Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C

Abstract

The temporal control of mitotic protein degradation remains incompletely understood. In particular, it is unclear why the mitotic checkpoint prevents the anaphase-promoting complex/cyclosome (APC/C)-mediated degradation of cyclin B and securin in early mitosis, but not cyclin A1,2,3. Here, we show that another APC/C substrate, NIMA-related kinase 2A (Nek2A), is also destroyed in pro-metaphase in a checkpoint-independent manner and that this depends on an exposed carboxy-terminal methionine–arginine (MR) dipeptide tail. Truncation of the Nek2A C terminus delays its degradation until late mitosis, whereas Nek2A C-terminal peptides interfere with APC/C activity in an MR-dependent manner. Most importantly, we show that Nek2A binds directly to the APC/C, also in an MR-dependent manner, even in the absence of the adaptor protein Cdc20. As similar C-terminal dipeptide tails promote direct association of Cdc20, Cdh1 and Apc10–Doc1 with core APC/C subunits, we propose that this sequence also allows a substrate, Nek2A, to directly bind the APC/C. Thus, although Cdc20 is required for the degradation of Nek2A, it is not required for its recruitment and this renders its degradation insensitive to the mitotic checkpoint.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GFP–Nek2A is degraded in pro-metaphase independently of the mitotic checkpoint.
Figure 2: Cdc20 and Cdh1 can activate Nek2A destruction via either the KEN-box or the D-box.
Figure 3: Destruction of Nek2A in mitotic cells is delayed by removal of the D-box.
Figure 4: Degradation of Nek2A is targeted via the carboxy-terminal MR dipeptide.
Figure 5: Nek2A interacts with the APC/C independently of Cdc20.

Similar content being viewed by others

References

  1. Harper, J. W., Burton, J. L. & Solomon, M. J. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev. 16, 2179–2206 (2002).

    Article  CAS  Google Scholar 

  2. Castro, A., Bernis, C., Vigneron, S., Labbe, J. C. & Lorca, T. The anaphase-promoting complex: a key factor in the regulation of cell cycle. Oncogene 24, 314–325 (2005).

    Article  CAS  Google Scholar 

  3. Peters, J.-M. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931–943 (2002).

    Article  CAS  Google Scholar 

  4. Lindon, C. & Pines, J. Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J. Cell Biol. 164, 233–241 (2004).

    Article  CAS  Google Scholar 

  5. Kops, G. J. P. L., Weaver, B. A. A. & Cleveland, D. W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nature Rev. Cancer 5, 773–785 (2005).

    Article  CAS  Google Scholar 

  6. Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12, 1871–1883 (1998).

    Article  CAS  Google Scholar 

  7. Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol. 153, 137–147 (2001).

    Article  CAS  Google Scholar 

  8. den Elzen, N. & Pines, J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J. Cell Biol. 153, 121–135 (2001).

    Article  CAS  Google Scholar 

  9. Gabellini, D. et al. Early mitotic degradation of the homeoprotein HOXC10 is potentially linked to cell cycle progression. EMBO J. 22, 3715–3724 (2003).

    Article  CAS  Google Scholar 

  10. Hames, R. S., Wattam, S. L., Yamano, H., Bacchieri, R. & Fry, A. M. APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. EMBO J. 20, 7117–7127 (2001).

    Article  CAS  Google Scholar 

  11. Fry, A. M. The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21, 6184–6194 (2002).

    Article  CAS  Google Scholar 

  12. Faragher, A. J. & Fry, A. M. Nek2 kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol. Biol. Cell 14, 2876–2889 (2003).

    Article  CAS  Google Scholar 

  13. Hagting, A. et al. Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol. 157, 1125–1137 (2002).

    Article  CAS  Google Scholar 

  14. Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991).

    Article  CAS  Google Scholar 

  15. Pfleger, C. M. & Kirschner, M. W. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 14, 655–665 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hilioti, Z., Chung, Y. S., Mochizuki, Y., Hardy, C. F. & Cohen-Fix, O. The anaphase inhibitor Pds1 binds to the APC/C-associated protein Cdc20 in a destruction box-dependent manner. Curr. Biol. 11, 1347–1352 (2001).

    Article  CAS  Google Scholar 

  17. Burton, J. L. & Solomon, M. J. D box and KEN box motifs in budding yeast Hsl1p are required for APC-mediated degradation and direct binding to Cdc20p and Cdh1p. Genes Dev. 15, 2381–2395 (2001).

