
Synergistic drug combinations improve therapeutic selectivity

Joseph Lehàr1,2,†,*, Andrew S. Krueger2, William Avery1, Adrian M. Heilbut1, Lisa M. 
Johansen1, E. Roydon Price1, Richard J. Rickles1, Glenn F. Short III1, Jane E. Staunton1, 
Xiaowei Jin1, Margaret S. Lee1, Grant R. Zimmermann1,*, and Alexis A. Borisy1,†,*

1 CombinatoRx Incorporated, 245 First St, Cambridge, MA 02142

2 Boston University Bioinformatics/Bioengineering, 20 Cummington St, Boston, MA 02215

Abstract

Prevailing drug discovery approaches focus on compounds with molecular selectivity, inhibiting 

disease-relevant targets over others in vitro. However in vivo, many such agents are not 

therapeutically selective, either because of undesirable activity at effective doses or because the 

biological system responds to compensate. In theory, drug combinations should permit increased 

control of such complex biology, but there is a common concern that therapeutic synergy will 

generally be mirrored by synergistic side-effects. Here we provide evidence, from 94,110 multi-

dose combination experiments representing diverse disease areas and large scale flux balance 

simulations of inhibited bacterial metabolism, that multi-target synergies are more specific than 

single agent activities to particular cellular contexts. Using an anti-inflammatory combination, we 

show how multi-target synergy can achieve therapeutic selectivity in animals through differential 

target expression. Synergistic combinations can increase the number of selective therapies using 

the current pharmacopeia, and offer opportunities for more precise control of biological systems.

Achieving therapeutic selectivity has been a major obstacle in drug discovery1, leading to 

disappointing returns despite a surge in research and development spending2. Drugs for 

infectious diseases often achieve selectivity by modulating pathogenic proteins with no 

human counterparts, but the treatment of cancer, metabolic, or inflammation disorders must 

rely on targets that are present in both healthy and diseased tissues. This requires precise 

target modulation, which can be thwarted by the compensatory mechanisms available to 

complex biological systems3–5. Overcoming this compensation often requires high drug 

doses that can induce unwanted effects in other tissues6,7. Thus, although the prevailing 

target-based drug design paradigm efficiently finds candidate drugs that are selective in a 
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molecular sense, an alarming fraction have side effects in vivo that prevent their use at 

effective doses1.

Synergistic combinations of two or more agents can overcome toxicity and other side effects 

associated with high doses of single drugs, by either countering biological compensation, 

sparing doses on each compound, or accessing context-specific multi-target mechanisms8–

10. Therapeutically promising multi-target effects can be identified using experimental11–

16 and theoretical17–20 techniques. Because they actually make use of biological 

complexity, combinations are among the most promising avenues towards treating multi-

factorial diseases1.

One empirical method for finding potential multi-target therapies is to seek synergistic 

responses to combined perturbing agents, like drugs, using phenotypes that integrate across 

cellular functions21. However, synergies between phenotypic perturbers that exceed 

expectations from the single agents’ activities22 are relatively rare14,18,23,24, and 

searching the vast space of combinations can only be fruitful if potential therapies do not 

also have synergistic side-effects25. We are using our high-throughput combination 

platform to systematically test combinations of ~3,000 approved drug ingredients, emerging 

therapeutics, and research probes, against cellular phenotypes representing diverse disease 

areas11. Here we analyze drug combinations from thirteen phenotypic screens relevant to 

six disease areas, and flux balance analysis simulations of chemically inhibited metabolism 

in E. coli bacteria, to show that synergies do indeed operate in more narrow biological 

contexts than single drugs. We also present examples of how therapeutic selectivity can 

arise from the multi-target cooperativity underlying most phenotypic synergy.

Results

We performed synergy and selectivity analyses for fourteen large sets of combination data, 

derived from simulations and experimental screens. Each combination was represented as 

dose matrices (Fig. 1) in “test” and “control” phenotypes, each with inhibitions Z = (1−T/V) 

calculated from drug-treated samples with a measured response T relative to vehicle-treated 

samples with a median level V. The usual drug activity and combination analyses, which 

focus on positive inhibition values, can be generalized to account for both inhibitors and 

activators of the measured phenotype. However, because the preponderant majority of our 

experimental drug activities are inhibitory, we will focus for now on to the simpler, 

unidirectional analyses.

Measuring synergy and selectivity

For the test phenotype we determined synergy over a null interaction model determined by 

the single agent response curves. A number of such models are in use22,26, the most 

common being: Loewe dose-additivity27, which is the expected response if both agents 

inhibit the same molecular target via the same mechanism; Bliss independence28, the 

multiplicative probability derived for statistically independent target eliminations; and 

Gaddum’s non-interaction26, or “Highest Single Agent” (HSA), which is simply the higher 

of the two single agent effects at corresponding concentrations. Synergy was measured using 

a score S calculated from the volume between the measured combination and HSA response 
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surfaces, and dose-shifting relative to Loewe additivity was measured using a combination 

index29 CI (Fig. 1).

Selectivity for single agents or combinations was measured by comparing their potency in 

the test and control assays, via a standard selectivity index SI that represents the logarithmic 

shift in effective concentration between the test and control phenotypes at a chosen level of 

inhibition (Fig. 1). SI was measured separately for the single agents and for fixed-ratio 

combination curves extracted from the test and control dose matrices (Fig. 1). The 

synergistic selectivity of individual combinations can be described using a differential 

selectivity index ΔSI between the combination and single agent curves, or a differential 

synergy ΔCI between the test and control assays (Fig. 1).

The selectivity bias B was measured for each data set as the difference between the average 

SI of those combinations with S exceeding a cutoff Scut, and that of the unfiltered 

combinations. Separate replicates were used when calculating S and SI to correct for 

statistical correlations due to noise (Methods), and the significance of B was estimated in 

two ways: (1) calculating the standard error of B, assuming normal SI statistics; and (2) 

generating histograms for both sets of SI values and determining the likelihood of their 

being drawn from the same distribution based on Poisson counting statistics within each 

bin30 (Methods). Simulated combination screens with Gaussian random noise confirm that 

this approach does not lead to spurious B detections from noise alone (Suppl. Note 1), and 

simulations with defined synergy and selectivity signals demonstrate that this approach 

reliably detects introduced selectivity biases without excessive dependence on screen design 

parameters or the chosen analysis cutoffs (Suppl. Note 1).

Simulated bacterial metabolism

To demonstrate the selectivity bias in a comprehensive biologically-relevant data set, we 

simulated combined inhibition of bacterial growth via a flux-balance analysis (FBA) model 

of Escherichia coli metabolism31. The FBA model comprises ~950 enzymes or transporters 

(Methods) that are organized into ~44 distinct metabolic pathways or processes (Suppl. Note 

1). Reaction fluxes throughout the network were optimized for growth under two conditions, 

minimal aerobic acetate media32 and minimal glucose fermentation33, chosen to activate 

very different pathways in the network.

Drug effects were simulated by restricting the flux of target enzymes with differing factors 

to model drug concentrations, at each dose using minimization of metabolic adjustment18 to 

model growth responses (Suppl. Note 2). The effective concentrations for each target were 

used to define dosing ratios for 111,389 pairwise combinations, each of which was 

simulated as a fixed-ratio dosing series (Methods).

Using fermentation as the test and aerobic growth as the control, S and SI were measured for 

each combination and averages were calculated across all combinations in 136 mechanism 

groups derived from combinations of 16 mechanistic classes for FBA model targets. The 

resulting multi-target selectivity profiles highlight pathways that distinguish fermentation 

from aerobic metabolism (Fig. 2), and the bias (B ~ 0.6) for the top 1% of synergistic 

combinations corresponds to almost a fourfold increase in potency over the single agents.
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Experimental combination screens

For experimental validation, we analyzed thirteen sets of combination data comprising 

94,110 dose matrices, drawn from screens in six different disease areas (Fig. 3; Suppl. Note 

2). The data sets vary considerably in design (number of drugs, aspect ratio of drug lists, 

sampling density for each combination, choice of assays), as well as in choice of agents 

(mechanistic coverage, activity in one or selectivity across multiple assays). Some of these 

resulted from screens aimed at testing for therapeutic selectivity, by comparing disease-

related phenotypes to models of healthy cell viability, while the others investigated 

mechanistic selectivity, where differential response profiles across phenotypes can highlight 

particular mechanisms. There were up to four phenotypes tested in each screen, resulting in 

2–6 possible assay pairings, only some of which could be considered aligned with a 

therapeutic selectivity objective.

Representing therapeutic selectivity, our viral, bacterial, inflammation, and cardiovascular 

screens compared disease-relevant assays to human cell line proliferation as toxicity models 

(Suppl. Note 3). Most showed visible shifts towards positive SI for the synergistic 

combinations (Fig. 3), in some cases with substantial selectivity biases approaching a 2–3 

fold increase in potency over the single agents. The strongest biases occurred with the 

“Inflam 12×100” and RSV screens, which compared single protein readouts to broad cell 

viability assays. The other assay pairs aligned with therapeutic objectives also produced 

significant B (p < 0.05) usually not matched in the reverse comparison. The main exceptions 

are the viral HepC screen, where extremely selective single agents and a high incidence of 

pro-viral effects in the replicon assay led to skewed selectivity distributions, and the “Vascul 

90×90” screen, where the strong single agent selectivity left little room for additional 

selectivity gains.

A clear example of a therapeutically-aligned selective combination is the antibacterial 

synergy between ribavirin, a metabolism inhibitor, and disulfiram, a metabolic drug used for 

alcohol avoidance therapy. The combination has almost no effect on human cell viability 

(Fig. 4). Similarly, the antiviral synergy of cepharanthine, an anti-inflammatory drug with 

antiviral potential34, and benzamil, a potent inhibitor of ion transport channels35, shows no 

detectable synergy against host cell viability (Suppl. Note 4). Finally, the anti-inflammation 

synergy between prednisolone and nortriptyline against secretion of tumor necrosis alpha 

(TNF-α) from stimulated peripheral blood mononuclear cells (PBMC) shows no 

corresponding increase in toxic effects as measured by PBMC metabolic viability (Fig. 5). 

In all cases the synergy increases the likely safe treatment window for potential therapies.

Considering mechanistic selectivity, the anti-cancer screens in Figure 3 were designed with 

that goal in mind (Suppl. Note 3), and comparisons between very similar assays in the other 

screens also provide mainly mechanistic information. While most of these assay pairs yield 

significantly positive shifts, their B tend to be weaker than those from therapeutically 

aligned assay pairs. The main exceptions are in the multiple myeloma screen, where 

substantial selectivity shifts occur between glucocorticoid-resistant MM-1R and the 

sensitive cell lines.
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Individual mechanistically selective synergies (Fig. 4) provide insights into the biology 

relevant to the tested phenotypes. The strong synergy between LY 294002 and camptothecin 

in lung-derived H460 compared to colon-derived Colo-205 cells reveals an interaction 

between phosphoinositide 3 kinase and DNA topoisomerases that occurs only in some 

cancer contexts. Also, potential post-infection treatments for anthrax that work through host 

targets are suggested by the synergy between manganese sulfate and the hypertension drug 

methyldopa in a toxin survival assay that shows no antibacterial activity (Suppl. Note 4). 

Finally, from our cardiovascular screens, the anticancer microtubule inhibitor paclitaxel and 

the vasodilator forskolin synergistically inhibit smooth muscle cell proliferation while 

sparing toxicity on endothelial cells (Suppl. Note 4), pointing to possible uses for reducing 

the risk of thrombosis with drug-eluting stents36. Information of this kind can be used to 

guide the design of cotherapeutic treatments or to prioritize indications for candidate 

therapies.

General findings

Across all of our experimental data sets, the selectivity distributions showed consistently 

positive bias for synergistic combinations (Fig. 3). The SI values for unfiltered combinations 

were similar to those of their single agents (Suppl. Note 3), both having a positive skew 

owing to the more effective compound being used in the SI calculation. When synergy 

cutoffs were applied, however, the SI distributions of the most synergistic 5% shifted 

substantially towards more selectivity, with typically 15–40% of the synergies having SI > 

0.5 (threefold dose shift), compared to 6–10% for unfiltered combinations and single agents 

(Suppl. Note 3).

The experimental selectivity biases exceeded levels found for simulated combination 

screens with random noise high levels (Suppl. Note 1), and were well above levels found in 

“null” comparisons between replicates of the same assay (Suppl. Note 3), but compared well 

to those observed for simulated screens with introduced synergy and selectivity signals 

(Suppl. Note 1). Although the selectivity bias was strongly influenced by screen design 

parameters, such as the number of compounds used and the individual activity or selectivity 

of single agents in the screen, B depended only weakly on the chosen synergy cutoff or 

whether split matrices were used to separate the S from the SI measurements (Suppl. Note 

3). Finally, selectivity biases were often asymmetric when the assay order was reversed (Fig. 

3), especially for the therapeutically-aligned assay pairs which compared a single protein 

expression phenotype to a broad measure of cell viability.

Overall, after correcting for multiple assay comparisons in each screen, the consensus B was 

significantly positive (Fig. 3), and its magnitude increased substantially for assay pairs that 

were aligned with clear therapeutic objectives. All of this suggests that the selectivity bias 

arises not from stochastic effects but from biological context specificity, where synergistic 

combination effects require a narrower set of biological conditions than do single agent 

activities.
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Discussion

There is growing enthusiasm for combination therapy1,5,10, specifically because greater 

selectivity is anticipated1,9. Nevertheless, there are concerns that synergistic therapies 

would usually be mirrored by synergistic toxicity25, as would indeed happen if side-effect 

mechanisms are too closely related to those involved with drug efficacy. The arguments on 

both sides of this question have to date been heuristic, and this manuscript presents the first 

large-scale study to our knowledge that establishes the selectivity of combination 

approaches. Our experiments and simulations show a statistical bias towards greater 

selectivity for synergies, the strength and consistency of which cannot be attributed to 

stochastic noise or analysis parameter choices. This shows that synergies are more specific 

to particular cellular phenotypes than are single drugs, in agreement with the recent finding 

that synthetic lethal genetic interactions are less conserved between species than are single 

mutant lethalities37.

This selectivity bias for synergistic combinations may be understood in terms of the 

complexity of biological systems, where cooperative activity operates only in some cellular 

contexts but not others. The rarity of self-crosses in our screens and the disparate drug 

mechanisms or indications underlying each of the example combinations point to the 

synergies being largely explained by multi-target interactions, as is the case for synergistic 

responses in theoretical studies17,24. Because multi-target mechanisms require their targets 

to be available for coordinated action, one would expect synergies to occur in a narrower 

range of cellular phenotypes given differential expression than would the activities of single 

agents. Moreover, one would expect this specificity to narrow further as the combination 

order increases, until a limit is reached determined by the complexity of the biology relevant 

to a phenotype38.

The anti-inflammatory synergy between prednisolone and nortriptyline provides an 

illustration of how multi-target activity can lead to therapeutic selectivity (Fig. 5). For the 

lymphocytes in our PBMC assays, the synergy results from coordinated activity on each 

drug’s primary target (Suppl. Note 4), prednisolone activating glucocorticoid receptors 

(GCR) and nortriptyline inhibiting a separate autocrine pathway via norepinephrine 

transporters (SLC6A2) and beta-adrenergic (ADRB2) receptors39,40 (Fig. 5). Because the 

ADRB2 receptors are more highly expressed in lymphocytes41 than in the liver and 

pituitary cells41 that mediate major glucocorticoid toxicities42, we would expect the 

synergy with tricyclic antidepressants to increase the therapeutic window of a glucocorticoid 

over those toxicities (Suppl. Note 4). Indeed, the amplification of anti-inflammatory effect 

seen in rodents with this combination does not show a corresponding rise in glucocorticoid-

associated toxicity in rats at similar doses (Fig. 5; Suppl. Note 4), as has also been seen with 

a related anti-inflammatory synergy, prednisolone with the cardiovascular agent 

dipyridamole43,44. These combinations represent a multi-target approach towards the long-

sought “dissociated steroid”, where the anti-inflammatory activity of glucocorticoids can be 

separated from chronic side effects45.

The increased specificity of combinations over single agents has implications for drug 

discovery and bioengineering. In medical contexts, the selectivity bias reinforces the 
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potential of chemical combinations for network polypharmacology1,8 by reducing concerns 

that synergistic side-effects would make selective combinations too rare25. For example, 

given performance typical for our screens (Fig. 3), a disease with ~100 useful chemical 

agents would be expected to have ~2–5 that are >3× selective between two assays, but the 

~250 pairwise combinations representing the top 5% of synergies would be expected to 

yield 40–80 more treatments with similar or increased selectivity (Suppl. Note 3). For 

bioengineering, selective synergies provide opportunities for optimizing conditions in 

reactors producing fuels, synthetic materials or pharmaceutical products46, for example by 

introducing combinations of chemical ingredients and comparing phenotypic measurements 

that track metabolic production of a desired chemical and toxic byproducts that limit a 

reactor’s performance. There is much to be gained by expanding the notion of a target from 

a single biomolecule to the right set of nodes in a complex biological network.

Methods

Chemical handling and quality control

The chemical library was archived in robotically-accessible vials, to which diluent (dimethyl 

sulfoxide or water) was added in preparation for addition to 384-well master plates by a 

Tecan Freedom liquid-dispensing robot. Liquid transfers to dilution and assay plates were 

handled using a Perkin-Elmer MiniTrak station adapted for the combination high throughput 

procedure. Each 384-well assay plate contained multiple dose matrix blocks, with serial 

dilutions at fixed ratios from the top concentration for each agent. Additional wells were 

reserved for transfer and untreated control wells. Compound mixtures were then added to 

the biological assay.

The contents of each plate were tracked in an automated laboratory information 

management system, using integrated barcode scanners in the liquid handling equipment, 

and stored in an Oracle database. Plates lacking transfers or with insufficient dynamic range 

(usually SNR < 5 between untreated controls and a cell-free background) were rejected and 

repeated. The remaining plates were inspected using custom quality control software. 

Individual wells that fell outside the expected range for normal assay readouts, or which 

were discontinuous with their neighbors, were marked for exclusion. Finally, the single 

agent wells in each combination block were visually inspected for consistency across the 

experiment, and combination blocks containing the most discrepant single agents were 

marked for exclusion.

Measuring synergy and selectivity

Dose matrices were assembled from replicate combination blocks on experimental plates. 

Some of the data showed systematic variations across the plate, most likely due to 

temperature or humidity gradients during incubation. Raw phenotype measurements T from 

each treated well were converted to inhibitions Z = (1−T/V) relative to the median V of 10–

20 vehicle-treated wells arranged around the plate. Positive modulators of a measured 

endpoint would best be represented by alternative expressions for Z (eg, log(T/V) for growth 

or fitness), but as the vast majority of our chemical agents are inhibitors of our measured 

endpoints we have limited the analyses in the present work to inhibitions. Standard error 
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estimates σZ for each median inhibition were also calculated, based on the quadrature sum 

of a minimum acceptable 3% error, the median absolute deviation (MAD) of the corrected 

vehicle data on each plate normalized to their median, and the MAD between replicate 

inhibition data between plates, using an empirical conversion from MAD to standard 

deviations49.

Synergy is determined by comparing the combination’s response to those of the single 

agents22,26. A key consideration for clinical combinations is whether a mixture is more 

potent than the drug-with-itself “Loewe additivity” level27, the point at which there is some 

benefit over simply increasing component drug doses. Comparisons are made using an 

Isobologram and a Combination Index29, for example CI50 = (CX/IC50X) + (CY/IC50Y), 

where (CX/IC50X) for a mixture is the ratio of the X compound’s concentration CX in a 50% 

effective mixture to its 50% inhibitory concentration IC50X when applied alone. If a single 

agent does not reach the chosen effect level, we set the effective concentration to the top 

tested dose, and all CI values become upper limits. The combination index is best suited for 

analyzing fixed dose-ratio combination curves. For our therapeutic screens with complete 

dose matrices, we often measure the synergy using a “Synergy Score” S = ln fX ln fY Σdoses 

max(0,Zdata) (Zdata−ZLoewe), between measured effects Zdata and a Loewe additive surface 

ZLoewe derived from the single agent curves47. This synergy score is a positive-gated, 

effect-weighted volume over Loewe additivity, adjusted for variable dilution factors fX,fY. 

Other combination reference models can be used to calculate S, and in this work we are 

referring all synergy scores to the “Highest Single Agent” ZHSA = max(ZX,ZY), the 

maximum single agent response at corresponding concentrations24. Combinations with 

strong synergies above the reference model that also occur at high effect levels score well, 

and regions of negative synergy on a surface do not cancel out those with positive synergy. 

It is worth noting that S does not have a natural scale, so it is only useful for relative 

comparisons within a screen, rather than as an absolute measure of strong synergy.

Selectivity is calculated by comparing across dose matrices for different measured 

endpoints. The “selectivity index” SI compares the potency of an agent or combination at 

the same effect level for two assays (Fig. 1). Given a pair of response matrices for the “test” 

and “control” assays, we measure inhibitions Ztest and Zctrl, and define a fixed cutoff level 

Zcut. We then find the effective concentrations Ccut at level ZSI = 0.5*max(Ztest) for each of 

the single agents and for fixed-ratio curves of the combination, where the combined 

concentration in molar units is taken as the sum of the component concentrations, and define 

a selectivity index SI = log10(Cctrl/Ctest). If a single agent does not reach the chosen effect 

level, we set the effective concentration to the top tested dose, and SI values become lower 

limits. Each fixed ratio curve is extracted from diagonals in the test matrix, using bilinear 

interpolation to determine the corresponding control responses. For each test-control pairing, 

SI is reported for the most selective diagonal with more than two dose samples covered by 

both matrices. We also report the differential selectivity ΔSI = SIcomb − SIbest between the 

combination and the more effective single agent, and a combination index difference ΔCI = 

CIctrl − CItest.
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Measuring selectivity bias and its significance

To measure the selectivity bias for synergistic combinations, we compared distributions of 

selectivity index SI between populations of combinations for each assay pair in a screen. 

The synergistic combinations were chosen to be those with a synergy score S in excess of a 

chosen cutoff Scut (usually capturing the top 5% of the synergies). Their SI distribution was 

compared to that of the overall set of combinations via a selectivity bias B (Fig. 1).

Because the B can be subject to regression-to-the-mean effects, where stochastic noise 

generates meaningless selectivity for synergistic combinations, we calculated the synergy 

and selectivity using distinct replicate matrices (Fig. 1, more details in Suppl. Note 3). By 

doing this, stochastic noise in one copy will not affect the selectivity calculation in the other. 

While most of our screens had replicates, some screens collected only one. To ensure 

consistency, we analyzed all screens by separating each combination into distinct matrices 

using with alternate dosing points from the consensus data, and used the true replicates to 

confirm the accuracy of this approach.

For each pair of assays in a screen, we compared four SI distributions: (1) the synergies with 

Scut > Scut, all combinations without synergy filtering, and most selective single agent from 

each combination (Fig. 1). For each pairwise comparison of assays, we report B with its 

95% range (2 σB), and a confidence P-value from Poisson statistics30 representing the 

probability that chi-squared differences as large as those between the SI distributions for the 

synergistic and unfiltered combinations are indistinguishable.

When analyzing the significance of selectivity bias measurements across all the screens (Fig. 

3), we accounted for the number of pairwise comparisons using a sequential Bonferroni 

correction48 to adjust the error bars. Each screen’s B estimates were assigned an integer 

rank with increasing signal-to-noise ratio B/σB, and then each σB was increased by a factor 

corresponding to 95% confidence after adjusting for multiple tests equal to their rank. In 

doing this, the strongest bias values are given the largest correction to account for their 

being the best of all of the assay pairs, while the weakest B retains the 95% confidence error 

bars corresponding to its standard error from the SI distribution.

In-vitro cell-based assay protocols

Hepatitis C assays—Huh7 cells expressing a sub-genomic RNA replicon of Con1 

(genotype 1b) sequence origin and expressing the reporter enzyme luciferase were obtained 

from ReBLikon, GmBH. Antiviral assays were performed by seeding 4,000 cells/well in a 

384-well plate in a total volume of 30 μl/well and incubating at 37°C, 5% CO2 overnight. 

Pre-diluted compounds were added at a 10× concentration to each well to achieve the 

desired final concentration. Assay plates were than incubated for 48 hours or 37°C, 5% CO2. 

In order to equilibrate plates to room temperature, assay plates were removed from the 

incubator for 30 min to 1 hour prior to the addition of 25 μL/well of SteadyLite luciferase 

assay reagent from Perkin Elmer. Cells were incubated with SteadyLite reagent, for 10 

minutes prior to collecting data with a luminometer (Perkin-Elmer Envision). Antiviral 

activity is quantified by the inhibition of luciferase activity. For the antiproliferation assay 

Huh7 parental cells which do not express HCV replicon RNA are treated similarly to the 
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above replicon cells; briefly, seed cells on a 384-well plate at 4,000 cells/well, as described 

above. Compounds are added the following day and, after subsequent 48-hour incubation at 

37°C, 5% CO2, 15 μl/well of ATPlite (Perkin Elmer) is added after plates have been 

equilibrated at room temperature. The ATPlite assay provides a quantitative measure of the 

levels of ATP in the cell cultures in each well, where higher levels of ATP correlate with 

greater cellular viability.

Respiratory Syncytial Virus (RSV) assays—HEp-2 cells were obtained from 

Diagnostic Hybrids, Inc., and maintained in DMEM (Dulbecco’s Modified Eagle Medium) 

modified with 10% FBS (Fetal Bovine Serum), 1% P/S (Penicillin/Streptomycin), and 1% 

GlutaMAX-1. Antiviral assays were performed by seeding 3,000 cells/well in a 384-well 

plate in a total volume of 30ul (in DMEM modified with 2% FBS and 1% GlutaMAX-1) 

and incubating at 37°C, 5% CO2 overnight. Pre-diluted compounds were added at a 10× 

concentration to each well to achieve the desired final concentration. RSV was added to 

each well (save 12 no virus added wells per plate) at 50 TCID50. Assay plates were than 

incubated for 96 hours at 37°C, 5% CO2. In order to equilibrate plates to room temperature, 

assay plates were removed from the incubator for 45 min prior to the addition of 25 μL/well 

of ATPlite assay reagent from Perkin Elmer. Cells were incubated with ATPlite reagent, for 

10 minutes prior to collecting data with a luminometer (Perkin-Elmer Envision). Antiviral 

activity was quantified by comparing the host cell viability in the presence of virus and drug 

treatment to uninfected cells. For the antiproliferation assay, HEp-2 cells were treated the 

similarly to the above conditions, without the addition of virus. The antiproliferation assay 

provides a quantitative measure of the levels of ATP in the cell cultures in each well, where 

higher levels of ATP correlate with greater cellular viability.

Bacterial proliferation—Methicillin-resistant Staphylococcus aureus (ATC #33591) 

bacteria were cultured in flasks with Basic Mueller Hinton broth overnight in a 37°C shaker 

at 250 rpm. On the next day, the cultures were further diluted into Basic Mueller Hinton 

broth to have an absorbance equivalent to 50% of McFarland standard, corresponding to a 

density of ~108 CFU/mL, and transferred with automated dispensers into 384-well assay 

plates (35 μl wells containing media and test compounds) to yield ~106 CFU/ml. The plates 

were incubated in the presence of drugs and media at 37°C for 18 hours (~30 doublings). 

Upon completion, cell populations were measured at a single time point, with a turbidity 

(laser scattering) readout using a BMG Labtech Nephelometer. For the anthrax selectivity 

example, Bacillus Thuringiensis (ATCC# 10792) was grown as above, but activity was 

determined by the addition of basic Mueller Hinton media containing 10% Alamar Blue 

fluorescence dye. Following a 4 hour incubation at 37°C, bacterial populations 

measurements were made at a single time point using a Perkin-Elmer Victor II plate reader 

(excitation at 535/590 nm emission).

Anthrax toxicity—Raw 264.7 cells were plated on 384-well plates at a density of 15,000 

cells/well and are incubated overnight at 37°C, with 5% CO2. Next, 4.5 μl of diluted 

compound was added to each well followed by the addition of 10 μl of anthrax lethal toxin 

(500 ng/ml PA-63 and 500 ng/ml LF from List Biological Laboratories). Assay plates were 

than incubated for 4.5 hours at 37°C, with 5% CO2. Following this incubation, cell 
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cytotoxicity was determined by the release of lactose dehydrogenase (LDH) using a 

fluorescent CytoTox-One assay (Promega). Assay plates were allowed to equilibrate at room 

temperature for 30 minutes. After plates had equilibrated, 30 μl/well of CytoTox reagent 

were added and assay plates were incubated for 10 minutes. Following this incubation, 15 

μl/well of Stop Solution was added to assay plates and the amount of LDH released was 

measured using Perkin-Elmer Envision.

Cancer proliferation—A549 (#CLL-185), Colo 205 (#CLL-222), H929 (#CRL-9068), 

HCT116 (ATCC #CCL-247), NCI-H460 (#HTB-177), SK-MEL-28 (#HTB-72), SKOV-3 

(#HTB-77), RPMI-8226 (#CCL-155), MM.1R and MM.1S (kindly provided by Dr. Steven 

Rosen, Northwestern University) were cultured in RPMI-1640 media Supplemented with 

10% FBS for between 2 and 20 passages, drawing test populations along the way. Cells 

were seeded into 384-well plates at a density of 1,500 cells per well in 35 μl media using 

automated dispensers. Plated cells were incubated at 37°C, with 5% CO2 overnight, after 

which the compounds were added and the plates were incubated again for 72 hours (~1–2 

doublings). Post incubation, cells were assayed for viability by measuring relative ATP 

levels using ATPLite 1Step (Perkin Elmer, Chicago, IL #6016739) as per the manufacturer’s 

instructions or 10.5% Alamar Blue fluorescence dye (in 40μl media) was added and plates 

were incubated for 6 hours. Cell viability measurements were taken at a single time using a 

Perkin Elmer Envision plate reader.

Cardiovascular HTRF assays—Human coronary artery endothelial cells (HCAEC, Cell 

Appl. #300-05a) or smooth muscle cells (HCASMC, Cell Appl. #350-05a) were seeded into 

384-well plates at a density of 1,500 cells/well in 35 μl Supplemented media using 

automated dispensers. Cells were incubated at 37°C, 5% CO2 overnight to allow the cells to 

adhere, treated with compound, and stimulated with IL-1β (BD Biosciences #554602) one 

hour later at 3 ng/ml. The plates were incubated again for 24 h, after which 9 μl of cell 

supernatant were transferred into a corresponding low-profile 384-well plate containing 9 μl 

of pre-mixed HTRF reagents (Functional Grade Purified anti-human MCP-1 antibody, 

Clone: MD3-F7 eBioscience #16-7099-85, custom labeled with Eu-cryptate by CisBio, at a 

f.c. of 0.88 nM; Biotin anti-human MCP-1 antibody, Clone: 2H5, eBioscience #13-7096-85, 

at 3.35 nM f.c.; Streptavidin labeled XL-665, CisBio #610SAXLB, at 16.75 nM f.c.). HTRF 

signal was read from the low-profile plates following an overnight incubation at RT using 

the LANCE-HTRF Eu/APC Dual protocol on Perkin Elmer Envision plate reader. To assess 

viability based on ATP levels after removing the supernatant for the HTRF assay, the cell 

culture plate was treated with ATPLite 1Step reagent, and the luminescence for each well 

was read on the Envision plate reader.

Cardiovascular anti-proliferative assays—Adult Normal Human Dermal Fibroblast 

(NHDF, Lonza# CC-2511), human aortic smooth muscle cells (AoSMC, ATCC #CC-2571), 

or human umbilical vein endothelial cells (HUVEC, ATCC #CRL-1730) cells were cultured 

in Fibroblast Basal Media with provided Supplements and growth factors (Lonza #CC-4126) 

for 2 to 10 passages. Test populations were seeded at 250 cells/well in 384-well plates and 

allowed to recover overnight at 37°C with 5% CO2. Diluted compounds were added to the 
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cells and incubated at 37°C with 5% CO2 for 72 hours. Cells were then assayed for viability 

by measuring relative ATP levels as described above.

IL-1β ELISA assay—The inhibitory effect of certain compounds or combinations on the 

secretion of IL-1β was assayed using the standard sandwich ELISA. Assay plates were 

prepared by adding lipopolysachharide (LPS) stimulated complete RPMI media into 384-

well plates. Master plates were appropriately diluted into assay plates and purified PBMC 

(20,000 cells/well) were added. Plates were incubated at 37°C, 5% CO2 overnight and spun 

to clear the supernatant, which was transferred to ELISA plates coated with IL-1β capture 

antibody. After a 2h incubation at RT, plates were washed with 1× PBS, 0.1% Tween 20, 

and a second IL-1β antibody and the detection agent (Eu-labeled Streptavidin) were added. 

Plates were incubated again for 1h at RT, and after several washes, enhancement solution 

was added. Following an overnight incubation at 4°C, plates were read on a Perkin Elmer 

Envision plate reader.

Inflammation assays—The ability of compounds or combinations to suppress the 

secretion of pro-inflammatory cytokines was assayed as follows. Compound stocks 

dissolved in DMSO (or H2O as appropriate) were serially diluted on master plates using 

liquid-handling automation. Master plates were diluted into plates with aqueous media, 

stimulants (phorbol-12-myristate 13-acetate and ionomycin) and serum. Human buffy coat 

was obtained fresh daily from the blood bank and diluted in Supplemented media prior to 

addition to the assay plates. Plates were incubated overnight at 37°C and 5% CO2 and spun 

to pellet the cells. After transferring the supernatant to an ELISA plate coated with a capture 

antibody specific for the target cytokine, plates were washed and probed with a second 

antibody and detection reagent. Data were read from the ELISA plate using Perkin Elmer 

Envision readers.

Htt protein translocation assay—Immortalized striatal cells derived from mutant 

huntingtin (Htt) knockout STHdhQ111 mice were seeded at 8,000 cells/well in a collagen I 

coated 384-well plate (BD Biosciences). Compounds were added and cells were grown 

overnight in 33°C incubator with 5% CO2. Cells were fixed with formaldehyde, 

permeabilized with 0.5% Triton X-100, blocked with 0.5% BSA and stained with 1F8 

antibody from Main Biotechnology Services (1:2000). Nuclei were defined by Hoechst 

staining. Htt localization used a Cy3-labeled anti-mouse secondary antibody followed by 

PBS wash. Images were acquired using Cellomics AssayScan VTi 5.0 under a 10× or 20× 

objectives, using automatic focus every other well. Peri-nuclear staining was quantified 

using the Compartmental Analysis BioApplication and “RingSpotTotalInten” as endpoint. 

Cell viability and cell numbers were quantified using the Compartmental Analysis 

BioApplication and “ObjectPerField” as endpoint.

Norepinephrine induction assay—For the NE experiment (Suppl. Note 4), purified 

human T-cells were cultured as triplicate samples for each condition. First, an inflammatory 

response was stimulated with αCD3 and αCD28 antibodies for 30 minutes, after which cells 

were treated with drugs as indicated. After incubating for 18 hours at 37°C with 5% CO2, 

supernatants were collected and TNFα was quantitated using cytometric bead-arrays.
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In-vivo assay protocols

Rat asthma model—Brown Norway rats (n = 10/cohort) were sensitized with 

intraperitoneal ovalbumin (OVA) given on days 0, 7 and 14. Animals were treated with test 

agents by oral gavage 1 hour prior to intranasal ovalbumin (OVA) challenge for 1 hour on 

day 21. Lungs were lavaged 72 hours after exposure of OVA to quantitate total leukocytes 

and specific cell populations in bronchoaveolar lavage fluid.

Rat Pain Assay—Male Sprague Dawley rats (200–225 g) were dosed with drugs three 

times (2 days, 1 day, and 30 min) prior to the pain induction. Cohorts of 8 rats were treated 

for each treatment level, along with vehicle and diclofenac (positive control, 25 mg/kg) 

cohorts. After administering carrageenan, the average retraction force in response to a pain 

stimulus for the injected and uninjected hind paws was measured with Von Frey filaments at 

20, 40, 60, 80, and 120 min post injection. The data for both hind paws were averaged after 

subtracting a baseline for each animal from measurements on Day -2, and the area under the 

curve was integrated over the full time range.

Rat toxicity model—Cohorts of 5 male Sprague Dawley rats (Charles River 

Laboratories), with average starting body weight 178–186g, were given intraperitoneal 

doses for 10 days, the final dose given 2 hours prior to humane euthanization. Livers were 

removed and stored in an RNAlater (Ambion, Austin, TX) at 4°C. Samples were 

homogenized using TissueRuptor (Qiagen) and total RNA was isolated using the RNeasy-

Plus Mini kit (Qiagen). Equal amounts of total RNA were used for one step RT-PCR 

(QuantiTect Probe, Qiagen). Taqman Gene Expression Assays, Applied Biosystems 

reagents were used for detection of TAT and beta-actin (endogenous control) mRNA using 

the Applied Biosystems 7300 Real-Time PCR System. The TAT expression values were 

calculated using the formula relative expression = 2ΔTAT/2ΔArbp, where Δgene is the 

difference between the drug- and vehicle-treated Ct levels for that gene.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Measuring the selectivity bias. (a) Determining synergy using dose matrix data. A factorial 

dose matrix samples all mixtures of two serially-diluted single agents’ concentrations. 

Phenotypic measurements, like inhibition Z relative to vehicle-treated samples, can be 

visualized over the matrix using a color scale, and each data point be compared to expected 

values via a null model (e.g., the highest-single-agent24 or dose-additive47 model, see 

Methods) derived from the single agent data along the left and bottom edges of the matrix. 

The synergy score S = ln fX ln fY Σdoses max(0,Zdata) (Zdata − Zmodel) sums up the excess 

inhibition over the HSA model with weights to account for drug dilution factors fX,fY, and 

favor synergy at high inhibition levels. (b) Synergy can also be described using an 
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isobologram, which compares the doses along an equal-effect contour (in blue) for a chosen 

inhibition level Zcut (here 50%) to the contour (red) for dose-additivity. The combination 

index29 CI = (CX/ICX) + (CY/ICY) measures the fractional shift (black arrow) between the 

most potent mixture’s doses CX,CY and the single agents’ inhibitory concentrations 

ICX,ICY. In this example, to reach 50% inhibition, only 4 μM of Drug A and 2 μM of Drug 

B were required in combination, compared to >41 μM and >34 μM for the single agents. (c) 

Selectivity is determined from the responses in two assays (“test” and “ctrl”). Single agent 

(horizontal frames) and fixed dose ratio combination curves (diagonal frames) are extracted 

from both dose matrices. For Zcut, effective concentrations Ctest,Cctrl (top dose if agents 

don’t reach Zcut) are determined in both assays (colors match frames in matrices) for all 

extracted curves, and the selectivity index SI = log10(Cctrl/Ctest) measures potency shifts 

between assays, where SI = 1 implies a tenfold potency ratio favoring the test assay. The 

synergistic selectivity for a single combination can be described using ΔSI = SIcomb − 

SIagent or ΔCI = CIctrl − CItest based on the most selective diagonal curve and the most 

effective single agent in the test assay. (d) The selectivity bias was determined by comparing 

SI shifts across many combinations. To avoid spurious correlations due to noise, each test 

matrix was split into independent copies (see Methods), one to calculate SI and the other for 

S. The SI distributions across the screen were compared for all combinations (green 

distribution) and those with S > Scut (green), and the selectivity bias B is measured as the 

difference between the mean SI values for the two distributions. For reference, we also show 

the SI distributions of the more effective single agent in black.
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Figure 2. 
Simulations of selective synergies in Escherichia coli metabolism, averaged by functional 

category. (a) E. coli growth was simulated under aerobic (minimal acetate) and fermentation 

(minimal glucose) conditions. Inhibitors were applied by restricting the maximum flux rate 

through target enzymes, over a series of six concentrations chosen to sample each inhibitor’s 

transition to activity. The average inhibitor responses for each pathway are shown for each 

condition (diamonds), along with the average SI (squares) between both conditions. 

Combinations were simulated as a fixed-ratio series by summing the concentrations of each 

constituent inhibitor, and the average SI at Zcut = max(Ztest)/2 is displayed for each pair of 

pathways (circles). The combinations selectively highlight the citric acid cycle for aerobic 

conditions and pyruvate metabolism under fermentation. (b) A plot of S vs. SI shows a 

correlation between synergy and selectivity with the most synergistic combinations (S > 1) 

having higher-than-average SI values. (c) Comparing the SI distributions of the most 

synergistic combinations (red) to all combinations (green) and the selectivity distribution of 

the more selective inhibitor in each combination (black) shows a strong bias towards more 

selectivity for the synergies. This selectivity bias B is quantified as the difference between 

the average SI values for synergistic and unfiltered combinations. The value found here, 

Bfwd = 0.596±0.005, with Brev = 0.894±0.007 for the “reverse” aerobic – ferment 

comparison (Suppl. Note 2), represents a fourfold potency increase for the top ~1% of 

synergies.
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Figure 3. 
Selectivity bias for thirteen sets of combination data focused on six disease areas. The table 

shows the “test” and “control” assays corresponding to each comparison, the number of 

single agents Nagent or combinations Ncomb tested, the number Ncopy of combinations with 

independent replicates, and the aspect ratio “Aspec” of the agent lists that were combined. 

Also shown are the sampling “Dens” (dose matrix size, * when sparse), with the average 

activity Zagent and selectivity index SIagent across the single agents. For each screen, all pairs 

of assays were compared, in “forward” (circles, filled when aligned with a therapeutic 

objective) and “reverse” (diamonds) order relative to the assay designations listed. Each 

combination’s SI value was calculated at Zcut = max(Ztest)/2, and the top 5% of synergies 

for each test assay were used to determine a selectivity bias. Error bars represent 95% 

confidence with a sequential multiple hypothesis adjustment48 to account for all assay 

comparisons in each screen. Weighted by these errors, the consensus selectivity bias is 

0.104±0.010 (0.214±0.021 for therapeutically aligned pairs). The synergistic combinations 

have statistically more positive selectivity, with some screens showing more than threefold 

potency shifts.
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Figure 4. 
Examples of therapeutically and mechanistically selective synergies, showing the control 

(left) and test (center) matrices, along with the test isobologram (right). Selectivity is 

measured using ΔCI and ΔSI at 50% effect. (a) Ribavirin and disulfiram are each active on 

metabolic targets (inosine monophosphate dehydrogenase for ribavirin, and mitochondrial 

aldehyde dehydrogenase 2 for disulfiram) at high doses in both primary smooth muscle cell 

viability and Staphylococcus aureus proliferation assays, but the strong antibacterial synergy 

is completely absent in the human cell toxicity model. (b) In cancer cell lines, the synergy 

between camptothecin and LY 294002 (b) is stronger against lung-derived H460 than 
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Colo-205 colon cells. In the screen from which this combination was drawn, we found 

evidence of synergy in H460 for 21/32 TOP + PI3K (targeting topoisomerase with 

phosphoinositide 3 kinase) combinations tested, 12 of which had similar levels of selectivity 

over Colo-205 (data not shown), suggesting that the synergy results from coordinated 

activity on each drug’s primary target. (c) For all of our example combinations, the single 

drugs have unrelated indications or modes of action, suggesting that multi-target 

mechanisms predominate. The remaining examples are detailed in Suppl. Note 4.
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Figure 5. 
Selective synergy between glucocorticoids (GC) and tricyclic anti-depressants (TCA). (a) 

The synergy against TNFα secretion in PBMCs remains when related drugs are substituted 

(Suppl. Note 4), so the synergy operates via the primary drug targets. Moreover, 59 of 63 

combinations we have tested in this assay on these targets at sufficient concentrations were 

also synergistic (S > 5 standard errors, data not shown). (b) Mechanistically, GCs activate 

the glucocorticoid receptor (GCR) which suppresses inflammatory signaling. In response to 

stress, lymphocytes secrete catecholamine hormones, such as norepinephrine (NE), which 

suppress inflammatory signaling via beta-adrenergic receptors (ADRB2)39. TCAs block NE 

transporters (SLC6A2), which increases extracellular NE levels, with a synergistic anti-

inflammatory effect when combined with GCs40. Directly adding NE and modulating 

ADRB2 in combination with GC confirms the role of this pathway in the GC-TCA synergy 

(Suppl. Note 4). The in vivo therapeutic selectivity arises because while GCR, SLC6A2 and 

ADRB2 are co-expressed in lymphoid cells, ADRB2 is expressed 3–10 fold lower41 in 

tissues such as liver and pituitary that mediate major GC-associated adverse effects42, 

weakening the NE-mediated pathway and attenuating the GC-TCA synergy. In rats, the 

combination of nortriptyline with another GC that is widely used for asthma treatment, 

budesonide, was tested in an asthma model via ovalbumin challenge (c). The combination at 

individually sub-therapeutic doses was able to restore lung infiltration by eosinophils to 

levels seen with high-dose dexamethasone or unchallenged rats (ANOVA p < 0.05 over 
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single agents). Anti-inflammatory synergy with prednisolone was also confirmed in a rat 

pain model (Suppl. Note 4). By contrast, rat liver toxicity (d), modeled by a corticosteroid 

side effect marker tyrosine aminotransferase (TAT), showed elevated expression only for 

high dose prednisolone (ANOVA p < 0.05), while the effects at doses showing anti-

inflammatory synergy were consistent with or lower than negative controls. In vivo data are 

detailed in Tab. S8.
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