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Abstract

Hepatitis C virus (HCV), which infects 2-3% of the world population, is a causative agent of 

chronic hepatitis and the leading indication for liver transplantation1. The ability to propagate 

HCV in cell culture (HCVcc) is a relatively recent breakthrough, and a key tool in the quest for 

specific antiviral therapeutics. Monitoring HCV infection in culture generally involves bulk 

population assays and/or terminal processing of potentially precious samples. Live-cell imaging 

avoids this, but necessitates genetically modified reporter viruses, which often exhibit profound 

replication defects. Here we develop a cell-based fluorescent reporter system that allows sensitive 

distinction of individual HCV-infected cells in live or fixed samples. We demonstrate use of this 

technology for several previously intractable applications, including live-cell imaging of viral 

propagation and host response, as well as visualizing infection of primary hepatocyte cultures. 

Integration of this reporter with modern image-based analysis methods could open new doors for 

HCV research.
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A known cellular substrate of the HCV NS3-4A protease2-4, the mitochondrially-tethered 

IFN-β promoter stimulator protein 1 (IPS-15) - also termed MAVS6, VISA7, or Cardif2 - 

was adapted for use as a marker of infection. The carboxy-terminal region of IPS-1, 

encompassing the NS3-4A recognition site and a mitochondrial targeting sequence, was 

fused to green fluorescent protein (EGFP-IPS, Fig. 1a) or to red fluorescent proteins (RFP), 

mCherry or TagRFP. An SV40 nuclear localization sequence (NLS) was included between 

the RFP variant and IPS-1 segment (RFP-NLS-IPS, Fig. 1a). Human hepatoma (Huh-7.5) 

cells stably transduced with lentiviruses encoding EGFP-IPS or RFP-NLS-IPS exhibited 

punctate fluorescence consistent with mitochondrial localization, which was confirmed by 

colocalization with native IPS-1 (Fig. 1b).

To determine the reporter phenotype in the presence of NS3-4A, EGFP-IPS or RFP-NLS-

IPS constructs were transduced into Huh-7.5 cells stably expressing an autonomously 

replicating HCV subgenome8 (JFH-1 strain, SG-JFH). Replicon-harboring cells expressing 

EGFP-IPS showed diffuse fluorescence, while an NS3-4A cleavage resistant form9 of the 

reporter (EGFP-IPS(C508Y), Fig. 1c) exhibited a punctate pattern. Similarly, replicon-

containing Huh-7.5 cells expressing RFP-NLS-IPS, but not RFP-NLS-IPS(C508Y), showed 

nuclear translocation of fluorescence (Fig. 1c). Both reporters displayed a punctate pattern in 

the absence of the HCV replicon (Fig. 1c). These results indicate that cleavage of EGFP-IPS 

and RFP-NLS-IPS are dependent on an intact NS3-4A recognition site and suggest that 

HCV-dependent fluorescence relocalization (HDFR) can be used as a marker of viral 

replication.

HCV exists as multiple genotypes, which exhibit extensive sequence divergence, as well as 

differences in pathogenesis and treatment susceptibility10. Evasion of the innate immune 

response by cleavage of native IPS-1, however, is likely to be a conserved feature of HCV 

infection. In addition to JFH-1 (genotype 2a), Huh-7.5 cells harboring genotype 1a (H77) or 

1b (Con1) subgenomes8 were transduced with EGFP-IPS or EGFP-IPS(C508Y). Regardless 

of HCV strain, EGFP-IPS transduction resulted in diffuse fluorescence, while EGFP-

IPS(C508Y) expression led to punctate EGFP (Fig. 1c). While the lack of replicon systems 

for other genotypes precludes comprehensive analysis, these results indicate that cleavage of 

EGFP-IPS can be used as a marker of several diverse HCV strains. In contrast, replication of 

other positive-strand RNA viruses, such as yellow fever virus (YFV) or Venezuelan equine 

encephalitis virus (VEE), did not lead to fluorescence relocalization (Supplemental Fig. 1a). 

These results suggest that the HDFR reporter system achieves a high level of HCV-

specificity combined with genotype independence.

While replicon-containing cells are under selection to constitutively express the viral 

proteins, monitoring authentic virus infection is important for analyses of HCV biology and 

therapeutic inhibition. To determine the ability of HDFR to detect infection, Huh-7.5 cells 

expressing RFP-NLS-IPS were inoculated with an HCVcc reporter virus expressing secreted 

Gaussia luciferase, Jc1FLAG2(p7-nsGluc2A)11, followed by incubation for 48 h. 

Uninfected cells showed punctate fluorescence, whereas HCV-infected cultures displayed a 

distinct nuclear signal (Fig. 1d). Inoculation in the presence of type I interferon (IFN-β) 

largely abolished the fluorescence translocation phenotype. Similarly, cells infected in 

conjunction with a monoclonal antibody targeting a known HCV entry factor (α-CD81) did 
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not show nuclear fluorescence. Detection of Gaussia luciferase in the culture supernatants 

paralleled the appearance of nuclear RFP-NLS (Fig. 1d). Staining for viral replicase protein 

NS5A in infected EGFP-IPS-expressing cells supported the correspondence between 

fluorescence relocalization and HCV replication at the single-cell level (Supplemental Fig. 

1b).

Fluorescence relocalization does not depend on signal amplification, nor does it require cells 

to be fixed, lysed or processed in order to detect infection. These advantages suggested the 

possibility of real-time visualization of HCV infection in live cells. Huh-7.5 cells expressing 

RFP-NLS-IPS and a constitutive mitochondrial marker (EGFP-cytochrome c oxidase 

subunit VIII fusion protein; mito-EGFP) were inoculated with Jc1FLAG2(p7-nsGluc2A) 

and monitored by live-cell microscopy beginning at 6 h post-infection (Fig. 2a and b, 

DMSO). Translocation of RFP-NLS to the nucleus could be detected as early as 10-12 h 

post-inoculation, with complete cleavage by 16-18 h, revealing infection significantly earlier 

than existing methods (Fig 1b and Supplementary Video 1a). In contrast, cells infected in 

the presence of a viral RNA-dependent RNA polymerase inhibitor (2’CMA)12 showed very 

limited nuclear fluorescence (Fig. 2b, Supplementary Video 1b). We then investigated 

whether drug treatment of cells with established HCV infection could lead to observable 

reconstitution of mitochondrially-localized fluorescence. RFP-NLS-IPS reporter cells were 

infected with Jc1FLAG2(p7-nsGluc2A) for 24 h before treatment with DMSO or VX-950, 

an inhibitor of the NS3-4A13 protease, and imaging for an additional 24 h (Fig. 2a, c). Over 

the time course of imaging, RFP-NLS-IPS localization in DMSO cells remained unchanged, 

while steady reconstitution of punctate fluorescence was seen in the majority of infected 

cells treated with the protease inhibitor. These results indicate that the reporter system can 

be used to visually monitor NS3-4A inhibition in real time (Supplementary Videos 1c and 

d).

The availability of spectrally distinct HDFR reporters (EGFP-IPS and RFP-NLS-IPS) 

suggested the possibility of discerning infection in two separate cell populations 

simultaneously. We applied this advantage to visualize the recently described phenomenon 

of CD81-independent HCV infection. Circulating HCV enters hepatocytes through a 

complex pathway involving multiple co-receptors. CD81, SR-B1, and two tight-junction 

proteins, CLDN1 and OCLN, have been shown to be essential for this process14-17. Recent 

reports, however, suggest a second, CD81-independent route of virus entry, which may 

entail particle transfer through close cell-cell contacts18, 19. This transmission mode may be 

highly biologically relevant in the context of chronic infection, and the development of 

inhibitors targeting this entry pathway necessitates a reliable method of detection. To 

monitor routes of HCV spread, we employed RFP-NLS-IPS and EGFP-IPS transduced cells 

as producer and target populations, respectively. EGFP-IPS target cells were engineered to 

stably express an shRNA targeting CD81 (EGFP-IPS/CD81-) or an irrelevant sequence 

(EGFP-IPS/IRR), and tested for permissiveness to cell-free virus using an adapted HCVcc 

(J6/JFH clone 2), which exhibits superior titers to J6/JFH (Diamond, D. L. et al PLoS 

Pathog. in press). At 48 h post-infection, the majority of EGFP-IPS/IRR cells exhibited 

diffuse EGFP, while EGFP-IPS/CD81- cells were largely non-permissive (Fig. 3a). FACS 

analysis of fixed samples stained with an NS5A antibody supported these observations, 
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indicating that less than 1% of EGFP-IPS/CD81- cells were infected, compared to ~80% of 

the EGFP-IPS/IRR targets (Supplementary Fig. 2). To investigate HCV transmission in a 

mixed cell population, RFP-NLS-IPS cells were pre-infected for 36 h before co-culturing 

with EGFP-IPS/IRR or EGFP-IPS/CD81- target cells. Mixing uninfected RFP-NLS-IPS 

cells with either target population did not result in EGFP relocalization. In contrast, the 

majority of EGFP-IPS/IRR cells exhibited diffuse fluorescence upon co-culture with 

infected producers, presumably as a result of both CD81-dependent and -independent 

infection routes. Culture of infected producer cells with EGFP-IPS/CD81- targets also led to 

EGFP-IPS cleavage, correlating with CD81-independent infection of 10-15% of cells (Fig. 

3a and Supplementary Fig. 2). Use of the HDFR system in a mixed population can therefore 

provide a rapid visual assay for CD81-independent HCV spread.

In addition to exploiting a number of cellular factors during virus uptake, HCV impacts host 

pathways during replication and pathogenesis. The ability to correlate infection with altered 

cell biology on a single-cell level would be invaluable to detecting virus-induced 

phenotypes. We therefore examined whether HDFR could be multiplexed with fluorescent 

markers of host processes. Stress pathways are charged with protecting the cell against 

various environmental insults, including heat shock, oxidative stress, and virus infection. In 

response to stress, phosphorylation of translation factor eIF2α leads to the appearance of 

cytoplasmic stress granules, in which mRNAs are triaged and translation is stalled (reviewed 

in20). Not surprisingly, many viruses have evolved mechanisms to modulate the stress 

response and subvert translational suppression (reviewed in21); the effect of HCV on stress 

granule formation is unknown. We examined stress response in Huh-7 cells expressing RFP-

NLS-IPS and EGFP-tagged Ras-Gap-SH3 domain binding protein (EGFP-G3BP), a marker 

of stress granule formation22. Transduced cells were infected with Jc1FLAG2(p7-

nsGluc2A) and subsequently monitored by live cell imaging; HCV replication was readily 

observed starting at 14-16 h post-infection. EGFP-G3BP exhibited a cytoplasmic 

distribution until approximately 30 h post-infection, when stress granule formation 

commenced in a fraction of HCV-positive cells. Interestingly, stress granules often appeared 

to be transient and, in some cases, formed and dissolved multiple times within a single cell 

(Fig. 3b). Stress granule formation was not observed in neighboring uninfected cells, nor in 

infected cultures treated with 2’CMA (Supplementary Videos 2a-c), suggesting a 

dependence on HCV replication. While the mechanisms underlying this phenomenon are 

still obscure, these observations support the power of single-cell analysis and reporter 

multiplexing for discovery and dissection of virus-host interactions.

While we have demonstrated that fluorescence relocalization can be used to detect infection 

of highly permissive hepatoma cell lines, we sought to monitor HCV uptake by primary 

human hepatocytes. Primary cells are arguably the most relevant culture system in which to 

study HCV biology, but have traditionally been subject to substantial challenges. Primary 

hepatocytes show low permissiveness for both viral entry and RNA replication, leading to 

poor expression of HCV-specific antigens, and making standard immunofluorescence 

techniques unreliable for visualizing infection. We reasoned that the sensitivity of HDFR 

might circumvent these difficulties, and explored its use for detecting HCV infection in the 

recently developed micropattern co-culture (MPCC) system23. MPCCs consist of primary 

adult human hepatocytes seeded on islands of collagen and surrounded by mouse fibroblast 
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“feeder” cells. These conditions allow hepatocytes to be maintained for extended periods 

without the rapid decline in cellular functions seen in conventional monocultures or random 

co-cultures24. To visualize HCV infection in MPCC hepatocytes, cultures were transduced 

with RFP-NLS-IPS or RFP-NLS-IPS(C508Y), followed 48 h later by infection with 

Jc1FLAG2(p7-nsGluc2A), allowing MPCC infection to be monitored in parallel by Gaussia 

luciferase secretion (Supplementary Fig. 3). MPCC islands were examined by live cell 

microscopy and the cells per island exhibiting nuclear RFP were enumerated (Fig. 3c). In 

cultures transduced with RFP-NLS-IPS followed by DMSO treatment, approximately 98% 

of the islands observed contained cells with nuclear RFP, averaging 4 cells/island. In the 

RFP-NLS-IPS population treated with 2’CMA, only 6% of islands exhibited infected cells, 

corresponding to an average of 0.06 cells/island. Cells transduced with RFP-NLS-

IPS(C508Y) did not show nuclear RFP in any of the islands examined (Fig. 3c). These 

results indicate that infection of primary hepatocytes can be readily detected using the 

HDFR system. Importantly, this represents the first method capable of visualizing HCV 

infection in live primary hepatocytes.

Although systems for tracking HCV replication in culture have expanded rapidly in recent 

years, robust detection methods applicable to imaging of individual live cells have not been 

available. We describe a sensitive HCV reporter that allows easy distinction of infected and 

uninfected cells in live or fixed cultures by standard fluorescence microscopy. The robust 

signal of the reporter system derives from the efficiency of NS3-4A cleavage and the 

constitutive high-level expression of the substrate; nuclear translocation increases 

visualization, as the reporter becomes concentrated in a region with low autofluorescence, a 

particular advantage when working with hepatocytes. While reporter cleavage does not 

occur in the absence of an active protease, transient signal may be expected in the presence 

of a polymerase inhibitor – this high sensitivity may have to be factored in as “background” 

for some applications. The HDFR system does not require genetic modification of the viral 

genome and showed efficient detection of all HCV genotypes tested. This raises the 

possibility of using the reporter to identify novel infectious isolates directly from patient 

samples, potentially expanding the HCVcc system beyond the currently available genotype 

2a strain. Coaxing HCVcc to infect biologically relevant primary cell types may also be key 

to understanding authentic viral processes and patient-specific responses. The low level of 

replication observed in these cultures may reflect heterogeneity between individual cells or 

viral genomes, and underscores the value of single-cell analysis in dissecting the often subtle 

or variable phenotypes associated with chronic infection. Combining HDFR-based 

visualization with laser capture microscopy and analysis of neighboring infected and 

uninfected cells could begin to unravel the determinants of pathogenesis or virus control. 

The value of single-cell analysis was further illustrated by multiplexing HCV detection with 

a fluorescent marker of cellular stress, allowing direct visual correlation of viral and host 

events. Recent advances in automated microscopy and “high-content” screening have made 

a large number of cellular phenotypes, including drug toxicity profiles, accessible to 

interrogation in a multiparametric format (reviewed in 25). Addition a robust fluorescent 

translocation assay requiring minimal sample processing has the potential to integrate HCV 

research into this burgeoning field. We anticipate that the ability of HDFR to increase the 
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flexibility and diversity of HCV culture systems will be an important step towards creating 

new platforms for basic virology and antiviral drug development.

Methods

Cell culture

Huh-7 and Huh-7.5 cells were cultured at 37°C, 5% CO2 in Dulbecco’s Modified Eagle 

Medium (DMEM, Invitrogen) containing 10% fetal bovine serum (FBS) and 0.1 mM 

nonessential amino acids (NEAA) (complete media), unless otherwise noted. For time-lapse 

imaging, cells were maintained in CO2-independent media (Invitrogen) containing 10% 

FBS, 0.1 mM NEAA, 1 mM sodium pyruvate and 2 mM L-glutamine (imaging media). 

Huh-7.5 cell lines harboring selectable subgenomic replicons8 were grown in complete 

media containing 0.5 mg/ml G418. Huh-7.5 cells stably expressing the pLenti-3’-U6-EC-

EP7 vector encoding an shRNA against CD81 (nt 268-288, cDNA numbering) or a 

predicted non-targeting sequence (IRR) have been previously described19 and were grown 

in complete media containing 6 μg/ml blasticidin. MPCC cultures were generated as 

previously described23 and maintained in high glucose DMEM, 10% FBS, 0.5 U/ml insulin, 

7 ng/ml glucagon, 7.5 ug/ml hydrocortisone and 1% penicillin-streptomycin. For HCV 

inhibition, culture media was supplemented with 0.2% DMSO, 14 mM 2’CMA, 24 mM 

VX-950, or 1000 U/ml IFN-β (Peprotech). For neutralization experiments, HCVcc 

infections were performed in the presence 10 μg/ml antibody directed against CD81 (BD 

Biosciences) or an isotype control (IgG1κ, BD Biosciences).

Virus stocks

Jc126 and Jc1FLAG2(p7-nsGluc2A)11 are fully-infectious HCVcc viruses that have been 

previously described. J6/JFH clone 2 is a passaged derivative of J6/JFH27 that contains a 

number of adaptive mutations that increase infectious titers (Diamond D. L. et al, PLoS 

Pathogens, in press). Bi-Ypet-Jc1FLAG2 is a bicistronic reporter virus in which the HCV 

IRES drives expression of Ypet, an EGFP variant with enhanced brightness, in the first 

cistron; the EMCV IRES drives expression of the second cistron, which encodes the Jc1 

polyprotein with a FLAG epitope at the N-terminus of E2. YF17D(5’C25Venus2AUbi) is a 

monocistronic yellow fever reporter virus (kindly provided by C. Stoyanov, The Rockefeller 

University) encoding the Venus fluorescent protein, a yellow-shifted variant of EGFP. VEE-

EGFP (kindly provided by I. Frolov, UTMB) is a double subgenomic EGFP reporter virus 

derived from the TC83 vaccine strain of Venezuelan equine encephalitis. Virus stocks were 

generated by electroporation of in vitro transcribed RNAs into the appropriate cell lines, as 

described previously27-29.

Plasmid constructs

Constructs were created by standard methods; plasmid and primer sequences are available 

upon request. IPS-1 based reporters and subcellular localization markers were constructed in 

a lentivirus backbone derived from TRIP-EGFP30. Residues 462 to 540 of IPS-1 (IPS) were 

obtained by PCR from a human hepatocyte cDNA library (Ambion) and inserted into the 

BsrGI/XhoI sites of TRIP-EGFP to generate TRIP-EGFP-IPS. IPS-1 mutation C508Y was 

generated by overlap PCR mutagenesis. TRIP-mCherry and TRIP-TagRFP were used to 
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construct TRIP-RFP-NLS-IPS plasmids. TRIP-mCherry was derived from the TRIP-

mCherry-CLDN1 plasmid16. TagRFP sequence was obtained from pTagRFP-C (Evrogen). 

TRIP-RFP-NLS-IPS plasmids encode the SV40 nuclear localization signal (NLS, 

PKKKRKVG) and IPS fused to the C-terminus of RFP. TRIP-mito-EGFP, encodes the 

mitochondrial targeting sequence of human cytochrome c oxidase subunit VIIIa fused to the 

N-terminus of EGFP. TRIP-EGFP-G3BP encodes the Ras-Gap-SH3 domain binding protein 

(G3BP, kindly provided by J. Tazi22) fused to the C-terminus of EGFP.

Generation of lentivirus pseudoparticles and transductions

Pseudoparticles (pp) were generated by co-transfection of 293T cells with TRIP provirus, 

HIV gag-pol, and vesicular stomatitis virus envelope protein G (VSV-G) plasmids using a 

weight ratio of 1:0.8:0.2, as described previously16. Huh-7 and Huh-7.5 cells were 

transduced by incubation for 6 h at 37°C with TRIPpp diluted 1:3 in complete media 

supplemented with 4 μg/ml polybrene and 20 mM HEPES. In some cases, transduced 

hepatoma cell populations were enriched using a FACSAria II high-speed flow cytometry 

cell sorter (BD Biosciences). For transduction of MPCC, cultures were first treated for ~20 

sec with 0.025% EDTA/Trypsin, before washing and overnight incubation with 1:3 diluted 

TRIPpp stocks.

Immunofluorescence staining and FACS analysis

For NS5A immunostaining, cells grown on glass coverslips were washed with phosphate-

buffered saline (PBS) prior to fixation in formaldehyde (3.7% w/v in PBS) and incubation in 

blocking buffer (3% BSA, 0.2% saponin in PBS). After overnight incubation at 4°C with 

monoclonal antibody 9E1027 (1:2000 in blocking buffer) and 1 h incubation at RT with 

AlexFluor-594-conjugated secondary antibody to mouse (Invitrogen, 1:1000 in blocking 

buffer), cell nuclei were stained with Hoechst dye (Thermo scientific). Coverslips were 

mounted using ProLong Gold Antifade reagent (Invitrogen). For IPS-1 immunostaining, 

cells grown on glass bottom multiwall plates (MatriCal) were washed with PBS and fixed 

with 2% paraformaldehyde. After incubation in blocking buffer for 30 min, and polyclonal 

anti-IPS-1 antibody (Cell Signaling Technology) for 2 h, AlexaFluor-555 or AlexaFluor-488 

conjugated anti-rabbit IgG secondary antibodies (Cell Signaling Technology) were added 

for 1 h at RT. Cells were then stained with Hoechst nuclear dye followed by application of 

ProLong Gold Antifade reagent. For FACS analysis, cells were harvested using AccuMax 

(eBioscience) and fixed using Fixation/Permeabilization buffer (BD Biosciences) for 10 min 

at 4°C. Fixed cells were washed with BD Perm/Wash buffer (BD Biosciences), incubated 30 

min at RT with AlexaFluor-647-conjugated 9E10 antibody (1:4000 in BD Perm/Wash 

buffer), washed twice with BD Perm/Wash buffer and once with FACS buffer (PBS/

3%FBS) prior to analysis using a BD LSR II flow cytometer and BD FACSDiva software. 

Analysis of was performed using FlowJo software.

Microscopy

Wide-field fluorescent images were captured using an Eclipse TE300 (Nikon) inverted 

microscope and SPOT imaging software or the Discovery-1 system and MetaXpress 

software (Molecular Devices). Confocal imaging of fixed samples was performed using an 

inverted Axiovert 200 laser scanning microscope (Zeiss). For long-term live cell imaging, 
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cells were grown on rat-tail collagen coated (BD Biosciences) no. 1.5 Lab-Tek II 4-

chambered (Thermo Fisher Scientific) coverslips. Live cells maintained at 37°C in imaging 

media were imaged using a Zeiss Axiovert 200 inverted microscope equipped with an 

UltraView spinning disk confocal head (Perkin-Elmer), an Orca ER cooled CCD camera 

(Hamamatsu), a 20×/0.75 N.A. Plan-Apochromat objective, and an environmental chamber 

(Solent Scientific). Solid state 491 and 561 nm lasers (Spectral Applied) and ET 530/50 and 

ET 605/70 emission filters (Chroma) were used for excitation and emission of EGFP and 

RFP fluorescence, respectively. Alternatively, time lapse images were captured using an 

Olympus IX71 inverted microscope equipped with an Orca ER cooled CCD camera, a 20×/

0.75 N.A. UPlan SApo objective and an environmental chamber. Image acquisition was 

performed using Metamorph (Molecular Devices) and processing was performed using 

ImageJ64.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. An IPS-1-based reporter system for detection of HCV infection
(a) Schematic of IPS-1 and derivative reporter constructs. The Caspase Recruitment Domain 

(CARD) and proline rich (PRO) domains of IPS-1, also known as MAVS6, VISA7, or 

Cardif2, are indicated. The HCV NS3-4A protease cleaves IPS-1 at C508 (arrow). The C-

terminal transmembrane domain (TM) directs IPS-1 to the outer membrane of mitochondria. 

EGFP-IPS encodes EGFP fused to residues 462-540 of IPS-1. RFP-NLS-IPS encodes a red 

fluorescent protein (mCherry or TagRFP) and an SV40 nuclear localization signal (NLS, 

PKKKRKVG) fused to residues 462-540 of IPS-1. (b) EGFP-IPS and RFP-NLS-IPS 

localize to mitochondria in Huh-7.5 cells. Native IPS-1, detected by immunofluorescent 

staining (IPS-1), as well as EGFP or RFP autofluorescence (reporter) were visualized in 

untransduced (Huh-7.5) or transduced (EGFP-IPS or RFP-NLS-IPS) cells by confocal 

microscopy. Merge images also depict Hoechst nuclear dye (blue). (c) EGFP-IPS and RFP-

NLS-IPS relocalize in response to HCV replication. Huh-7.5 cell lines harboring 
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subgenomic (SG) neomycin-selectable replicons were transduced with lentiviruses 

expressing wild type (wt) or mutant (C508Y) EGFP-IPS or RFP-NSL-IPS. H77, genotype 

1a; Con1, genotype 1b; JFH-1, genotype 2a. Wide-field fluorescence images of unfixed cells 

are shown. (d) RFP-NLS-IPS relocalizes in HCV infected cells. Huh-7.5 cells expressing 

RFP-NLS-IPS were infected with secreted Gaussia luciferase HCVcc reporter virus, 

Jc1FLAG2(p7-nsGluc2A), in the presence of phosphate buffered saline (PBS), IFN-β, 

blocking antibody (α-CD81) or isotype control (IgG). Luciferase activity in the culture 

supernatants (left) and reporter (RFP) or nuclear dye (Hoechst) fluorescence (right) were 

monitored at 48 h post-infection. Wide-field fluorescence images of fixed cells are shown. 

Scale bars, 20 μm. RLU, relative light units.
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Figure 2. Time-lapse live-cell imaging of HCVcc infection
(a) Schematic of live-cell imaging time course. Huh-7.5 cells stably expressing RFP-NLS-

IPS and a mitochondrially targeted EGFP-cytochrome c oxidase subunit VIII fusion protein 

(mito-EGFP) were infected with HCVcc reporter virus, Jc1FLAG2(p7-nsGluc2A). (b) Cells 

were infected in the presence of DMSO or HCV RNA-dependent RNA polymerase inhibitor 

2’CMA. (c) Cells were infected for 24 h prior to removal of the inoculum and addition of 

imaging medium containing DMSO or the NS3-4A protease inhibitor VX950. Images were 

captured every 30 min starting at 6 h (b) or 24.5 h (c) post-infection. RFP fluorescence is 

shown in grayscale. Time (h) from the start of infection (b) or drug addition (c) are 

indicated. Scale bar, 20 μm. See Supplementary Videos 1a-d for full time course.
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Figure 3. Use of the IPS-1-based reporter to expand HCVcc culture systems
(a) Co-culture of spectrally distinct HCV reporter cell lines for visualizing CD81-

independent infection. Wide-field fluorescence images of unfixed mono- and co-cultures of 

Huh-7.5 cell lines expressing RFP-NLS-IPS or EGFP-IPS in the presence (+HCVcc) or 

absence (-HCVcc) of J6/JFH clone 2. EGFP-IPS cells stably express shRNA targeting CD81 

(CD81-) or an irrelevant sequence (IRR). Monocultures were infected for 72 h prior to 

imaging. In co-culture experiments, RFP-NLS-IPS cells were infected with HCVcc for 36 h 

prior to mixing with uninfected EGFP-IPS/IRR or EGFP-IPS/CD81- cells. Co-cultures were 

incubated for an additional 48 h prior to imaging. (b) Multiplexing the HCV reporter with a 

marker of the stress response. An Huh-7 cell line expressing RFP-NLS-IPS and an EGFP-

tagged stress granule marker (EGFP-G3BP) was infected with Jc1FLAG2(p7-nsGluc2A). 

Live-cell imaging was initiated at 6 h post-infection with images captured every 30 min. 

Montage shows selected time points beginning at 32 h post-infection; times (h) from the 
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start of infection are indicated. See Supplementary Videos 2a-c. (c) Visualization of HCVcc 

infection in primary hepatocytes. Primary human hepatocytes maintained as micropatterned 

co-cultures (MPCC) were transduced with lentiviruses expressing wild type (wt) or mutant 

(C508Y) RFP-NLS-IPS. At 24 h post-transduction, MPCC were infected with 

Jc1FLAG2(p7-nsGluc2A). After 12 h, virus was removed and MPCC medium containing 

DMSO or 2’CMA was added. Unfixed MPCCs were imaged by wide-field fluorescence 

microscopy at 48 h post-infection. Representative phase contrast (top row) and 

corresponding RFP fluorescence images (middle row) are shown. Enlarged fluorescence 

images (bottom row) correspond to area denoted by white dotted box (middle row). The 

number of cells per MPCC island exhibiting nuclear RFP at 48 h post-infection is plotted for 

each condition. For wt RFP-NLS-IPS+DMSO n=40; wt RFP-NLS-IPS+2’CMA n=30; 

C508Y RFP-NLS-IPS+DMSO n=35. Bar, mean number of positive cells/island. Scale bars, 

20 μm (a and b), 200 μm (c, top panel), 10 μm (c, lower panel).
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