    Article  CAS  Google Scholar 

  18. Burton, J. L., Tsakraklides, V. & Solomon, M. J. Assembly of an APC–Cdh1–substrate complex is stimulated by engagement of a destruction box. Mol. Cell 18, 533–542 (2005).

    Article  CAS  Google Scholar 

  19. Kraft, C., Vodermaier, H. C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J. M. The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol. Cell 18, 543–553 (2005).

    Article  CAS  Google Scholar 

  20. Pfleger, C. M., Lee, E. & Kirschner, M. Substrate recognition by the Cdc20 and Cdh1 components of the anaphase-promoting complex. Genes Dev. 15, 2396–2407 (2001).

    Article  CAS  Google Scholar 

  21. Zur, A. & Brandeis, M. Timing of APC/C substrate degradation is determined by fzy/fzr specificity of destruction boxes. EMBO J. 21, 4500–4510 (2002).

    Article  CAS  Google Scholar 

  22. Passmore, L. A. et al. Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBO J. 22, 786–796 (2003).

    Article  CAS  Google Scholar 

  23. Yamano, H., Gannon, J., Mahbubani, H. & Hunt, T. Cell cycle-regulated recognition of the destruction box of cyclin B by the APC/C in Xenopus egg extracts. Mol. Cell 13, 137–147 (2004).

    Article  CAS  Google Scholar 

  24. Carroll, C. W., Enquist-Newman, M. & Morgan, D. O. The APC subunit Doc1 promotes recognition of the substrate destruction box. Curr. Biol. 15, 11–18 (2005).

    Article  CAS  Google Scholar 

  25. Uto, K. & Sagata, N. Nek2B, a novel maternal form of Nek2 kinase, is essential for the assembly or maintenance of centrosomes in early Xenopus embryos. EMBO J. 19, 1816–1826 (2000).

    Article  CAS  Google Scholar 

  26. D'Andrea, L. D. & Regan, L. TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–662 (2003).

    Article  CAS  Google Scholar 

  27. Vodermaier, H. C., Gieffers, C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J. M. TPR subunits of the anaphase-promoting complex mediate binding to the activator protein CDH1. Curr. Biol. 13, 1459–1468 (2003).

    Article  CAS  Google Scholar 

  28. Wendt, K. S. et al. Crystal structure of the APC10/DOC1 subunit of the human anaphase-promoting complex. Nature Struct. Biol. 8, 784–788 (2001).

    Article  CAS  Google Scholar 

  29. Grosskortenhaus, R. & Sprenger, F. Rca1 inhibits APC-Cdh1(Fzr) and is required to prevent cyclin degradation in G2. Dev. Cell 2, 29–40 (2002).

    Article  CAS  Google Scholar 

  30. Reimann, J. D. et al. Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105, 645–655 (2001).

    Article  CAS  Google Scholar 

  31. Schmidt, A. et al. Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes Dev. 19, 502–513 (2005).

    Article  CAS  Google Scholar 

  32. Hames, R. S. et al. Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM-1 and localized proteasomal degradation. Mol. Biol. Cell 16, 1711–1724 (2005).

    Article  CAS  Google Scholar 

  33. Clute, P. & Pines, J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nature Cell Biol. 1, 82–87 (1999).

    Article  CAS  Google Scholar 

  34. Fry, A. M. et al. C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J. Cell Biol. 141, 1563–1574 (1998).

    Article  CAS  Google Scholar 

  35. Kramer, E. R., Scheuringer, N., Podtelejnikov, A. V., Mann, M. & Peters, J. M. Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol. Biol. Cell 11, 1555–1569 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Pines and R. Patel for helpful comments on the manuscript; J.-M. Peters, P. Clarke and J. Gannon for providing reagents; and T. Hunt and H. Mahbubani for access to the Cancer Research UK Clare Hall Laboratories Xenopus colony. This work was supported by grants to A.M.F. from the Association of International Cancer Research, the Wellcome Trust, the BBSRC and Cancer Research UK. H.Y. and Y.K. were supported by the Marie Curie Cancer Care and the Association of International Cancer Research. C.L. is an MRC Career Development Fellow and is also supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Fry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and S4 (PDF 277 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1328 kb)

Supplementary Information

Supplementary Movie 2 (MOV 3077 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, M., Kimata, Y., Wattam, S. et al. Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C. Nat Cell Biol 8, 607–614 (2006). https://doi.org/10.1038/ncb1410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1410

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing