Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-term multiple color imaging of live cells using quantum dot bioconjugates

Abstract

Luminescent quantum dots (QDs)—semiconductor nanocrystals—are a promising alternative to organic dyes for fluorescence-based applications. We have developed procedures for using QDs to label live cells and have demonstrated their use for long-term multicolor imaging of live cells. The two approaches presented are (i) endocytic uptake of QDs and (ii) selective labeling of cell surface proteins with QDs conjugated to antibodies. Live cells labeled using these approaches were used for long-term multicolor imaging. The cells remained stably labeled for over a week as they grew and developed. These approaches should permit the simultaneous study of multiple cells over long periods of time as they proceed through growth and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generalized labeling of living cells using QDs.
Figure 2: Generalized labeling of live cells using avidin-conjugated QDs.
Figure 3: Aggregation of QD-labeled starved D. discoideum amoebae.
Figure 4: Specific labeling of live cells expressing Pgp-GFP using QD bioconjugates.
Figure 5: Photostability and emission spectra of QDs.
Figure 6: Long-term, multiple color imaging of developing cells of D. discoideum.

Similar content being viewed by others

References

  1. Finley, K.R., Davidson, A.E. & Ekker, S.C. Three-color imaging using fluorescent proteins in living zebrafish embryos. Biotechniques 31, 66–72 (2001).

    Article  CAS  Google Scholar 

  2. Giuliano, K.A., Post, P.L., Hahn, K.M. & Taylor, D.L. Fluorescent protein biosensors: measurement of molecular dynamics in living cells. Annu. Rev. Biophys. Biomol. Struct. 24, 405–434 (1995).

    Article  CAS  Google Scholar 

  3. Johnson, I. Fluorescent probes for living cells. Histochem. J. 30, 123–140 (1998).

    Article  CAS  Google Scholar 

  4. Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  5. Mattoussi, H., Kuno, M.K., Goldman, E.R., George, P. & Mauro, J.M. in Optical Biosensors: Present and Future (eds. Ligler, F.S. & Rowe, C.A.) 537–569 (Elsevier, The Netherlands, 2002).

    Book  Google Scholar 

  6. Mattoussi, H. et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12150 (2000).

    Article  CAS  Google Scholar 

  7. Han, M., Gao, X., Su, J.Z. & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001).

    Article  CAS  Google Scholar 

  8. Michalet, X. et al. Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Single Molec. 2, 261–276 (2001).

    Article  CAS  Google Scholar 

  9. Chan, W.C., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M. & Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40–46 (2002).

    Article  CAS  Google Scholar 

  10. Mattoussi, H. et al. Bioconjugation of highly luminescent colloidal CdSe-ZnS quantum dots with an engineered two-domain recombinant protein. Phys. Stat. Sol. 224, 277–283 (2001).

    Article  CAS  Google Scholar 

  11. Goldman, E.R. et al. Avidin: a natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 124, 6378–6382 (2002).

    Article  CAS  Google Scholar 

  12. Chan, W.C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  13. Goldman, E.R., Anderson, G.P., Tran, P.T., Mattoussi, H., Charles, P.T. & Mauro, J.M. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 74, 841–847 (2002).

    Article  CAS  Google Scholar 

  14. Adamson, P., Paterson, H.F. & Hall, A. Intracellular localization of the P21rho proteins. J. Cell Biol. 119, 617–627 (1992).

    Article  CAS  Google Scholar 

  15. Tomchik, K.J. & Devreotes, P.N. Adenosine 3',5′-monophosphate waves in Dictyostelium discoideum: a demonstration by isotope dilution-fluorography. Science 212, 443–446 (1981).

    Article  CAS  Google Scholar 

  16. Parent, C.A. & Devreotes, P.N. Molecular genetics of signal transduction in Dictyostelium. Annu. Rev. Biochem. 65, 411–440 (1996).

    Article  CAS  Google Scholar 

  17. Gerisch, G. & Wick, U. Intracellular oscillations and release of cyclic AMP from Dictyostelium cells. Biochem. Biophys. Res. Commun. 65, 364–370 (1975).

    Article  CAS  Google Scholar 

  18. Chen, Y. & Simon, S.M. In situ biochemical demonstration that P-glycoprotein is a drug efflux pump with broad specificity. J. Cell Biol. 148, 863–870 (2000).

    Article  CAS  Google Scholar 

  19. Rodrigez-Viejo, J. et al. Evidence of photo- and electrodarkening of (CdSe)ZnS quantum dot composites. J. Appl. Phys. 87, 8526–8534 (2000).

    Article  Google Scholar 

  20. Waddell, D.R. The spatial pattern of aggregation centres in the cellular slime mould. J. Embryol. Exp. Morphol. 70, 75–98 (1982).

    CAS  PubMed  Google Scholar 

  21. Robertson, A. & Cohen, M.H. Control of developing fields. Ann. Rev. Biophys. Bioeng. 1, 409–464 (1972).

    Article  CAS  Google Scholar 

  22. Watts, D.J. & Ashworth, J.M. Growth of myxamoebae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem. J. 119, 171–174 (1970).

    Article  CAS  Google Scholar 

  23. De Souza, N.F. & Simon, S.M. Glycosylation affects the rate of traffic of the shaker potassium channel through the secretory pathway. Biochemistry 41, 11351–11361 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Tom Donley, Ellen Goldman, George Anderson, Evelyn Voura, and Collin Thomas for their help and suggestions during the course of this work. J.K.J. and S.M.S. acknowledge financial support by the grants NSF BES 0110070 and NSF BES 0119468 to S.M.S. H.M. and J.M.M. acknowledge Dr. K. Ward at the Office of Naval Research (ONR) for research support, and grants # N0001499WX30470 and # N0001400WX20094 for financial support. The views, opinions, and findings described in this report are those of the authors and should not be construed as official Department of the Navy positions, policies or decisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanford M. Simon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaiswal, J., Mattoussi, H., Mauro, J. et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21, 47–51 (2003). https://doi.org/10.1038/nbt767

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing