Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell-specific targeting of nanoparticles by multivalent attachment of small molecules

Abstract

Nanomaterials with precise biological functions have considerable potential for use in biomedical applications. Here we investigate whether multivalent attachment of small molecules can increase specific binding affinity and reveal new biological properties of such nanomaterials. We describe the parallel synthesis of a library comprising 146 nanoparticles decorated with different synthetic small molecules. Using fluorescent magnetic nanoparticles, we rapidly screened the library against different cell lines and discovered a series of nanoparticles with high specificity for endothelial cells, activated human macrophages or pancreatic cancer cells. Hits from the last-mentioned screen were shown to target pancreatic cancer in vivo. The method and described materials could facilitate development of functional nanomaterials for applications such as differentiating cell lines, detecting distinct cellular states and targeting specific cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanoparticle and derived-nanoparticle library.
Figure 2: Heat map representing cellular uptake of different nanoparticle preparations.
Figure 3: Nanoparticle 'hits' identified from the large screen (Fig. 2) were probed against resting and activating macrophages.
Figure 4: Targeting experiments.
Figure 5: In vivo targeting experiments.
Figure 6: In vivo targeting experiments similar to those described in Figure 5 but with different fluorochrome-labeled nanoparticles (same acquisition parameters in each column).

Similar content being viewed by others

References

  1. Whitesides, G.M. The 'right' size in nanobiotechnology. Nat. Biotechnol. 21, 1161–1165 (2003).

    Article  CAS  Google Scholar 

  2. Nam, J.M., Thaxton, C.S. & Mirkin, C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003).

    Article  CAS  Google Scholar 

  3. Tsapis, N., Bennett, D., Jackson, B., Weitz, D.A. & Edwards, D.A. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc. Natl. Acad. Sci. USA 99, 12001–12005 (2002).

    Article  CAS  Google Scholar 

  4. Gao, X. & Nie, S. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol. 21, 371–373 (2003).

    Article  CAS  Google Scholar 

  5. Zorov, D.B., Kobrinsky, E., Juhaszova, M. & Sollott, S.J. Examining intracellular organelle function using fluorescent probes: from animalcules to quantum dots. Circ. Res. 95, 239–252 (2004).

    Article  CAS  Google Scholar 

  6. Santra, S., Yang, H., Holloway, P.H., Stanley, J.T. & Mericle, R.A. Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J. Am. Chem. Soc. 127, 1656–1657 (2005).

    Article  CAS  Google Scholar 

  7. Huber, M.M. et al. Fluorescently detectable magnetic resonance imaging agents. Bioconjug. Chem. 9, 242–249 (1998).

    Article  CAS  Google Scholar 

  8. Modo, M. et al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21, 311–317 (2004).

    Article  Google Scholar 

  9. Josephson, L., Kircher, M.F., Mahmood, U., Tang, Y. & Weissleder, R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug. Chem. 13, 554–560 (2002).

    Article  CAS  Google Scholar 

  10. Kircher, M.F., Weissleder, R. & Josephson, L. A dual fluorochrome probe for imaging proteases. Bioconjug. Chem. 15, 242–248 (2004).

    Article  CAS  Google Scholar 

  11. Wu, Y., Xiang, J., Yang, C., Lu, W. & Lieber, C.M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61–65 (2004).

    Article  CAS  Google Scholar 

  12. Kang, H.W., Josephson, L., Petrovsky, A., Weissleder, R. & Bogdanov, A., Jr. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug. Chem. 13, 122–127 (2002).

    Article  CAS  Google Scholar 

  13. Hogemann, D., Ntziachristos, V., Josephson, L. & Weissleder, R. High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. Bioconjug. Chem. 13, 116–121 (2002).

    Article  Google Scholar 

  14. Akerman, M.E., Chan, W.C., Laakkonen, P., Bhatia, S.N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA 99, 12617–12621 (2002).

    Article  CAS  Google Scholar 

  15. Kelly, K.A. et al. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ. Res. 96, 327–336 (2005).

    Article  CAS  Google Scholar 

  16. Harisinghani, M.G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

    Article  Google Scholar 

  17. Boullier, A. et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann. NY Acad. Sci. 947, 214–222, discussion 222–213 (2001).

    Article  CAS  Google Scholar 

  18. Denis, M.C., Mahmood, U., Benoist, C., Mathis, D. & Weissleder, R. Imaging inflammation of the pancreatic islets in type 1 diabetes. Proc. Natl. Acad. Sci. USA 101, 12634–12639 (2004).

    Article  CAS  Google Scholar 

  19. Libby, P. & Aikawa, M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat. Med. 8, 1257–1262 (2002).

    Article  CAS  Google Scholar 

  20. Pham, W., Kircher, M.F., Weissleder, R. & Tung, C.H. Enhancing membrane permeability by fatty acylation of oligoarginine peptides. Chem. BioChem. 5, 1148–1151 (2004).

    CAS  Google Scholar 

  21. Anderson, D.G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat. Biotechnol. 22, 863–866 (2004).

    Article  CAS  Google Scholar 

  22. Goodman, C.M., McCusker, C.D., Yilmaz, T. & Rotello, V.M. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 15, 897–900 (2004).

    Article  CAS  Google Scholar 

  23. Mammen, M., Chio, S-K. & Whitesides, G.M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Edn Engl. 37, 2755–2794 (1998).

    Article  CAS  Google Scholar 

  24. Schreiber, S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    Article  CAS  Google Scholar 

  25. Shen, T., Weissleder, R., Papisov, M., Bogdanov, A., Jr. & Brady, T.J. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn. Reson. Med. 29, 599–604 (1993).

    Article  CAS  Google Scholar 

  26. Wunderbaldinger, P., Josephson, L. & Weissleder, R. Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad. Radiol. (suppl. 2) 9, S304–S306 (2002).

    Article  Google Scholar 

  27. Kelly, K.A., Reynolds, F., Weissleder, R. & Josephson, L. Fluorescein isothiocyanate-hapten immunoassay for determination of peptide-cell interactions. Anal. Biochem. 330, 181–185 (2004).

    Article  CAS  Google Scholar 

  28. de Hoon, M.J., Imoto, S., Nolan, J. & Miyano, S. Open source clustering software. Bioinformatics 20, 1453–1454 (2004).

    Article  CAS  Google Scholar 

  29. Saldanha, A.J. Java Treeview—extensible visualization of microarray data. Bioinformatics 20, 3246–3248 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the help of Fred Reynolds for synthesizing the CLIO-peptide conjugates, Jan Grimm for radiolabelling, Terry O'Loughlin for molecular modeling and nanoparticle characterization and Jose-Luis Figueiredo, Rabi Upadhyay and Gregory Wojtkiewicz for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Weissleder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

List of Compounds Conjugated to Nanoparticles (PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissleder, R., Kelly, K., Sun, E. et al. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23, 1418–1423 (2005). https://doi.org/10.1038/nbt1159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing