Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic engineering of aminodeoxyhexose biosynthesis in Streptomyces fradiae

Abstract

The antibacterial properties of macrolide antibiotics (such as erythromycin, tylosin, and narbomycin) depend ultimately on the glycosylation of otherwise inactive polyketide lactones. Among the sugars commonly found in such macrolides are various 6-deoxyhexoses including the 3-dimethylamino sugars mycaminose and desosamine (4-deoxymycaminose). Some macrolides (such as tylosin) possess multiple sugar moieties, whereas others (such as narbomycin) have only single sugar substituents. As patterns of glycosylation markedly influence a macrolide's drug activity, there is considerable interest in the possibility of using combinatorial biosynthesis to generate new pairings of polyketide lactones with sugars, especially 6-deoxyhexoses. Here, we report a successful attempt to alter the aminodeoxyhexose-biosynthetic capacity of Streptomyces fradiae (a producer of tylosin) by importing genes from the narbomycin producer Streptomyces narbonensis. This engineered S. fradiae produced substantial amounts of two potentially useful macrolides that had not previously been obtained by fermentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Fermentation products from S. fradiae supplemented with desosamine-biosynthetic genes from S. narbonensis. HPLC analysis of material produced by
Figure 4: Analysis of fermentation products by mass spectrometry.

Similar content being viewed by others

References

  1. Gale, E.F., Cundliffe, E., Reynolds, P.E., Richmond, M.H. & Waring, M.J. The Molecular Basis of Antibiotic Action, Edn 2 (Wiley, London, 1981).

    Google Scholar 

  2. Corcoran, J.W., Huber, M.L.B. & Huber, F.M. Relationship of ribosomal binding and antibacterial properties of tylosin-type antibiotics. J. Antibiot. 30, 1012–1014 (1977).

    Article  CAS  Google Scholar 

  3. Ōmura, S., Inokoshi, J., Matsubara, H. & Tanaka, H. Ribosome-binding activities and antimicrobial activities of tylosin and its related compounds. J. Antibiot. 36, 1709–1712 (1983).

    Article  Google Scholar 

  4. Fish, S.A. & Cundliffe, E. Structure-activity studies of tylosin-related macrolides. J. Antibiot. 49, 1044–1048 (1996).

    Article  CAS  Google Scholar 

  5. Poulsen, S.M., Kofoed, C. & Vester, B. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. J. Mol. Biol. 304, 471–481 (2000).

    Article  CAS  Google Scholar 

  6. Kirst, H.A. Antibiotics (macrolides). in Kirk-Othmer Encyclopedia of Chemical Technology, Edn 4, Vol. 3 (ed. Howe-Grant, M.) 169–213 (Wiley, New York, 1992).

    Google Scholar 

  7. Katz, L. Manipulation of modular polyketide synthases. Chem. Rev. 97, 2557–2575 (1997).

    Article  CAS  Google Scholar 

  8. Khosla, C. Harnessing the biosynthetic potential of modular polyketide synthases. Chem. Rev. 97, 2577–2590 (1997).

    Article  CAS  Google Scholar 

  9. Leadlay, P.F. Combinatorial approaches to polyketide biosynthesis. Curr. Opin. Chem. Biol. 1, 162–168 (1997).

    Article  CAS  Google Scholar 

  10. Summers, R.G. et al. Sequencing and mutagenesis of genes from the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea that are involved in L-mycarose and D-desosamine production. Microbiology 143, 3251–3262 (1997).

    Article  CAS  Google Scholar 

  11. Salah-Bey, K. et al. Targeted gene inactivation for the elucidation of deoxysugar biosynthesis in the erythromycin producer Saccharopolyspora erythraea. Mol. Gen. Genet. 257, 542–553 (1998).

    Article  CAS  Google Scholar 

  12. Gaisser, S., Böhm, G.A., Cortés, J. & Leadlay, P.F. Analysis of seven genes from the eryAI-eryK region of the erythromycin biosynthetic gene cluster in Saccharopolyspora erythraea. Mol. Gen. Genet. 256, 239–251 (1997).

    Article  CAS  Google Scholar 

  13. Gandecha, A.R., Large, S.L. & Cundliffe, E. Analysis of four tylosin biosynthetic genes from the tylLM region of the Streptomyces fradiae genome. Gene 184, 197–203 (1997).

    Article  CAS  Google Scholar 

  14. Gaisser, S. et al. A defined system for hybrid macrolide biosynthesis in Saccharopolyspora erythraea. Mol. Microbiol. 36, 391–401 (2000).

    Article  CAS  Google Scholar 

  15. Tanaka, A., Tsuchiya, T., Umezawa, S. & Umezawa, H. Synthesis of 4′-deoxymycaminosyl tylonolide. J. Antibiot. 34, 1374–1376 (1981).

    Article  CAS  Google Scholar 

  16. Tanaka, A., Watanabe, A., Tsuchiya, T., Umezawa, S. & Umezawa, H. Syntheses of 4′-deoxy-demycarosyl tylosin and its analogues. J. Antibiot. 34, 1381–1384 (1981).

    Article  CAS  Google Scholar 

  17. Tanaka, A. et al. Syntheses of 23-dialkylamino derivatives of mycaminosyl tylonolide and 4′-deoxymycaminosyl tylonolide effective against gram-negative bacteria. J. Antibiot. 35, 113–116 (1982).

    Article  CAS  Google Scholar 

  18. Kirst, H.A. et al. Structure-activity studies among 16-membered macrolide antibiotics related to tylosin. J. Antibiot. 35, 1675–1682 (1982).

    Article  CAS  Google Scholar 

  19. Wilson, V.T.W. & Cundliffe, E. Characterization and targeted disruption of a glycosyltransferase gene in the tylosin producer, Streptomyces fradiae. Gene 214, 95–100 (1998).

    Article  CAS  Google Scholar 

  20. Fish, S.A. & Cundliffe, E. Stimulation of polyketide metabolism in Streptomyces fradiae by tylosin and its glycosylated precursors. Microbiology 143, 3871–3876 (1997).

    Article  CAS  Google Scholar 

  21. Mellaert, L.V., Mei, L., Lammertyn, E., Schacht, S. & Anné, J. Site-specific integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector. Microbiology 144, 3351–3358 (1998).

    Article  Google Scholar 

  22. Bierman, M. et al. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43–49 (1992).

    Article  CAS  Google Scholar 

  23. Bibb, M.J., White, J., Ward, J.M. & Janssen, G.R. The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol. Microbiol. 14, 533–545 (1994).

    Article  CAS  Google Scholar 

  24. Butler, A.R., Bate, N. & Cundliffe, E. Impact of thioesterase activity on tylosin biosynthesis in Streptomyces fradiae. Chem. Biol. 6, 287–292 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Biotechnology and Biological Sciences Research Council, project grant 91/T08195.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Cundliffe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, A., Bate, N., Kiehl, D. et al. Genetic engineering of aminodeoxyhexose biosynthesis in Streptomyces fradiae. Nat Biotechnol 20, 713–716 (2002). https://doi.org/10.1038/nbt0702-713

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0702-713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing