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Abstract

We compared bona-fide human induced pluripotent stem cells (iPSC) derived from umbilical cord 

blood (CB) and neonatal keratinocytes (K). As a consequence of both incomplete erasure of 

tissue-specific methylation and aberrant de novo methylation, CB-iPSC and K-iPSC are distinct in 

genome-wide DNA methylation profiles and differentiation potential. Extended passage of some 
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iPSC clones in culture didn't improve their epigenetic resemblance to ESC, implying that some 

human iPSC retain a residual “epigenetic memory” of their tissue of origin.

Somatic cells within an organism share the same genomic sequence, but when development 

occurs from the single cell zygote, subsequent generations of cells acquire differential 

patterns of gene expression due to alterations in chromatin structure and chemical 

modifications of the DNA, such as cytosine methylation. Reprogramming of somatic cells to 

pluripotency reverses this process of cell specification through epigenetic modification, and 

entails erasure of tissue-specific DNA methylation and re-establishment of the embryonic 

methylome. We have detected residual and aberrant tissue-specific DNA methylation in 

mouse induced pluripotent stem cells (iPSC), which functions to confer “epigenetic 

memory”, biasing the differentiation potential of iPSC towards lineages related to the donor 

cell1, 2. Here, we investigate whether epigenetic memory persists in human iPSC.

We reprogrammed neonatal CD34+ cells from umbilical cord blood and foreskin 

keratinocytes, representative cell types of distinct embryonic germ layers, mesoderm and 

ectoderm, whose differentiation potential can be readily assayed in vitro (Fig. 1a; 

Supplementary Fig. 1). The resultant iPSC from at least 2 independent cord blood and 3 

keratinocyte donors passed stringent pluripotency tests characteristically applied to human 

embryonic stem cells (ESC; Supplementary Methods). We then tested the potential of the 

CB-iPSC and K-iPSC to differentiate into keratinocytes3. In day 6 EBs, K-iPSC displayed 

9.4-fold higher expression of the keratin 14 gene, a marker of early keratinocyte 

differentiation (Fig. 1b, Supplementary Fig. 2a), and quantitatively, K-iPSC yielded 23-fold 

more keratinocytes than CB-iPSC (Fig. 1c, Supplementary Fig. 2b), indicating that K-iPSC 

show enhanced keratinocyte potential relative to CB-iPSC. Next, we differentiated multiple 

independent clones of CB-iPSC and K-iPSC in methylcellulose to test hematopoietic 

potential. Despite their reduced capacity for keratinocyte differentiation, differentiating 

cultures of CB-iPSC produced an expected range of myeloid colony types, whereas K-iPSC 

surveyed from multiple donors yielded relatively few hematopoietic colonies (Fig. 1d). 

Multiple clones of CB-iPSC consistently yielded a greater frequency of hematopoietic 

colonies than multiple clones of K-iPSC, and more colonies than iPSCs isolated from adult 

CD34+ blood and keratinocytes (Supplementary Fig. 2a, b, c). However, neither CB-iPSC 

nor K-iPSC exhibited a difference in tissue differentiation potential into definitive endoderm 

(Supplementary Fig. 2d).

To analyze genome-wide DNA methylation patterns, we compared multiple CB-iPSC and 

K-iPSC lines and their parental somatic cells to human ESC using Comprehensive High-

throughput Array-based Relative Methylation (CHARM) analysis, which interrogates 5.2 

million CpG sites, including virtually all CpG islands and shores4. We determined the 

number of differentially methylated regions (DMRs) in pair-wise comparisons, using a 

threshold area cutoff of 2, corresponding to an approximate 5% false discovery rate (FDR)5 

(Fig. 2a, Supplementary Table 1). We confirmed the results of CHARM analysis by bisulfite 

pyrosequencing of multiple loci (Supplementary Fig. 3).

Unsupervised hierarchical clustering using the 1,000 most variable probes across samples 

revealed that CB-iPSC are easily distinguished from K-iPSC (Fig. 2b). ESC cluster with 
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both CB-iPSC and K-iPSC, suggesting that the separation between CB-iPSC and K-iPSC is 

not due to different levels of pluripotency, as confirmed by gene expression profiling and 

analysis of binding of the pluripotency core transcription factor to the DMRs that distinguish 

CB-iPSC and K-iPSC (Supplementary Methods). Taken together, these data indicate that the 

methylation patterns of CB-iPSC and K-iPSC are considerably different, and which despite 

fulfilling criteria for pluripotency, represent distinct epigenetic states as measured by 

CHARM.

The set of genes identified by microarray analysis as differentially expressed between cord 

blood and keratinocytes include regulators of cell identity (Supplementary Fig. 4). We found 

that 581 of the 1,519 differentially expressed genes are located in or near DMRs that 

distinguish CB and keratinocytes (1.73-fold more than expected by chance; p<10−5). We 

also found that 27 of these 581 genes in or near DMRs that distinguish CB-iPSC and K-

iPSC (Supplementary Table 2), a 2.55-fold enrichment over that predicted by chance 

(p<10−4, Fig. 2c). This enrichment persists even when pluripotency-related genes defined by 

compiled microarray data6 are removed from the gene set (Supplementary Fig. 5a). Further, 

17 of the 581 genes overlap DMRs that distinguish CB-iPSC from ESC, a 4-fold enrichment 

over that predicted by chance (Supplementary Fig. 5b).

Several lines of evidence support a direct mechanistic link between differential methylation 

and biased lineage differentiation of iPSC lines. First, a literature survey of the genes 

associated with the top 10 DMRs that distinguish CB-iPSC from K-iPSC indicates that 5 are 

associated with hematopoiesis, and 4 with epithelial cell phenotypes (Supplementary Table 

3). Second, K-iPSC maintained gene-body methylation, a phenomenon generally correlated 

with gene expression7, for numerous keratinocyte-associated genes. Of 185 gene bodies 

hypermethylated in K-iPSC versus CB-iPSC, 14 correspond to tissue DMR-associated genes 

that are expressed in keratinocytes, a 3-fold enrichment over that predicted by chance (Fig. 

2d). Conversely, of 19 gene bodies hypomethylated in CB-iPSC vs. ESC, four correspond to 

DMR-associated genes highly expressed in keratinocytes (P-value=0.021), including the 

keratinocyte-specific transcription factor RIPK4. Taken together, our analysis supports the 

notion that the reprogramming process can leave residual methylation marks associated with 

both expression and repression of tissue-specific genes.

To determine whether the 370 DMRs that distinguish CB-iPSC and K-iPSC (Supplementary 

Table 1) represented residual methylation left over from the tissue of origin or were instead 

de novo and potentially aberrant methylation signatures generated during reprogramming, 

we compared the state of these regions in cord blood, keratinocyte, and ESC. 75 residual 

DMRs were shared with cord blood or keratinocytes, 28 DMRs were specific for ESC, and 

267 DMRs were newly generated during reprogramming, reminiscent of our prior 

observation of frequent de novo DMRs in mouse iPSC of fibroblast cell origin from aged 

donors1. Using ESCs as a reference, both CB-iPSC and K-iPSC DMRs were highly enriched 

for tissue-of-origin DMRs (P<0.0001).

In studies of murine pluripotent stem cell lines, epigenetic memory can be erased over time 

by extended culture2 or ectopic gene expression1. During extended culture of K-iPSC clones 

N9 and G6 and CB-iPSC clone 6, the K-iPSC N9 clone showed a gradual increase in blood 
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forming potential (Supplementary Fig. 6a), but the ability of passaging to erase epigenetic 

memory does not appear applicable to all clones. HOXD8 was one of 27 DMR-associated 

genes in the somatic cell types that was more highly methylated in keratinocytes and K-

iPSC relative to cord blood and CB-iPSC, respectively (Supplementary Fig. 3a). 

Interestingly, at the higher passages of a K-iPSC clone (N9), the restored blood forming 

potential coincided with a reduction of HOXD8 expression and methylation (Supplementary 

Fig. 6b,c). The HOXD8 DMR overlaps with a CTCF binding site, which may control 

HOXD8 expression8 (Supplementary Fig. 6d). Because HOX genes exert major effects on 

blood differentiation, we hypothesized that expression of HOXD8 might be playing a role in 

inhibiting blood-forming potential in early passage K-iPSC in the clone N9. Consistent with 

a negative effect of HOXD8 expression on blood development, we observed that ectopic 

expression of HOXD8 in CB-iPSC reduced blood forming potential (Supplementary Fig. 

6e), as did restoring high levels of HOXD8 in later passages of a K-iPSC clone N9 

(Supplementary Fig. 6f). In contrast, shRNA-mediated HOXD8 knockdown in the K-iPSC 

clone G6 significantly improved its hematopoietic capacity (Supplementary Fig. 6g). These 

data correlate differential methylation and expression of the HOXD8 locus with blood-

forming potential in iPSC lines. However, further CHARM analysis of early and late 

passages of the clone N9 indicates that extended tissue culture did not make the cells 

epigenetically closer to ESC (Supplementary Fig. 6h); rather, extended passage may have 

locus-specific effects that influence the differential potential of iPSC.

Prior studies comparing human iPSC to ESC have found that iPSC are differentially 

methylated5, 7, 9 and exhibit significant reprogramming variability10, 11, 12, and recently a 

transcriptional memory of somatic cells in human iPSC has been reported13. However, a 

link has not yet been identified between disparate methylation signatures at multiple loci and 

altered differentiation potential. Here, we find that methylation at loci important to tissue 

fate persists as a form of epigenetic memory even in human iPSCs that pass stringent criteria 

for pluripotency typically applied to human cells. CB-iPSC and K-iPSC retain residual 

epigenetic marks on a small number of genes, which nonetheless appear sufficient to skew 

differentiation potential towards the tissue of origin. Similarly, even in murine iPSC 

characterized by the more stringent assays of pluripotency available in mice (e.g., blastocyst 

chimerism and germ line transmissibility), we detected methylation signatures diagnostic of 

the tissue of origin and documented a preference to differentiate along the lineage of the 

donor cell1. The epigenetic signatures of the tissue of origin that are retained in iPSC reflect 

the technical limitations of reprogramming. Although most differences among iPSC, or 

between iPSC and ESC, represent random or stochastic differences, we observed in our 

experiments that residual epigenetic marks reflecting the tissue of origin can skew 

differentiation potential. Ultimately, refined methods of reprogramming may generate iPSC 

that more closely approximate the epigenome of embryo-derived stem cells. Alternatively, 

more permissive differentiation conditions, either in vitro or in vivo, may overcome residual 

epigenetic barriers. Regardless, prior to clinical applications, the in vivo behavior of in vitro 

differentiated cells derived from iPSCs of a wider range of donor tissues by various 

differentiation protocols and culture conditions will require substantial evaluation. A 

differentiation bias of existing iPSCs may be advantageous in certain research and 
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therapeutic applications of iPSC, especially as directed differentiation of pluripotent cells to 

tissues of interest remains a challenge for the field.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Derivation and differentiation of iPSC from neonatal umbilical cord blood and 
foreskin fibroblasts
(a) Experimental schema. (b) Q-PCR of the keratinocyte marker K14 in D6 EBs from CB-

iPSC (n=6) and K-iPSC (n=7). Gene expression was normalized to Actin, and shown as fold 

difference relative to CB-iPSC. (c) Numbers of keratinocytes differentiated from CB-iPSC 

(n=6) and K-iPSC (n=7). (d) Numbers of hematopoietic colony forming cells in D14 EBs 

differentiated from CB-iPSC (n=6) and K-iPSC (n=7). Error bar = s.d.

Kim et al. Page 6

Nat Biotechnol. Author manuscript; available in PMC 2012 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kim et al. Page 7

Nat Biotechnol. Author manuscript; available in PMC 2012 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Analysis of methylation in CB-iPSC, K-iPSC, ESC, and somatic cells
(a) Numbers of differentially methylated regions (DMRs) between CB-iPSC, K-iPSC, ESC, 

umbilical cord blood, and cultured keratinocytes. DMRs were defined by an area cutoff of 

2.0. (b) Cluster dendrogram analysis using the top 1,000 most variable probes across all 

samples. (c, d) Gene enrichment analysis of DMRs. Blue histograms represent a probability 

distribution of the number of genes predicted to overlap DMRs by chance. Red vertical lines 

indicate the observed number of genes that overlap DMRs. (c) Genes differentially 

methylated between CB-iPSC and K-iPSC are enriched in DMR-associated genes (genes 

both differentially expressed and methylated between cord blood and keratinocytes). (d) 

Genes highly expressed in keratinocytes are enriched in DMRs that are both 

hypermethylated in K-iPSC relative to CB-iPSC and are located in gene bodies rather than 

promoters.
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