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Abstract

Recent single-cell analysis technologies offer an unprecedented opportunity to elucidate 

developmental pathways. Here we present Wishbone, an algorithm for positioning single cells 

along bifurcating developmental trajectories with high resolution. Wishbone uses multi-

dimensional single-cell data, such as mass cytometry or RNA-seq data, as input and orders cells 

according to their developmental progression by pinpointing bifurcation points and labeling each 

cell as pre-bifurcation or as one of two post-bifurcation cell fates. Using 30-channel mass 

cytometry data, we show that Wishbone accurately recovers the known stages of T cell 

development in the mouse thymus, including the bifurcation point. We also apply the algorithm to 

mouse myeloid differentiation and demonstrate its generalization to additional lineages. A 

comparison of Wishbone to diffusion maps, SCUBA and Monocle shows that it outperforms these 

methods both in the accuracy of ordering cells and in the correct identification of branch points.

 Introduction

Multi-cellular organisms develop from a single cell that undergoes many stages of 

proliferation and differentiation, resulting in a vast array of progenitor and terminal cell 
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types. Although many of the key stages and cell populations in these processes have been 

characterized using fluorescence-activated cell sorting and genetic perturbations, much of 

development remains uncharted. Emerging high-throughput technologies such as single-cell 

RNA-seq [1] and mass cytometry [2] can measure a large number of parameters 

simultaneously in single cells and interrogate an entire tissue without perturbation. As many 

tissues maintain homeostasis through continuous and asynchronous development, this 

presents an opportunity to measure cells at almost all stages of maturity at high resolution. 

The challenge is to devise computational algorithms capable of exploiting this resolution to 

order cells based on their maturity and to identify the branch points that give rise to the full 

complement of functionally distinct cells.

Recently, several reports have demonstrated approaches to order single cells based on their 

maturity [3, 4]. However, these approaches assume non-branching trajectories and thus are 

poorly suited to model multiple cell fates. Two key challenges to constructing branching 

trajectories are ordering cells based on their developmental maturity, and associating cells to 

their respective developmental trajectories and identifying the branch point. Methods such as 

SCUBA [5] can identify branches in data, along with pseudo-temporal ordering of cells, but 

with considerable loss in temporal resolution and accuracy.

Here we present Wishbone, a trajectory detection algorithm for bifurcating systems. We use 

mass cytometry data measuring T cell development in mouse thymus, where lymphoid 

progenitors differentiate to either CD8+ cytotoxic or CD4+ helper T cells, to demonstrate the 

accuracy and robustness of Wishbone. The wishbone algorithm recovers the known stages in 

T cell development with high accuracy and developmental resolution. We order DN (1–4), 

DP, CD4+ and CD8+ cells from a single snapshot along a unified bifurcating trajectory. We 

show that Wishbone de novo recovers the known stages in T cell development with 

increased accuracy and resolution compared with competing methods. The resulting 

trajectory and branches match the prevailing model of T cell differentiation with the full 

complement of cell types.

We determine that a substantial part of heterogeneity in expression of developmental 

markers is explained by developmental maturity, rather than stochasticity in expression. 

Additionally, we apply Wishbone to early and late human myeloid differentiation data 

generated using mass cytometry [2] and mouse myeloid differentiation data generated using 

single-cell RNA-seq [6]. Wishbone successfully identifies maturation and branch-points in 

myeloid development de novo, demonstrating its broad applicability to systems with 

bifurcating trajectories across diverse single cell technologies.

 Results

 Learning bifurcating developmental trajectories

To infer a branching trajectory directly from data Wishbone makes the following 

assumptions about the data: (a) differentiation is a continuous process, (b) a snapshot of 

primary tissue represents the entire differentiation process and (c) the trajectory of a cell 

bifurcates to one of two fates. Differentiation is punctuated by the rise and fall of phenotypic 

markers, and thus standard distance metrics such as Euclidean metrics do not adequately 
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capture the difference in maturity between two cells (Figure 1A). Similarly to our previous 

non-branching trajectory detection algorithm, Wanderlust [3], we use nearest-neighbor 

graphs to capture developmental distance and identify an initial ordering of cells using 

shortest paths (Online methods). Each node in the graph represents a cell, and edges connect 

each cell to its most similar cells based on expression (Figure 1A). Distances between cells 

can be computed using shortest paths, i.e., a series of short steps through the neighbors in 

the graph, where each step between closely related cells is likely to represent similarity in 

degree of maturity.

Wishbone uses shortest paths from an input ‘early cell’ to build an initial ordering of cells, 

which is subsequently refined using a selected set of cells, called waypoints. Finally, the 

inconsistencies in distances between waypoints are used to identify the branch point and 

branch associations for all cells. The quality of the nearest-neighbor graph is critical for 

accurate ordering, and major source of noise is the presence of “short-circuits” – spurious 

edges between cells that are farther apart in maturity [3]. Notably, a single short-circuit is 

sufficient to route all shortest paths between developmentally distant cells leading to 

incorrect ordering. Short-circuits are particularly prevalent in branching datasets, since cells 

following the bifurcation point might not be sufficiently distinct in their phenotypic 

characteristics (Supplementary Fig. 3). Wishbone overcomes these short-circuits by 

reconstructing the graph in projected space of reduced dimensions generated using diffusion 

maps [7] (Online Methods). Diffusion maps consider all possible paths between any pair of 

cells to dramatically reduce short-circuits. Wishbone uses the top diffusion components to 

construct the graph, capturing the major geometric structures in the data, while removing 

small fluctuations likely resulting from measurement noise.

The algorithm uses a select set of cells, called waypoints, to act as guides at different regions 

of the graph. Waypoints are randomly sampled cells, selected to represent regions along the 

entire trajectory and its branches (Online Methods). Each waypoint contributes a 

perspective, based on its computed distance to all other cells (Figure 1B). The placement of 

a cell in the trajectory is determined by averaging the perspectives of all waypoints, with 

closer waypoints getting a higher weighting. Thus closer, more reliable waypoints 

predominantly determine a cell’s position, while retaining a degree of influence of the distal 

waypoints to derive a consistent global structure (Figure 1B, bottom right panel). These 

waypoints are key to accurately identifying branch points.

Waypoints are also the key to identifying branch points: If two waypoints i and t are along 

the same trajectory, the difference between the shortest path from the early cell to t and a 

path that goes through i is close to zero (Figure 1C, left panel). On the other hand, if the two 

waypoints are on different branches, this difference is significantly greater than zero (Figure 

1C, middle panel). In the presence of a true branch, the disagreements between waypoints of 

the two branches accumulate to create two sets of waypoints that agree within each set and 

disagree between sets. These disagreements create a structured matrix (Figure 1C, right 

panel): waypoints on the trunk have low disagreements with all waypoints, waypoints on one 

branch agree with other waypoints on the same branch and have high disagreements with all 

waypoints on the different branch (Online Methods). This structure can be identified with 

clustering approaches.
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Specifically, from spectral clustering techniques, the second Eigen vector of this matrix 

summarizes all the disagreements for a given waypoint and provides a quantitative measure 

of branch association for the waypoints (Figure 1D, left panel, Online Methods). The extent 

of deviation from zero is a function of the maturity of the cell creating a Wishbone-like 

structure and giving the algorithm its name (Figure 1D, left panel). Wishbone recovers the 

ordering of cells along their developmental trajectory, finds the branch point, and assigns 

cells following this point to one of the two branches (Figure 1D).

 Analysis of mouse thymus mass cytometry dataset

During T cell development in the mouse thymus, CD4+ helper T cells and CD8+ cytotoxic T 

cells bifurcate from lymphoid progenitors (Figure 2A) [8, 9]. We applied Wishbone to mass 

cytometry data from mouse thymus, with surface markers and transcription factors chosen 

based on their broad functionality in T cell development (Supplementary Table 1, Online 

Methods). We collected data for 5 independent thymuses from Black6 mice with an average 

of 230k cells were collected per sample.

Wishbone was independently applied to each thymus, using only the surface markers for 

computing cell similarities (Supplementary Table 1) and defining the DN cell population as 

the starting point [8]. Marker trends along the resulting trajectory are depicted in Figure 2B 

(Online Methods). Wishbone accurately recovered the known stages in T cell development 

(Figures 2B, Supplementary Fig. 4), including the bifurcation into two single positive 

lineages (CD4+ and CD8+). Specifically, the trajectory begins at the Double negative (DN) 

stage (CD4−CD8−), transitions to the double positive (DP) stage (CD4+CD8+) and finally 

branches to the two single positive (SP) populations [8]. We note that Wishbone correctly 

ordered the DN populations: DN2 (CD44+CD25+), DN3 (CD44−CD25+), and DN4 

(CD44−CD25−), even though these cells are rare and constitute <1% of the cells in the 

thymus. DN1 (CD44+CD25−) cells are extremely rare and we do observe a signature 

resembling these cells at the beginning of the trajectory (Figure 2B). To further test 

Wishbone’s accuracy, we evaluated the expression trends of markers not used while learning 

the trajectory: TFs Runx1 and Bcl11b and signal molecule Notch1 (Figure 2C). The 

abundance of all these markers is consistent with their known roles and timing in DN stages 

of T cell development (Supplementary Note 1).

Additional evidence of Wishbone’s accuracy is the tightness of marker variation over the 

course of the trajectory (Figure 2D). Not only do the median marker levels follow expected 

trends, but almost every single cell is correctly placed in the trajectory, as indicated by low 

variance of markers across most of the trajectory. The variance is low for markers 

irrespective of whether the marker was used for learning the trajectory (Figure 2D, 

Supplementary Fig. 5), reinforcing the robustness of Wishbone results.

Previous studies characterizing thymic development have largely relied on genetic 

perturbations and subsequent cell sorting that invariably eliminate specific developmental 

compartments. With 30 channels simultaneously measured, we could place DN, DP, CD4+ 

and CD8+ cells from a single thymus along a unified bifurcating trajectory and precisely 

order the course of multiple events along the trajectory measured directly from thymic tissue 

in an unbiased manner. We used derivative analysis to time key events along the trajectory 
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(Figure 2E) in a single frame of reference and found that Wishbone recovers a precise 

temporal ordering and branching of cells along with high resolution and accuracy using cells 

collected from a complex primary tissue (Supplementary Note 1) (Figures 2B, 2E).

 Wishbone results are consistent across replicates and are robust to parameter choices

To test robustness, we applied Wishbone to three independent mouse thymuses and 

recovered consistent trajectories and branching behavior across all replicates. We used cross 

correlation to align the expression of individual markers, providing a quantitative measure 

for consistency across replicates (Figure 3A). We find that the dynamics of marker 

expression and order of events along the trajectories are consistent across the replicates 

(Supplementary Fig. 6).

We investigated the sensitivity of the trajectory and branching to the various free parameters: 

Number of neighbors k, for the graph construction, Number of waypoints nW, the sampling 

of waypoints from the cells and number of diffusion components used. The ordering of cells 

and their branch point are remarkably robust to these different parameter choices across 

replicates. (Supplementary Figs. 7 and 8, Supplementary Note 3). Wishbone results are also 

largely robust to exclusion of individual markers used for learning (Supplementary Fig. 9). 

Moreover, the branches identified by Wishbone remain consistent irrespective of whether 

cells of DN or SP population are used as the input early cell (Supplementary Fig. 10).

 Maturity controls for marker levels within individual cell types

We observe considerable heterogeneity in canonical surface markers. We hypothesized that 

at least part of this variation might be a result of developmental maturity, where cells from 

varied developmental stages are pooled into a single gated population. Using the fine 

temporal resolution of Wishbone’s trajectory, we compared the marker variance, conditioned 

on the developmental progression of the cells, to that observed in gated populations. To 

make this comparison, we first identified the two SP populations using the standard gating 

scheme on the expression of the two lineage markers: CD4 and CD8 (Figure 3B) [8]. We 

next compared the variance in these gated populations to the variance of the corresponding 

markers, conditioned on the Wishbone trajectory. In both SP populations, the variance of the 

lineage markers CD4 and CD8 and the co-receptor CD3, when controlled for maturity along 

the trajectory, is substantially low compared to population variance in the gated populations 

(Figure 3D, Supplementary Fig. 11A).

As an additional test, we ran Wishbone without using CD3 as one of the markers while 

learning the trajectory. The identified trajectory and branches are similar to results obtained 

including CD3 and is accompanied with only a minor increase in variance of CD3 all along 

the trajectory (Figure 3C). However, the variance of all receptor and co-receptor molecules, 

CD4, CD8 and CD3, continue to be substantially lower along the trajectory compared to 

variance in the gated populations (Figure 3D). These results similarly hold when either of 

CD4 or CD8 are excluded from learning (Supplementary Fig. 11B–C). Collectively, these 

results suggest that a substantial part of the heterogeneity of marker expression in gated 

populations are a result of comparing cells at different stages along their developmental 

maturity, rather than stochasticity in marker expression.
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 Transcription factor dynamics along SP trajectories

Next we set out to explore the dynamics of key transcription factors along the two SP 

trajectories, using revised panel including the transcription factors ThPOK, Gata3 and 

Runx3. ThPOK and Gata3 have been shown to be critical for the CD4 SP population [10] 

and Runx3 has been demonstrated to be key for CD8 SP commitment [10]. The dynamics of 

these factors along the trajectory is shown in Figure 4A, B.

To place the dynamics of these transcription factors in context, we used CD69 and CD62L to 

identify landmarks of maturation such as lineage commitment and successful negative 

selection (Figure 4C–D). Our results suggest that these factors follow distinct dynamic 

patterns in achieving commitment: ThPOK and Gata3 are upregulated during positive 

selection but Runx3 appears to only be upregulated following the detected branch point 

(Supplementary Note 4, Supplementary Fig. 12). Gata3 has been shown to regulate ThPOK 

expression [11] and might offer an explanation as to why ThPOK trails Gata3 in expression 

changes (Figure 4C). The different dynamics can potentially be indicative of distinct 

regulatory mechanisms through which these factors achieve linage commitment. Further 

experiments are necessary to elucidate these mechanisms.

We compared marker dynamics along the Wishbone trajectory to the dynamics derived from 

gating of developing SP cells [12–14] (Supplementary Fig. 13, Online Methods) and 

compared the ordering of cells within each population along the Wishbone trajectory.

We observe that cells within most gated populations are spread out along the trajectory 

(Figure 4E, Supplementary Fig. 14B), particularly cells of the CD4+CD8int population, 

where the lineage decision is thought to occur [15]. To address this discrepancy between 

Wishbone and gating, we divided the CD4+CD8int cells into “Early” and “Late” groups 

based on their positions in the Wishbone trajectory (Figure 4E, Online Methods) and 

compared the expression of known maturation markers CD69, CD24 and CD62L in the two 

groups. The “Early” cells show significantly higher expression of CD69, CD24 and lower 

expression of CD62L compared to “Late” cells (Figure 4F, p < 1e-6, Kolmogorov-Smirnov 

test) demonstrating that the cells in “Early” and “Late” are groups immature and mature 

respectively. Similar results for additional gated populations in CD4 and CD8 branch 

(Supplementary Fig. 14) indicate that the conventional gating scheme leads to inclusion of 

cells at different stages of maturation in each gate. We conclude that Wishbone provides 

more reliable estimates of cell maturation and hence marker dynamics along SP maturation.

We next compared the mean gene expression of markers in ImmGen sorted populations [16] 

to Wishbone marker dynamics and note discrepancies between the datasets. To understand 

the source of this discrepancy, we compared gated populations from our data and indeed 

mean protein expression in our gated populations and mean mRNA expression in ImmGen 

populations is correlated. Thus the discrepancy between dynamics observed along the 

Wishbone trajectory and gating is not a dataset specific observation (Figure 4G). The mixing 

of developmentally distinct cells in each gate can lead to confounding effects on expression 

change patterns along maturation: While CD24 shows a continuous decrease along 

Wishbone trajectory, the expression is more variable in the gated and ImmGen populations 

(Figure 4G left panel). Sustained upregulation of CD69 following positive selection is not 

Setty et al. Page 6

Nat Biotechnol. Author manuscript; available in PMC 2016 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed in gated populations since CD69 itself is used for gating (Figure 4G right panel). 

Finally, Gata3 expression changes in gated populations do not show the dynamics observed 

in Wishbone (Figure 4C (1, 5)) even though Gata3 was not used for gating (Supplementary 

Figure 14G), further demonstrating the ability of Wishbone to recover marker dynamics at 

higher resolution.

 Application of Wishbone to human myeloid development

We evaluated the performance of Wishbone on two human myeloid development datasets. 

We used previously published mass cytometry data [2] consisting of markers that are 

suitable to recover early and late Myeloid bifurcations [17] but not amenable for fine-

grained profiling of transitional myeloid populations (Supplementary Fig. 15, Online 

Methods).

Wishbone was able to track the differentiation of monocytes (CD14+CD11b+CD11c+) and 

erythroid cells (CD235ab+) from hematopoietic stem and progenitor cells (HSPCs) (Figure 

5A, Supplementary Fig. 16A) and accurately recover the monocyte and erythroid branches 

(Figure 5A). More over, expression of markers along the trajectory was consistent with 

known literature [18] (Supplementary Fig. 16C).

Wishbone accurately recovered the trajectory starting from HSPCs and the branching of the 

two-monocyte classes, classical monocytes and CD16 monocytes (CD16+CD15+) (Figure 

5B). This is a harder problem since most of the markers show identical distributions between 

the two populations except for the characteristic markers, CD15 and CD16 (Supplementary 

Fig. 16D). The expression of markers along the trajectory is consistent with known literature 

(Supplementary Fig. 16E), with the detected bifurcation point coinciding with significant 

downregulation of CD38.

 Extension of Wishbone to single-cell RNA-seq data

Single-cell RNA-seq technologies can profile thousands of single cells and enable genome 

wide characterization of developing systems [6, 19]. However such data poses a challenge in 

that the behavior of many genes is related not to developmental maturity but to processes 

such as cell cycle and stress. Thus, the success of trajectory and branch detection relies on 

removing unrelated factors and retaining those that track with differentiation.

We used recently published single cell RNA-seq data [6] to select cells involved in 

differentiation of myeloid and erythroid progenitors from HSPCs (Figure 5C, 

Supplementary Fig. 17A). We devised an extension of Wishbone, adapted to single-cell 

RNA-seq that uses diffusion maps to help focus on components related to development and 

maturation. Diffusion maps capture the major structures and trends in the data and, in the 

case of mass cytometry, different diffusion components track the differences among 

constituent cell types (Supplementary Fig. 8A). We project genes down onto each diffusion 

component, rank genes based on how well their expression tracks along this component and 

then use this ranking to perform gene set enrichment analysis (GSEA) [20] (Online 

methods). Some diffusion components are enriched for immune related functions (e.g. 

defense response, antigen processing and phagocytosis), whereas other components are 

enriched for other biological processes (e.g. Cell cycle, Ribosome biogenesis and metabolic 
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processes) (Supplementary Fig. 17C, Online methods). This provides a natural way to retain 

the components that are most relevant to the differentiation processes. With similar 

reasoning, Buettner et.al. use latent variable models to remove the contribution of cell cycle 

in single cell RNA-seq [21].

We constructed Wishbone’s neighbor graph based on a projection of the data onto only the 

differentiation related components and once this graph is constructed we proceed with 

wishbone as described for mass cytometry. Wishbone accurately recovered the trajectory 

starting from HSPCs and terminating at the two precursor cell types and the branch 

associations (Figure 5C). The marker trends show a consistent decrease of HSPC marker 

CD34 along the trajectory with an increase in expression of myeloid marker Mpo [22] along 

the myeloid branch (Supplementary Fig. 17C). Consistent with known biology, Gata2 is 

upregulated before Gata1 along the erythroid lineage [23] (Figure 5D).

 Wishbone outperforms competing methods in both trajectory and branch identification

We compared the performance of Wishbone to Diffusion maps [7], SCUBA [5] and 

Monocle [24] (Figure 6). While we use diffusion maps to build the kNN graph, we tested 

whether diffusion maps on their own can recapitulate developmental trajectories [25, 26]. 

Note that diffusion maps do not explicitly provide bifurcations and we can only evaluate 

their ability to recapitulate an accurate ordering. Diffusion maps correctly recover the 

various known stages in T cell development (Supplementary Fig. 18B), especially in the 

early DN states, but suffer from a considerable lack of resolution in DP and SP populations 

(Supplementary Fig. 18A–B). Moreover, while diffusion maps recover the right order in the 

two myeloid datasets (Supplementary Fig. 18C, E), in the monocyte dataset, diffusion maps 

order precursors after the mature cells (Supplementary Fig. 18D). Thus, while diffusion 

maps significantly reduce the noise in the data (Supplementary Fig. 3, Online Methods), the 

additional steps taken by Wishbone to refine ordering of cells are critical to derive robust, 

high-resolution trajectories.

Next we compared Wishbone to SCUBA [5]. SCUBA has a large memory footprint and 

therefore could only be run by subsampling 20,000 cells from the thymus dataset. The 

SCUBA trajectory of the thymus does not order the stages correctly and we observe the 

different DN cells interspersed among the DP cells (Figure 6A). SCUBA does identify the 

two SP populations as the two branches, but with reduced resolution at the bifurcation point 

compared to Wishbone (Figure 6A). Moreover, different random sample of cells leads to 

largely inconsistent results (Supplementary Fig. 19A–C) in both trajectory and branching. 

SCUBA trajectory in the mass cytometry monocyte and the single cell RNA-seq myeloid 

datasets is consistent with known biology, but yields a large number of incoherent branches 

(Figure 6C, Supplementary Fig. 19D). Moreover, SCUBA fails to correctly recover the order 

and branching in the monocyte-erythroid dataset (Supplementary Fig. 19E).

Finally we compared Wishbone to Monocle [24], which was specifically developed for 

application to single-cell RNA-seq data. Monocle could not be run with more than 1000 

cells and we therefore subsampled 1000 cells from each dataset. Monocle does not recover 

the correct ordering in the thymus data with DN and DP cells interspersed (Figure 6B). 

While the trajectory does end at the two SP populations, the branching identified by 
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Monocle does not correspond to any specific stages in T cell development, and both the SP 

populations are identified to be part of the same branch (Figure 6B). Repeated subsampling 

of the data resulted in largely inconsistent results with the two SP populations repeatedly 

assigned to the same branch (Supplementary Fig. 20A–C). Monocle also failed to recover 

the trajectory and branches in the single-cell RNA-seq myeloid dataset with incorrect 

ordering of cells and lack of detection of a coherent branch (Figure 6D). Monocle does 

recover ordering in the monocyte dataset, but the branching results in all the myeloid 

datasets do not correspond to the correct mature cell populations (Supplementary Fig. 20D–

E).

Thus, Wishbone outperforms competing methods in fine ordering of cells, identification of 

branch point and branch associations and consistent robustness across replicates.

 Discussion

We have developed an algorithm that enables accurate and high resolution ordering of cells 

along branched developmental trajectories (Supplementary Fig. 21). We first demonstrated 

Wishbone on T-cell development in the mouse thymus, using the throughput of mass 

cytometry to collect ≥200,000 cells per sample. Wishbone constructed a bifurcating 

trajectory starting from DN stages through maturation of the two SP lineages, providing an 

order and timing of events that closely recapitulated previous studies of this system [15]. 

The high resolution of Wishbone enabled us to identify subtle but key dynamics of lineage 

markers such as detection of the rare CD8+CD4− intermediate single positive cells during 

transition of DN to DP cells and the intermediate CD4+/CD8low state towards the end of 

DP.

The selection of a good marker set was key to the resolution we achieved. Marker choice can 

be guided by a combination of prior knowledge and preliminary screens. However, in the 

myeloid branching we demonstrated that even with a limited panel that included only a 

small number of distinguishing myeloid markers, Wishbone correctly ordered cells, 

identified the bifurcation and associated cells to the proper branch. While an explicit ground 

truth is not necessarily available, both SCUBA and Monocle fail to recover the expression 

trends and bifurcations that are consistent with known biology in these more challenging 

datasets. Wishbone only requires a few canonical markers to properly identify bifurcation, 

and achieves increasingly finer resolution in transitional populations, as additional markers 

are included.

Single cell RNA-seq is an attractive alternative to mass cytometry as its unbiased, genome-

wide nature provides measurements for thousands of genes and circumvents the need for a-

priori selection of a limited marker set. However, transcriptional changes un-related to 

development can confound the analysis, and even data for developmentally related genes has 

substantial noise, including drop-out effects [27]. We use diffusion maps to consolidate the 

key biological trends and remove unrelated biological processes. We demonstrated that 

Wishbone substantially outperforms methods developed specifically for single cell RNA-seq 

data [28].
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Even with the increasing throughput of single cell RNA-seq, current datasets include 

thousands of cells, as compared to hundreds of thousands available in mass cytometry. Since 

transitional populations have been shown to be as rare as 1/10,00 cells [3], the throughput of 

mass cytometry is better suited to achieve finer temporal resolution. In our view, the two 

technologies are complementary. For example, single-cell RNA-seq can be used for 

unbiased marker selection in less-studied developmental systems, and finer temporal 

resolution can then be achieved with mass cytometry using the identified panel.

 Data availability and software

The mouse thymus mass cytometry data can be downloaded from Cytobank (https://

www.cytobank.org/cytobank/experiments/52942). The cleaned data along with the 

Wishbone results for different replicates is available through the supplementary website 

(http://www.c2b2.columbia.edu/danapeerlab/html/wishbone.html). Myeloid mass cytometry 

data was downloaded from Cytobank (http://reports.cytobank.org/1/v1). Mouse myeloid 

single cell RNA-seq was downloaded from GEO (accession number: GSE72857). Wishbone 

results for all the myeloid datasets is available through the supplementary website http://

www.c2b2.columbia.edu/danapeerlab/html/wishbone.html). Wishbone has been integrated 

into our single analysis suite cyt and can be downloaded from (http://

www.c2b2.columbia.edu/danapeerlab/html/cyt-download.html) and from Supplementary 

software. A python package for Wishbone algorithm is available through github (https://

github.com/ManuSetty/wishbone).

 Online methods

 Mouse thymus data and mass cytometry

Female C57BL/6 mice were obtained from Harlan Laboratories. All mice were housed at the 

Weizmann Institute in compliance with national and international regulations.

Thymocytes were isolated from the thymus of 6-week-old C57Bl mice. Cells were stained 

with metal-conjugated antibodies according to manufacturer’s protocol (Supplementary 

Table 1). Briefly around 200k cells were stained with cell-ID TM Cisplatin (Fluidigm) (5min 

RT). Next cells were stained with surface antibodies (30 min RT), and fixed with 1.6% PFA 

(10 min RT). After permeabilization with 100% ice-cold Methanol (15 min, 4C), the cells 

were stained with intracellular antibodies (30 min, RT). Finally the cells were labeled with 

Iridium DNA intercalator for DNA content and analyzed by CyTOF mass cytometry using 

CyTOF2. Data was normalized using bead normalized with bead standards [1].

We collected data for 5 independent thymuses from Black6 mice using two different marker 

panels. The first predominantly contains cell surface markers and the second combines the 

most informative of these surface markers with known regulators of lineage commitment 

(Supplementary Table 1).

 Data preprocessing and choice of parameters for Wishbone

Mass cytometry data channels were first arcsinh transformed with a cofactor of 5 [2]. Cell 

doublets, barcodes, dead cells and debris were removed from the data using the gating 
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scheme shown in Supplementary Fig. 1. Next, the cells were clustered using Phenograph 

[29].

For the mouse thymus dataset, the clusters corresponding to myeloid cells (expression of 

CD11b, CD11c), B cells (CD19), NK cells (CD161), regulatory T cells (CD25) and TCRγδ 

cells were filtered out from the analysis (Supplementary Fig. 2). The remaining clusters 

correspond to the DN, DP and SP populations. Finally, for each thymus a start cell was 

sampled from the DN population and the same start cell was used for all the analyses of that 

thymus. The results presented in the paper were generated using number of nearest 

neighbors k=15 and number of waypoints nW=250.

Human bone marrow mass cytometry data was downloaded from [2]. Doublets, cell debris 

and dead cells were removed as described above. Phenograph was used to identify the 

clusters of cells and all the lymphoid clusters were removed (Supplementary Fig. 15) and 

clusters for generating the datasets used in Figures 5–6 were identified by expression of 

characteristic markers (Supplementary Fig. 16 A and D).

 Overview of the Wishbone algorithm

 Introduction—Differentiation is a complex process involving multiple decision points to 

decide cell fate. This process can be seen as hierarchical tree with the multipotent stem and 

progenitor cells at the root and the mature differentiated cell types at the bottom with various 

precursor cells as intermediate cell types [15, 17, 30]. Emerging high throughput 

technologies such as single cell RNA-seq [1, 19, 31] and mass cytometry [2] are enabling 

generation of data with unprecedented resolution and require computational algorithms 

capable of exploiting this resolution. Wishbone uses multi-dimensional single-cell data to 

align cells along bifurcating trajectories. Wishbone was developed to study systems where 

the developmental trajectory of cell bifurcates to one of two cell fates (Figure 1A).

There are two key challenges involved in studying trajectories with branches: (1) Ordering 

of cells within the trunk and in each of the branches, (2) Identification of bifurcation or 

branch point and assignment of cells to either the trunk or one of the branches. Previous 

studies attempting to study differentiation have largely relied on sorted populations. While 

these have led to important advances, the dynamics of marker behavior along the maturation 

trajectory cannot be characterized without an accurate high resolution ordering of cells, 

capable of characterizing the order and timing of key molecular events during development. 

The second challenge is to assign the cells to their respective branches. Given a right set of 

markers, it is relatively straightforward to classify the mature cells into the correct branches. 

However, there are many uncharacterized bifurcations where such markers are not well 

defined. Moreover, a precise identification of branch point is central to achieve a high 

resolution into bifurcating trajectories to understand the series of events leading up to and 

following cell fate decisions. Furthermore, cells can be thought of as being in a state of flux 

at the branch point necessitating a soft assignment of branches.

Wishbone addresses these challenges by taking a graph-based approach to measure distances 

between cells, similar to the approach used by Wanderlust [3], our previously published 

algorithm for detecting non-branching trajectories. Wishbone first constructs a nearest 
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neighbor graph of cells and estimates distances between them using the shortest path 

algorithm. The greedy nature of shortest path algorithms makes them susceptible to short 

circuits i.e., connections between developmentally distal cells. Wishbone overcomes this 

problem by use of diffusion maps [7], a dimensionality reduction technique, to reduce noise 

and eliminate short circuits. The initial ordering of cells as determined by shortest path 

distances from an input early cell are increasingly prone to noise as distance increases. 

Wishbone uses a series of cells called waypoints, sampled all along the entire trajectory to 

locally refine the ordering of cells and overcome this noise. Finally, the disagreements 

between waypoint’s and the early cell’s distances to other cells are used to detect the branch 

point and branch assignments. The ordering and branch assignments are iteratively repeated 

until convergence. These randomly sampled waypoints provide a sparse approximation for 

the entire dataset. Randomly sampled subsets have previously been used to achieve more 

computationally efficient dimensionality reduction [32]. A key distinction between 

Wishbone’s waypoints to other such sparse approximation schemes is that the waypoints are 

themselves the driving force underlying the algorithm. Thus Wishbone recovers an accurate 

high resolution ordering and branching of cells in bifurcation trajectories.

Wishbone makes the following assumptions about the data: (1) The maturation process 

along differentiation is continuous and (2) the snapshot of primary tissue any given point is 

representative of the entire differentiation process with various intermediate and rare 

populations represented and (3) the developmental trajectory of a cell bifurcates to one of 

only two cell fates.

 Nearest neighbor graph and shortest paths—Differentiation is characterized by a 

series of increases and decreases in expression of specific markers [3]. Furthermore, the rise 

and fall of the markers involved in development create non-linear relations between the 

markers and their relation to maturity (Figure 1) [3]. Therefore, distance metrics such as 

Euclidean distance fail to accurately capture the similarity between cells that are at distinct 

stages of development. As previously demonstrated [3], nearest neighbor graphs are a 

powerful alternative to capture developmental distances. Here, each cell is a node and is 

connected to its nearest neighbors i.e., the cells that are most similar in the phenotypic 

profiles. The underlying assumption being that for very short distances, marker similarity 

represents a similar developmental maturity. The edge weights are set to the similarity 

between the connected cells.

Given the graph, a path can be defined from one cell to another through a series of short 

steps represented by edges, since each of these edges represent a more confident 

developmental proximity. While there are many possible paths through the graph between 

any given pair of cells, an efficient choice is to take a path such that the total weight of edges 

is minimized. This minimal sum of weights also referred to as the shortest path distance 

between two cells and can be used a distance metric between cells [3]. Thus the shortest path 

distances to all cells from the viewpoint of a cell early in development, denoted s, can be 

used as a starting point to build the trajectory.

 Short circuits and diffusion maps—Key to the success of the algorithm is 

construction of a good graph, where edges in the graph connect cells that are indeed close in 
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their developmental progression. One of the problems affecting the construction of a good 

graph is presence of short circuits: spurious edges between cells that are farther apart in 

development but are identified as neighbors due to measurement noise. A single short circuit 

is sufficient to route all the shortest paths between distant cells through this anomalous edge 

resulting in incorrect ordering of cells. Since short circuits are relatively rare in non-

branching trajectories, Wanderlust proposed the use of ensemble of graphs where trajectories 

were determined by repeatedly sampling a subset of edges from the graph [3].

Short circuits however, are considerably more prevalent in branching datasets particularly 

close to the bifurcation point since the markers that characterize the branches might not be 

sufficiently distinct in this region. Furthermore, depending on extent of separation of the 

branch and noise in the characteristic markers, short circuits might also be present all along 

maturation trajectory. An illustrative example is shown in Supplementary Fig. 22A. The 

ensemble of graph methods fails to sufficiently remove these short circuits since it assumes 

the number of short circuits to be significantly fewer in number (Supplementary Fig. 22B – 

each panel was derived by sampling a subset of edges).

Wishbone therefore uses diffusion maps [7] to remove short circuits in the data and construct 

a graph that is more faithful to the developmental trajectory. Diffusion maps are a non-linear 

dimensionality reduction technique to derive a low-dimensional description of high 

dimensional data by exploiting local similarities [7]. Rather than rely solely on the shortest 

paths in the phenotypic marker space, diffusion maps generate a low-dimensional 

embedding by approximating all possible paths through the graph, avoiding the harmful 

effect of short circuits. One can view diffusion maps as a non-linear version of Principle 

Component Analysis (PCA). Often data is de-noised by projecting data onto the top 

principle components, assuming the smaller components represent noise [33]. Similarly, by 

projecting the data onto the top diffusion components, we capture the major structures in the 

graph and remove small fluctuations, providing a non-linear data clean up step.

While diffusion maps often generate a first order approximation of the developmental 

trajectory, the resulting resolution is not sufficiently fine as shown in Figure 6. Therefore 

Wishbone constructs a nearest neighbor graph in the embedded space to bring together 

advantages of graph-based methods for trajectory building and de noising nature of diffusion 

maps. The graphs constructed in the embedded space tend to be free of most short circuits 

(Supplementary Fig. 22C) and therefore shortest paths can be used for computing distances 

between cells.

 Graph construction and initial ordering of cells—Formally, given a dataset with 

N cells and M markers, Wishbone starts by transforming the high dimensional phenotypic 

data into low-dimensional data using diffusion maps. The embedding is computed by using 

the diffusion geometry code (http://www.math.duke.edu/~mauro/diffusiongeometries.html) 

with default parameters. This embedded space is used to construct a k-nearest-neighbor 

graph (k - NNG), G, spanning all the cells. Each cell i is connected to its k nearest cells via 

Euclidean distance in the embedded space and edges connecting cells to their nearest 

neighbors are weighted by the Euclidean distance between them.
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An early cell s, provided as user input, is then used to compute an initial alignment of cells 

by computing shortest path distances from s to all cells. The distance from s to any given 

cell i is calculated using Dijkstra’s algorithm:

(1)

where P is a path between s and i, and Ge1,e2 is the weight of edge e. Note that the graph is 

undirected and therefore Dis = Dsi.

The trajectory or ordering of cells is initialized to the shortest path distance from s i.e., 

. This initial ordering encapsulates this early cell’s perspective of the other cells’ 

progression, based on their computed shortest-path distance from s (Figure 1B, top right 

panel).

 Waypoints and perspectives—Shortest path distances are robust at short distances 

but become less reliable with increasing distance from the source cell. Supplementary Fig. 

23A shows the loss in reliability of shortest path distances. The additive nature of noise 

leads to accumulation of mistakes with distance and becomes the dominant factor with 

greater distances (Supplementary Fig. 23A, Figure 1B).

Wishbone, like Wanderlust, overcomes this issue by sampling a series of cells throughout the 

trajectory termed “waypoints” to act as guides in ordering the cells [34]. The ordering of 

cells is then averaged across the waypoints with closer waypoints giving a bigger “vote”. 

This improves the robustness by taking advantage of reliability of shortest path distances 

over short distances. As described later, waypoints are also used for branch associations and 

due to the importance of waypoints for both the ordering of the cells and branch 

identification, a key difference between Wanderlust and Wishbone is how waypoints are 

selected and weighted.

A random sample of cells can potentially select outliers as waypoints. Wishbone therefore 

refines the choice of waypoints by using a median filter [34]. For each randomly selected 

waypoint, its k nearest neighbors are identified and is replaced by the cell closest to the 

median profile generated using these neighbors. This refinement step has been shown to be 

effective in preventing the outlier cells from being chosen as waypoints for learning 

trajectories [34].

Next, shortest path distances are computed for each of the waypoints to obtain the distance 

matrix, D ∈ ℝnW×N, where nW is the number of waypoints including the early cell s. 

Individually, the distances from each waypoint are still affected by the same issues of 

increasing noise with distance from the waypoint (Supplementary Fig. 23A). But 

collectively, each cell is close to a number of waypoints that can reliably estimate the 

ordering along developmental axis.

Waypoints are introduced to robustly order the cells by computing a weighted average but 

the distances from different waypoints in D are not aligned and therefore are not directly 
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comparable (Supplementary Fig. 23A). Thus, Wishbone computes the positioning or 

ordering of cells from the perspective of each waypoint using the initial trajectory τ(0) as the 

reference. The perspective of a cell i with respect to waypoint w is the distance of i from the 

s from the viewpoint of w and is computed as

(2)

This ensures that cells beyond the waypoint in the initial ordering have a higher perspective 

than cells that lie before the waypoint (Supplementary Fig. 23B, Figure 1B). Thus the 

unaligned distance matrix D is converted to an aligned perspective matrix P ∈ ℝnW×N where 

each entry represents the position of a cell along the trajectory from the viewpoint of the 

corresponding waypoint yielding nW proposed orderings for each cell. Note that the 

perspective of the early cell s is the initial ordering τ(0) itself.

These perspectives can now be used increase the accuracy of the ordering by computing a 

weighted average across the proposed orderings. The weighting scheme should increase the 

vote for closer waypoints to take advantage of reliability of shortest paths over shortest 

distances. However, it is important to also include a degree of influence from the distal 

waypoints to derive a consistent global structure. This requirement is satisfied by weights 

that are inversely proportional to the distance from waypoint. Thus the weights are 

calculated by a Gaussian kernel applied to the distances, as defined by

(3)

where σ is the standard deviation of distance matrix D. The denominator is the summation of 

inverted distances over all cells and used for normalization. This defines the weight matrix 

W ∈ ℝnW×N. The weighted average is then calculated by

(4)

The vector τ(1) is the refined trajectory of all cells (Figure 1B, Bottom right panel). Note that 

the W matrix is adjusted to ensure waypoints on one branch have reduced influence on 

ordering of cells in the other branch by a muting scheme described in the section “Refining 
the ordering using branch association scores”.

 Branch point identification—Inconsistencies between waypoints are used to identify 

a branching point and the branch associations of each cell. Consider a waypoint t and a 

second waypoint i, with t being further along the trajectory. If i and t lie along the same 
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trajectory (either both lie in the trunk, or i lies on the trunk and t on of one of the branches, 

or i and t are both on the same branch), the path from s to t will lie roughly along the path 

used for calculating perspective of t relative to i (Figure 1C, left panel). Therefore the 

perspective relative to t will be in agreement with (i.e. be similar) the perspective of early 

cell s. Now consider another waypoint j such that j and t lie on different branches. In this 

case, there will be a disagreement between the perspective of s and t regarding the placement 

of j. The path from s to t will be significantly shorter than the path to determine the 

perspective of t with respect to j (Figure 1C, middle panel). That path first involves a 

traversal to j from s and another traversal back through j’s branch and then back out on t’s 

branch to reach t. Therefore for any two waypoints, the mutual disagreement between the 

perspective of one waypoint relative to other and the early cell’s perspective provides a 

quantitative measure of whether the two waypoints lie on same or different branches.

However, mutual disagreement between a single pair of waypoints alone does not suggest a 

branch point, as such a disagreement could be caused by noise accumulated during longer 

walks. However, when a true branch exists, there will be a disagreement between a 

considerable number of waypoints (those on different branches), which will cue the 

existence of a branching. In the case of branching a clear structure emerges, where two 

groups of branch points A and B all disagree between waypoints across A and B and agree 

with waypoints within the same branch.

To identify this structure, Wishbone computes disagreements for all pairs of waypoints to 

construct the matrix Q ∈ ℝnW×nW, where

(5)

In particular, Qij ≫ 0 if the two waypoints, i and j are on different branches and Qij ≈ 0 if 

one or both are on the trunk, or both are on the same branch. In summary, the distance 

matrix D is used to determine a perspective matrix P, which in turn is used to both refine the 

order and calculate the disagreement matrix Q used to determine branch associations as 

described below.

Figure 1C (right panel) shows an example of the Q matrix. This matrix captures similarities 

and differences between waypoints that belong to the same or different branch respectively. 

In particular, in the case of a branching trajectory, Q is effectively composed of three blocks. 

The first block consists of the waypoints in the trunk with Qij ≈ 0 for trunk waypoint i and 

any other waypoint j. The remaining two blocks represent the two branches with Qij ≈ 0 if i 
and j are on the same branch and Qij ≫ 0 if they are on different branches. A natural way to 

identify these blocks or clusters is by use of unsupervised clustering methods.

Spectral clustering methods are a family of clustering algorithms designed to work on 

adjacency matrices representing graphs. Specifically, spectral methods are based on Eigen 

decomposition of the graph adjacency matrix and connections between the resulting Eigen 

vectors and properties of the graph structure. The Q matrix can itself be seen as an 
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adjacency matrix with the disagreement representing the weight of the edge between 

waypoints and as such spectral clustering can be used to classify the waypoints into trunk 

and the two branches. For a real symmetric matrix, the second highest Eigen value, v2, 

approximates the optimal graph partition [35]. Specifically, if v2i is the projection of the 

node i onto the second Eigen vector, the graph partition divides the nodes into two clusters 

whose elements can be identified by the sign of. v2i.

The Q matrix is real because all the perspectives and distances are real. It is also symmetric: 

Consider any two waypoints, i and j and assume i follows j without loss of generality. Then, 

 and 

, since Dji 

= Dij. Therefore Q matrix is symmetric. Thus the second highest Eigen values of Q can be 

used to identify branch associations of waypoints. Wishbone uses the Matlab eigs function 

for Eigen value decomposition.

The second Eigen vector, v2of Q matrix in Figure 1C, right panel is shown in Figure 1D. If 

waypoint w is on of the branches then v2w > 0 or v2w < 0 and v2w ≈ 0 if w is on the trunk, 

since Qij ≈ 0 for all pairs of waypoints on the trunk. Moreover, |v2w|increases as waypoints 

progress further along the trajectory away from the branch point. This creates a Wishbone-

like structure, giving the algorithm its name (Figure 1D).

The v2w values provide a reliable partitioning of waypoints that lie towards the end of 

developmental trajectory on either branch. However the values of v2w are noisy during 

transition from trunk to the two branches and care must be taken to pinpoint the branching 

point (Figure 1D). Any path from a waypoint in a particular branch to a waypoint in the 

other branch will first traverse towards the trunk and then away from it. By definition, the 

point on path with minimum trajectory value τ(0), represents the point at which the path will 

be closest be to the early cell. This also represents the point where the path changes direction 

to enter the other branch, or in other words an estimated branch point (Supplementary Fig. 

24A). For increased robustness, Wishbone uses multiple paths between branch waypoints to 

estimate the branch point. Specifically, all the paths between the five furthest waypoints 

along the trajectory τ(0), from each side of the v2 spectrum are determined. The position with 

shortest distance to s from each path is selected and the median position over all paths is an 

estimate of the branching point, bp (Supplementary Fig. 24B). Formally, let BrA and BrB 
be the set of five furthest waypoints of the two branches.

(6)

These waypoints are then used to determined the branch point by
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(7)

 Branch assignment to cells—The v2w values provide a partition of the waypoints 

that help determine branch assignments to all cells. Cells towards the end of the trajectory 

would have acquired most of the characteristics of the differentiated cell types and thus are 

relatively easy to classify. However, cells undergoing fate decision near the branch point do 

not always have a clear identity. This necessitates the use of a soft score of branch 

association for cells close to the branch point rather than hard branch assignments.

Wishbone uses the v2w values to estimate a branch association score or BAS for each cell. 

The estimated BAS has the following properties: for all cells on the trunk, BAS ≈ 0, 

whereas BAS < 0 or BAS > 0 for cells on either branches. The v2w deviation from zero is a 

measure of confidence for branch association. Note that the values already satisfy these 

properties. Therefore BAS for each cell is determined by a weighted average of the v2w 

values, with closer waypoints getting higher votes. First, the v2w values also normalized for 

each branch to account for any trajectory value differences between the two branches:

(8)

The weight matrix defined in Equation (3) and v2 norm are then used to calculate BAS for 

each cell i

(9)

An example of scores for all cells is shown in Supplementary Fig. 25A. These scores satisfy 

the properties outlined above and represent a soft association of branches to cells. For any 

downstream analyses, BAS scores and the branch point bp can be used to determine branch 

assignments for all cells. Cells before the branch point are considered part of the trunk and 

cells beyond the branch point are assigned to one of the two branches based on sign of BAS. 

Formally, branch assignment for cell i is determined as

(10)

The branch assignments for the illustrative dataset are shown in Supplementary Fig. 24B.
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 Refining the ordering using branch association scores—Following a branching 

point, waypoints that are part of one branch should not significantly influence the ordering 

of cells in the other branch. Wishbone achieves this by a cross branch-muting scheme that 

adjusts the weights defined in section “Waypoints and Perspectives” to ensure waypoints 

of a branch predominantly influence the ordering of cells in the respective branch. An 

example of weights before adjustment is shown in Supplementary Fig. 25A. The left panel 

shows a waypoint in branch B that can influence the ordering of the mature cells in branch 

A.

The BAS scores described in the previous section can also be used for cross branch muting. 

Recall that weights that define the influence of waypoints on ordering cells is determined by 

a Gaussian kernel on the distance matrix D (Equation 3):

For any cell i, the sign of BASi defines branch membership. Therefore for a given waypoint 

w, if the sign of BASw is not the same as the sign of BASi, the weight Wwi must be muted to 

reduce the influence of w in ordering the cell i. The extent of muting is directly proportional 

to the deviation of BASi from 0 and ensures that the influence of waypoints on one branch 

for ordering cells on the other branch progressively reduces along the developmental 

trajectory.

For each cell i, the weights of waypoints that belong to a different branch are muted as 

below

(11)

This muting scheme exponentially reduces the influence of waypoints that do not belong to 

same branch. The weights after muting are shown in Supplementary Fig. 25B. The waypoint 

in branch B no longer influences the ordering of mature cells in branch A (Supplementary 

Fig. 25B, left panel). The muting does not affect the weights of waypoints outside branches 

(Supplementary Fig. 25B, right panel).

Finally, as mentioned before, the refined trajectory is calculated by the weighted average 

over all the perspectives using the muted weights as:

(12)
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 Iterative refinement of trajectory and branching—The waypoints are themselves 

cells. Therefore, their position often changes following the refinement step. Since all cell 

positions depend on waypoint positioning, the shift in waypoints might obsolete the newly 

calculated ordering. Therefore, the refinement step is repeated with the new waypoint 

positions until the ordering of all cells converges.

As defined earlier, . At any iteration t the perspective and Q matrix are calculated 

by

(13)

The Q matrix is then used to determine the branch point bp and the BAS scores. These 

scores are then used for cross branch muting and a refined ordering or trajectory at iteration t 
is determined by

(14)

This procedure is repeated until convergence: corr(τ(t),τ(t−1)) > 0.9999. Finally, the branch 

assignments are calculated using the branch point bp and BAS scores. Note that the most 

time consuming parts of Wishbone are the construction of nearest neighbor graph G and 

computation of the shortest path distances to all cells from waypoints to build the distance 

matrix D. These are both one-time steps and are not repeated during the iterations. 

Moreover, besides from graph construction, computation of D matrix is the most 

computationally intensive task and is performed only once. On the other hand, P and Q 
matrices, determined at each iteration, are not computationally intensive.

In summary, Wishbone aligns cells along bifurcating developmental trajectories in high 

resolution with accurate detection of the bifurcation point. The graph-based approach used 

by Wishbone is central is achieving the high resolution. Diffusion maps help overcome short 

circuits, a key hurdle of the graph-based approaches for constructing trajectories. Waypoints 

and their perspectives not only help alleviate the additive noise of shortest path distances but 

also provide the basis for identifying branch associations by means of disagreements 

between waypoint and early cell perspectives. Finally, spectral clustering methods are used 

on these disagreements to determine branch association scores and refine the ordering. The 

trajectory detection and branch associations are repeated until convergence. Supplementary 

Note 2 shows the pseudocode of the Wishbone algorithm.
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 Selection of diffusion components

Diffusion maps decompose the data along the major axes of variation and capture the major 

structures in the data [7]. In mass cytometry, this is reflected by the first few components 

capturing the differences among constituent cell types provided that the markers were 

chosen appropriately. The subsequent eigen vectors typically capture noise and/or outliers. 

As an example, the top diffusion components for mouse thymus replicate 1 is shown in 

Supplementary Fig. 8A. The first component is trivial with same value for all the cells and is 

associated with eigen value of 1. Components 2,3 and 4 identify the differences among the 

constituent DN, DP and two SP cell types. The fifth component and beyond do not explain 

major structure in the data and encode for outliers and/or noise. Thus Wishbone was run 

using components 2,3 and 4.

While this procedure does require manual selection of components, the first two to four non-

trivial components typically explain the differences between cell types in datasets with 

trajectories with two branches (Supplementary Fig. 8A, 16B, 16E, 17B), making the 

selection feasible. Moreover, Wishbone is robust to the inclusion of a number of noisy in the 

higher order components (Supplementary Fig. 8B), with very similar results achieved when 

including any number between 3 to 9 of the top components. A degree of automation can be 

achieved by examining the distribution of eigen values of the diffusion components, and 

selecting the eigen vector with biggest eigen gap (difference between successive eigen 

values) among first few components. The eigen value distribution of the mouse thymus 

replicate 1 is shown in Supplementary Fig. 8C and shows that there is a large eigen gap 

between the 4th and 5th eigen values. This is consistent with the observation of fifth and 

higher components encoding outliers and noise, there by justifying the use of the 

components 2, 3 and 4 for learning trajectories.

In single-cell RNA-seq, diffusion components not only explain the differences between cell 

types, but also identify the variation along various biological processes like metabolism, cell 

cycle etc. See section “Application of Wishbone to single-cell RNA-seq data” for 

component selection procedure for single-cell RNA-seq.

 Marker expression along trajectory and derivative plots

The trajectory was first divided into 150 equally spaced bins. A Gaussian filter centered at 

each bin was used to estimate the weighted average expression of individual markers in each 

bin. The density of cells is non-uniform along the trajectory and binning the trajectory for 

estimating average expression rather than moving average captures the density differences. 

The weight matrix K ∈ ℝ150×N is determined as follows:

(15)

where bτ is the mean trajectory value in bin b and σ is the standard deviation of the 

trajectory. The weighted average expression of a marker in each bin is then calculated as
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(16)

where Mi is the marker expression in cell i. The weighted standard deviation for each bin is 

also calculated along similar lines.

For bins past the branch point, the weighted expression on a particular branch is determined 

by muting the weights of cells on the other branch. Markers with a weighted average 

difference of at least 0.1 in any bin beyond the branch point are plotted with dotted lines 

representing the expression in the two branches.

After calculating of the weighted averages, the derivatives were calculated as the difference 

in weighted average in successive bins.

 Cross correlation of trajectories

For a given marker, cross correlation of expression along trajectories of different replicates 

were determined. The trajectory was shifted to maximize the mean of all cross correlations.

 Variance analysis

The two SP populations were identified by the gating scheme defined in Figure 3B. 

Population level standard deviation was calculated for each marker in these gated 

populations. The calculation of standard deviations along trajectory is described in “Marker 
expression along trajectory and derivative plots”.

For running Wishbone after exclusion of a particular marker, diffusion maps were first used 

to determine low dimensional embedding of the phenotypic space without the marker. 

Wishbone was then run on the embedded space with the same parameters used for the runs 

with all markers.

 Trajectories in gated populations and comparison to Immgen

Gating of SP cells was performed using the scheme recommended by the Immunological 

Genome Project (Immgen) [13]. While Immgen used Forward and Side Scatter channels to 

remove non-lymphoid cells, we used mass channels, which measure non-lymphoid cell 

surface markers and removed these cells using the clustering method Phenograph (See 

section “Data preprocessing and choice of parameters for Wishbone”).

Raw mRNA expression data was downloaded from the Immunological Genome Project 

website (GEO accession number: GSE15907). This data was background corrected using 

RMA and quantile normalized using the affy R Bioconductor package [36]. The expression 

of each gene was then scaled to be between 0–1 among the different sorted T cell 

populations: T.DP69+, T.4+8int, T.4SP69+, T.4SP24int, T.4SP24−, T.4int8+, T.8SP69+, T.

8SP24int, T.8SP24−.
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The results in this section were derived using the thymus dataset that did not profile the TFs 

(Figs 2–3). The dataset with TFs did not have strong staining for CD24 and as such gating 

could be performed accurately.

 Adaptation of Wishbone to single-cell RNA-seq data

 Data processing—The count matrix was downloaded from GEO (GSE72857) [6]. As a 

first step, cells with less than 250 molecules were discarded. Library size correction was 

performed by dividing the molecule counts of each cell by the library size [37]. The 

corrected molecule counts were then multiplied by the median of the library size across cells 

[37]. To address gene drop-out [27], the data was transformed using PCA to identify “meta-

genes”. We note that while phenotypic space defined by cells is non-linear in its nature, the 

relationships between genes are largely collinear, making PCA appropriate on the gene 

dimension. These meta-genes were then used to cluster cells using Phenograph [29] and the 

clusters corresponding to HSPCs, erythroid precursors and myeloid precursors were 

identified by expression of characteristic genes: HSPCs - Cd34, Erythroid precursors - 

Gata1, Gata2, Myeloid precursors - Mpo, Csf1r, Irf8 (Supplementary Fig. 17A).

 Selection of diffusion components—Diffusion maps decompose the data along the 

major axes of variation and capture the major structures in the data [7]. In mass cytometry 

data with a relevant marker set, this amounts to accounting for differences in the constituent 

cell types (Supplementary Fig. 8A). In genome-wide data, many of the components reflect 

additional biological processes such as cell cycle, stress and metabolism that would 

confound building trajectories. Therefore, we identify the biological processes associated 

with each diffusion component and keep only those that are related to development and 

maturation.

To identify the biology associated with each component, we sought to find genes whose 

expression pattern was correlated with the component. Mean expression in sliding windows 

of 10 cells along the component was used to determine the correlation between each gene 

and component. Gene Set Enrichment Analysis (GSEA) [20] was performed using the 

correlation based ranking to annotate each component. Gene sets from Gene Ontology 

Biological Process [38] database were used for annotations. Once the diffusion components 

are annotated, we can take one of two approaches, in sufficiently studied systems we can 

positively select the relevant components. In less studied systems, we can simply remove 

confounding components such as cell cycle, ribosomes and metabolism.

In the application here, the top 15 principal components were used for constructing the 

diffusion maps and the resulting enrichments for the top diffusion components of the single-

cell RNA-seq dataset are shown in Supplementary Fig. 17C. Components 2 and 3 are 

enriched for ontologies related to immune cell differentiation. Wishbone was run using the 

components 2 and 3 with a randomly selected cell from the HSPC cluster as the input early 

cell. We note that both trajectory and branches are robust to the number of principal 

components used (Supplementary Fig. 17D)

Setty et al. Page 23

Nat Biotechnol. Author manuscript; available in PMC 2016 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Diffusion maps, Monocle and SCUBA

Diffusion maps provide low dimensional projections of the phenotypic space. Euclidean 

distance between the points in their low dimensional embedding onto the diffusion map is 

equivalent to their diffusion distance [7]. Therefore we used the Euclidean distance from the 

start cell in the space spanned by the first three non trivial diffusion map eigen vectors to 

construct the developmental trajectories in mouse thymus and human myeloid mass 

cytometry datasets (Figure 6, Supplementary Fig. 18). Diffusion components used for 

Wishbone were also used to estimate the distances from the start cell in the mouse myeloid 

single-cell RNA-seq dataset (Figure 6).

Monocle was downloaded from Bioconductor [24]. 1000 cells were randomly sampled from 

each of the datasets and Monocle was run with default parameters apart from number of 

branches, which was set to two and the root cell was set to the start cell used for Wishbone. 

The results in Supplementary Fig. 20A–C were obtained by repeatedly sampling 1000 cells 

from replicate 1 with the number of branches set to 2. The start cell was set to the same start 

cell used for Wishbone. Different runs were compared using the procedure described in 

section “Cross correlation analysis”.

SCUBA was downloaded from the supplementary website [5]. 25000 cells were randomly 

sampled from the mouse thymus and SCUBA was run with default parameters. The 

MassCytometry_preprocess.m script was used. The expected input, processDataMat Matlab 

data matrix was created and the ordering and branches were determined using the function 

EstimatePseudotime. As with Monocle, the results in Supplementary Fig. 19A–C were 

obtained by repeatedly sampling 25000 cells from replicate 1 and the different runs were 

compared using the procedure in “Cross correlation analysis”. SCUBA was run using all 

cells for the human and mouse myeloid datasets.

The resulting trajectory and branches from both Monocle and SCUBA were visualized using 

tSNE projections of the full dataset. Marker expression along the Monocle trajectories was 

determined using the procedure described in “Marker expression along trajectory and 
derivative plots”. A similar procedure was used for SCUBA with muting turned off since 

SCUBA resulted in more than 2 branches.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Alignment of cells along bifurcating trajectories
(A) Wishbone aims to achieve high resolution ordering and branching of cells along 

bifurcating developmental trajectories. The data is represented as a k-nearest neighbor graph 

where each cell is a node and edges connect each cell to its most phenotypically similar 

cells. A cartoon depiction of a kNN graph is illustrated. The data depicted in this figure is 

simulated.

(B) Wishbone uses a set of cells called “waypoints” to guide the ordering of cells. An initial 

ordering is derived using the shortest path distances from the input early cell (top left panel). 

The distances from waypoints are aligned to the initial ordering to derive waypoint 

perspectives and the refined trajectory is determined as a weighted average of these 
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perspectives (bottom right panel). The contour lines illustrate bands of cells that are at a 

similar distance from the corresponding waypoint.

(C) Waypoints are also used for branch point identification and branch associations. The 

difference between the shortest path of waypoint t from early cell and a path that goes 

through another waypoint i is ≈ 0 if i and t are on the same trajectory (left panel) and ≫ 0 if 

they are on different branches (middle panel). These disagreements accumulate in the 

presence of a true branch to create a mutual disagreement matrix Q: observed are two sets of 

waypoints that agree within the set and disagree between sets (right panel).

(D) The second Eigen vector of the Q matrix provides a summary of the disagreements with 

values ≈ 0 for waypoints on the trunk, > 0 for waypoints on one branch and < 0 for 

waypoints on the other branch. The branch point and branch associations are used to further 

refine the trajectory. The resulting trajectory and branches are used to study marker 

dynamics along differentiation.
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Figure 2. Wishbone robustly recovers hallmarks of T cell differentiation
(A) T cell development in the mouse thymus is characterized by progression of DN cells to 

two SP populations through different stages.

(B) Marker trends for DN markers CD44, CD25, CD117 and lineage markers CD4, CD8 

and CD3 are consistent with known stages of T cell differentiation. Cells were first binned 

along Wishbone trajectory and weighted averages were calculated for each bin to determine 

marker traces (see supplement for computational details). Following bifurcation, markers 

with different expression patterns in the two SP populations are shown in a dashed line for 

CD4 lineage and a dotted line for the CD8 lineage.
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(C) Bcl11b, Runx1 and Notch1 were not used for learning but the dynamics of these markers 

are consistent with their roles in specific developmental stages.

(D) The variance of markers along the trajectory is tight further highlighting the robustness 

of Wishbone results.

(E) Derivative plot, showing the changes in expression of markers in successive bins, is used 

to time key events along the trajectory: (1) CD8+CD4− Intermediate Single Positive stage in 

DN to DP transition, (2) Upregulation of CD4 and CD8 establishing DP cells, (3) Stable 

expression of lineage markers during DP, (4) Downregulation of both CD4 and CD8 

accompanied by coordinated upregulation of CD3, TCRβ, CD5, CD69 and CD27 during 

positive selection, (5) Specific downregulation of CD8 alongside up-regulation of CD4 

indicating intermediate thymocytes, (6) Lineage commitment to two SP population and 

finally (7) Successful completion of negative selection identified by downregulation of 

CD69 and upregulation of CD62L indicating successful maturation. The branch with the 

highest expression is shown for markers with different expression patterns in the two SP 

branches.
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Figure 3. Heterogeneity in gated populations is explained in part by variance along trajectory
(A) Plots comparing the dynamics of CD44, CD25, CD117, CD3, CD4 and CD8 across 

thymses from three independent replicates. Cross correlation was used to align expression 

dynamics of each marker across the replicates.

(B) Gating scheme for identifying CD4+ and CD8+ SP populations to compare variance of 

gated populations to variance along the differentiation trajectory.

(C) Wishbone results after excluding CD3 from the learning are similar to results obtained 

when CD3 was included.
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(D) The variance of CD3 and lineage markers CD4 and CD8 along the trajectory (solid line) 

are substantially lower than the population variance (dotted line) in both branches indicating 

that heterogeneity in gated populations is a result of comparing cells at different stages along 

their developmental maturity.
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Figure 4. Transcription factors show distinct dynamics in SP populations
(A–B) Plots comparing the dynamics of CD4 lineage commitment factors ThPOK and 

Gata3 with dynamics of CD8 lineage commitment factor Runx3.

(C–D) Derivative plots (left panels) and expression trends (right panels) of key markers in 

the two SP populations along the trajectory following positive selection (The highlighted 

region is indicated in A–B) showing the distinct dynamics of lineage commitment factors. 

CD69 and CD62L were used to identify the landmarks of SP commitment and maturation: 

CD69hi and CD62Llow for successful commitment and CD69 low and CD62L high for 

negative selection. (1) ThPOK and Gata3 are both upregulated during positive selection with 

ThPOK showing a slower upregulation (2). ThPOK shows a marginal upregulation 

specifically in the CD4 branch following commitment (3). ThPOK and Gata3 show a 

marginal downregulation in the CD4 branch during negative selection (C(4)). On the other 

hand, these factors are downregulated in the CD8 branch following commitment (D(4)). This 

downregulation is accompanied with a CD8 specific upregulation of Runx3 (5).

(E) Cells were gated using the scheme defined in Supplementary Fig. 13 and were expected 

to be placed in the following order indicating CD4 maturity: DP CD69+, CD4+CD8int, 

CD4SP CD69+, CD4SP CD24int and CD4SP CD24−. Instead cells of the three intermediate 

gates are placed all along the CD4 Wishbone trajectory. These cells were divided into 

“Early” and “Late” populations based on their position in the Wishbone trajectory.
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(F) The “Early” cells in the CD4+CD8int gate show significantly higher expression of CD69 

and CD24 and lower expression of CD62L compared to “Late” cells (p < 1e-6, Kolmogorov-

Smirnov test). This indicates that “Late” cells are more mature than the “Early” cells.

(G) mRNA expression of CD69 and CD24 in ImmGen sorted populations are correlated 

with mean expression in the gated populations demonstrating that the discrepancy between 

Wishbone and gating is not dataset specific.
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Figure 5. Generalization of Wishbone to branches in human and mouse myeloid development 
spanning mass cytometry and single-cell RNA-seq
(A) Wishbone was applied to an early step in human myeloid development to track the 

differentiation of classical monocytes (CD14+CD11b+CD11c+) and erythrocytes 

(CD235ab+) from hematopoietic stem and progenitor cells (HSPCs). See also 

Supplementary Fig. 16.

(B) tSNE map of the data with each cell colored by the trajectory (left panel) and the branch 

associations (right panel). Wishbone accurately orders the cells with HSPCs at the start and 

the differentiated cells towards the end. The inferred branch associations are also consistent 

with the annotated cell types (Supplementary Fig. 16).
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(C – D) same as in A–B for tracking differentiation of classical monocytes and CD15+ 

monocytes, a late step in human myeloid development.

(C – D) Wishbone was applied to single-cell RNA-seq data from the hematopoietic 

precursors from the mouse and accurately recovered the trajectory and branches to track 

differentiation of myeloid and erythroid precursors from HSPCs.
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Figure 6. Wishbone outperforms competing methods in both ordering of cells and branch 
associations
(A) tSNE maps showing SCUBA results for a random sample of 20000 mouse thymic cells 

(left and middle panels). SCUBA trajectory does not distinguish between the DN and DP 

stages. While SCUBA recovers the SP branches, it suffers from a loss of resolution in the SP 

stage (right panel).

(B) Plots showing Monocle results for a random sample of 1000 mouse thymus cells. 

Monocle fails to correctly order the cells and the branches do not correspond to the SP 

populations.

(C) SCUBA accurately recovers the ordering of mouse myeloid cells and the marker 

dynamics are largely consistent with known biology. SCUBA however results in a large 

number of incoherent branches.

(D) Monocle fails to accurately order the myeloid precursors correctly and also fails to 

detect a coherent HSPC branch.
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