  CAS  Google Scholar 

  27. Sutterlüty, H. et al. e45skp2 promotes p27kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol. 1, 207–214 (1999).

    Article  Google Scholar 

  28. Sorensen, C. S. et al. A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex–Cdh1 and cyclin A–Cdk2 during cell cycle progression. Mol. Cell Biol. 21, 3692–3703 (2001).

    Article  CAS  Google Scholar 

  29. Bashir, T., Dorrello, N. V., Amador, V., Guardavaccaro, D. & Pagano, M. Control of the SCF(Skp2–Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428, 190–193 (2004).

    Article  CAS  Google Scholar 

  30. Welcker, M. et al. Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol. Cell 12, 381–392 (2003).

    Article  CAS  Google Scholar 

  31. Welcker, M., Orian, A., Grim, J. A., Eisenman, R. N. & Clurman, B. E. A Nucleolar isoform of the FBW7 ubiquitin ligase regulates c-MYC and cell size. Curr. Biol. 14, 1852–1857 (2004).

    Article  CAS  Google Scholar 

  32. Kee, Y., Lyon, N. & Huibregtse, J. M. The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme. EMBO J. 24, 2414–2424 (2005).

    Article  CAS  Google Scholar 

  33. Li, M., Brooks, C. L., Kon, N. & Gu, W. A dynamic role of HAUSP in the p53–Mdm2 pathway. Mol. Cell 13, 879–886 (2004).

    Article  CAS  Google Scholar 

  34. van Drogen, F. et al. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol. Cell 23, 37–48 (2006).

    Article  CAS  Google Scholar 

  35. Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-MYC. Nature 421, 290–294 (2003).

    Article  CAS  Google Scholar 

  36. Grandori, C. et al. c-MYC binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biol. 7, 311–318 (2005).

    Article  CAS  Google Scholar 

  37. Sansom, O. J. et al. MYC deletion rescues Apc deficiency in the small intestine. Nature 446, 676–679 (2007).

    Article  CAS  Google Scholar 

  38. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    Article  CAS  Google Scholar 

  39. Oskarsson, T. & Trumpp, A. The MYC trilogy: lord of RNA polymerases. Nature Cell Biol. 7, 215–217 (2005).

    Article  CAS  Google Scholar 

  40. Arabi, A., Rustum, C., Hallberg, E. & Wright, A. P. Accumulation of c-MYC and proteasomes at the nucleoli of cells containing elevated c-MYC protein levels. J. Cell Sci. 116, 1707–1717 (2003).

    Article  CAS  Google Scholar 

  41. Li, Z., Wang, D., Messing, E. M. & Wu, G. VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1α. EMBO Rep. 6, 373–378 (2005).

    Article  CAS  Google Scholar 

  42. Herbst, A. et al. A conserved element in MYC that negatively regulates its proapoptotic activity. EMBO Rep. 6, 177–183 (2005).

    Article  CAS  Google Scholar 

  43. Hemann, M. T. et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436, 807–811 (2005).

    Article  CAS  Google Scholar 

  44. Benassi, B. et al. c-MYC phosphorylation is required for cellular response to oxidative stress. Mol. Cell 21, 509–519 (2006).

    Article  CAS  Google Scholar 

  45. Ngo, V. N. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441, 106–110 (2006).

    Article  CAS  Google Scholar 

  46. Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    Article  CAS  Google Scholar 

  47. Leung-Toung, R. et al. Thiol proteases: inhibitors and potential therapeutic targets. Curr. Med. Chem. 13, 547–581 (2006).

    Article  CAS  Google Scholar 

  48. Brummelkamp, T. R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247 (2002).

    Article  CAS  Google Scholar 

  49. Adhikary, S. et al. The ubiquitin ligase HectH9 regulates transcriptional activation by MYC and is essential for tumor cell proliferation. Cell 123, 409–421 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the European Union (through the FP6 Integrated Project INTACT) to M.E. and R.B., the Deutsche Forschungsgemeinschaft (Forschergruppe Chromatin and Transregio17) to M.E. and the Netherlands Genomics Initiative/Netherlands Organisation for Scientific Research (NWO) to R.B. This work was supported by grants from the National Institutes of Health (NIH) and Cooperative Center for Medical Countermeasures Against Radiation (CMCR) to S.J.E. S.J.E. is a Howard Hughes Medical Institute Investigator. We thank D. Dobrin, B. Jebavy and R. Baumann for expert technical assistance, and M. Welcker and B. Clurman for FBW7 expression plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Eilers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, Supplementary Tables T1, T2, T3, Supplementary Materials Methods and Supplementary Information (PDF 771 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, N., Wanzel, M., Madiredjo, M. et al. The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol 9, 765–774 (2007). https://doi.org/10.1038/ncb1601

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1601

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing