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Quantum error-correction codes would protect an arbitrary state of a multi-qubit register

against decoherence-induced errors1, but their implementation is an outstanding challenge

for the development of large-scale quantum computers. A first step is to stabilize a non-

equilibrium state of a simple quantum system such as a qubit or a cavity mode in the presence

of decoherence. Several groups have recently accomplished this goal using measurement-

based feedback schemes2–5. A next step is to prepare and stabilize a state of a composite

system6–8. Here we demonstrate the stabilization of an entangled Bell state of a quantum

register of two superconducting qubits for an arbitrary time. Our result is achieved by an

autonomous feedback scheme which combines continuous drives along with a specifically

engineered coupling between the two-qubit register and a dissipative reservoir. Similar au-

tonomous feedback techniques have recently been used for qubit reset9 and the stabilization

of a single qubit state10, as well as for creating11 and stabilizing6 states of multipartite quan-

tum systems. Unlike conventional, measurement-based schemes, an autonomous approach

counter-intuitively uses engineered dissipation to fight decoherence12–15, obviating the need
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for a complicated external feedback loop to correct errors, simplifying implementation. In-

stead the feedback loop is built into the Hamiltonian such that the steady state of the system

in the presence of drives and dissipation is a Bell state, an essential building-block state for

quantum information processing. Such autonomous schemes, broadly applicable to a variety

of physical systems as demonstrated by a concurrent publication with trapped ion qubits16,

will be an essential tool for the implementation of quantum-error correction.

Here we implement a proposal17, tailored to the circuit Quantum Electrodynamics (cQED)

architecture18, for stabilizing entanglement between two superconducting transmon qubits19. The

qubits are dispersively coupled to an open cavity which acts as the dissipative reservoir. The cavity

in our implementation is furthermore engineered to preferentially decay into a 50 Ω transmission

line that we can monitor on demand. We show, using two-qubit quantum state tomography and

high-fidelity single-shot readout, that the steady-state of the system reaches the target Bell state

with a fidelity of 67 %, well above the 50 % threshold that witnesses entanglement. As discussed

in Ref. 17, the fidelity can be further improved by monitoring the cavity output and performing

conditional tomography when the output indicates that the two qubits are in the Bell state. We im-

plemented this protocol via post-selection and demonstrated that the fidelity increased to ∼ 77 %.

Our cQED setup, outlined schematically in Fig. 1a, consists of two individually addressable

qubits, Alice and Bob, coupled dispersively to a three-dimensional (3D) rectangular copper cavity.

The setup is described by the dispersive Hamiltonian20

H/~ = ω0
Aa
†a+ ω0

Bb
†b+ ωggc c

†c− αA(a†a)2/2− αB(b†b)2/2− χAa†ac†c− χBb†bc†c, (1)
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where a, b, c (a†, b†, c†) are respectively the annihilation (creation) operators of Alice and Bob

qubits and the cavity mode respectively. Here, ω0
A and ω0

B represent Alice and Bob qubit frequen-

cies when there are no photons in the cavity, while ωggc is the cavity frequency when both qubits

are in the ground state (see Methods for experiment parameters). αA,B are the respective qubit

anharmonicities while χA and χB are dispersive couplings that are designed to be nearly equal.

The cavity linewidth κ, is smaller than χA,B, such that the system operates in the strong-dispersive

limit of cQED21, with resolved photon number selective qubit transition frequencies (ωnA and ωnB,

where n is the number of photons in the cavity). As described in Fig. 1b, by applying six con-

tinuous drives, four at qubit transitions and two at cavity transitions, an effective feedback loop

is established that forces the two qubits into the Bell state |φ−〉 ≡ (|ge〉 − |eg〉) /
√

2 with zero

photons in the cavity.

The feedback loop shown in Fig. 1c can be broken down into two parts that operate con-

tinuously and concurrently: the first is equivalent to a measurement process, and the second is

equivalent to qubit rotations conditioned on the measurement outcome. The measurement process,

embodied by two drives at the cavity frequencies, ωggc and ωeec , together with the approximately

equal χ’s, distinguishes the even-parity manifold, where the qubits are parallel, from the odd-parity

manifold (where they are anti-parallel). The odd-parity manifold is conveniently described in the

Bell basis {|φ−〉 , |φ+〉} containing our target state |φ−〉. The drives, together with cavity dissi-

pation, can be regarded as implementing a continuous projective measurement of the state of the

two qubits that leaves the odd-parity manifold unaffected 22, 23. The drives are resonant when the

qubits are in |gg〉 or |ee〉, such that an average of n̄ photons at ωggc or ωeec continuously traverse
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the cavity every lifetime 1/κ. On the other hand when the qubits have odd-parity, both drives are

far off-resonance since χA, χB � κ, thus leaving the cavity almost empty of photons. As a result,

the average number of photons in the cavity, the pointer variable “observed” by the environment1,

projects the even-parity manifold into |gg〉 and |ee〉, and distinguishes them from the odd-parity

manifold which is left unperturbed.

The second part of the feedback loop utilizes the photon-number splitting (quantized light

shifts) of the qubit transitions in the strong dispersive limit to implement conditional qubit rota-

tions. Two drives are applied selectively at the zero-photon qubit frequencies ω0
A and ω0

B, with

amplitudes set to give equal Rabi frequencies Ω0 ∼ κ� χA, χB. The phases of these drives set,

by definition, the x-axis of each qubit’s Bloch sphere. The action of these drives is described by

the effective unitary rotation operator
(
a+ a†

)
⊗ IB + IA ⊗

(
b+ b†

)
on the two qubit subspace,

where IA, IB are the identity matrix. Therefore, they rotate the undesired Bell state |φ+, 0〉 into

the even-parity manifold, while the desired one |φ−, 0〉 is left untouched. Thus, any population in

|φ+, 0〉 is eventually pumped out by the combined action of the zero-photon qubit drives and the

cavity drives.

To re-pump population into the target Bell state |φ−, 0〉, two more drives with equal Rabi

frequencies Ωn are applied at ω0
A − n (χA + χB) /2 and ω0

B − n (χA + χB) /2 which are near the

n-photon qubit frequencies ωnA and ωnB shown in Fig. 1a. The phase of the drive on Alice is set

to be along the x-axis of its Bloch sphere while that on Bob is set to be anti-parallel to its x-axis

resulting in the effective unitary rotation operator
(
a+ a†

)
⊗ IB − IA ⊗

(
b+ b†

)
(see Methods
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for details on the phase control of qubit drives). Thus, as long as n ≈ n̄, these two drives shuffle

population from |gg, n〉 and |ee, n〉 into the state |φ−, n〉. The latter state is unaffected by the cavity

drives and therefore decays irreversibly at a rate κ to the desired target Bell state |φ−, 0〉.

Thus, when all six drives are turned on, the continuously operating feedback loop forces the

two qubits into |φ−〉 even in the presence of error-inducing T1 and T2 processes. As shown in

Extended Data Fig. 4, simulations indicate that the drive amplitudes should be optimally set to

give Rabi frequencies Ω0 ≈ Ωn ≈ κ/2 and n̄ ≈ 3 − 4. With these parameters, the two qubits

are expected to stabilize into the target at a rate of order κ/10, which can be understood from the

successive combination of transition rates, each of which is of order κ. With the experimental

parameters in our implementation, the feedback loop is expected to correct errors and stabilize the

two qubits to |φ−〉 with a time constant of about 1 µs.

The fidelity of the stabilized state to the target |φ−〉 is determined by the competition between

the correction rate κ/10 and the decoherence rates ΓA,B1 = 1/TA,B1 and ΓA,Bφ = 1/TA,Bφ that

take the Alice-Bob system out of the target. Thus, to achieve a high-fidelity entangled state, the

system-reservoir parameters χA, χB and κ have to be engineered simultaneously while maintaining

κ � Γ = max
(

ΓA,B1 ,ΓA,Bφ

)
. In our present experiment, we have built on recent advances in

the coherence of superconducting qubits achieved by using 3D cavities24 to obtain κ/Γ ∼ 100,

satisfying this requirement.

The protocol of the experiment consists of applying the six continuous drives for a length

of time TS (see Fig. 2a) and verifying the presence of entanglement by performing two-qubit
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state tomography. State tomography is realized by applying one out of a set of 16 single-qubit

rotations followed by joint qubit readout25 implemented here using single-shot measurements. As

described in Fig. 1a, Extended Data Fig. 1 and Methods, the dispersive joint two-qubit readout is

implemented by pulsing the cavity at ωggc and recording the cavity output for 240 ns using a nearly

quantum-limited microwave amplification chain. The first amplifier in the chain is a Josephson

Parametric Converter (JPC) operated as a phase-preserving amplifier26, which performs single-shot

projective readout of the state of the two qubits with a fidelity above 96 % in our experiment (see

Extended Data Fig. 2 and Methods). The averages of the two-qubit Pauli operators are calculated

by repeating the tomography 5× 105 times resulting in a statistical imprecision of about 0.2 %.

Tomography results as a function of the duration of the stabilization interval TS are illustrated

in Fig. 2b, showing the expected convergence of the system to the Bell-state |φ−〉. For TS = 0,

the Pauli operator averages 〈ZI〉 = 〈IZ〉 = 0.86 and 〈ZZ〉 = 0.72 indicating that the system is

mostly in |gg〉 when no drives are present. With increasing TS , the single-qubit averages tend to

zero, while the two-qubit averages 〈ZZ〉, 〈XX〉 and 〈Y Y 〉 stabilize at negative values, whose sign

is characteristic of |φ−〉. The autonomous feedback loop operation was verified with snapshots

taken up to TS = 500 µs, indicating that the steady-state of the two qubits remains stable for times

well in excess of the time scales of decoherence processes.

The fidelity F of the measured state to the target |φ−〉 is F = Tr (ρtargetρmeas), where

ρtarget = |φ−〉 〈φ−| and ρmeas is obtained from the measured set of two-qubit Pauli operators. As

shown in Fig. 2c, F stabilizes to 67 %, well above the 50 % threshold that indicates the presence of
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entanglement. This presence of entanglement is also demonstrated by the non-zero concurrence27

C = 0.36. The exponential rise of F with a time constant of 960 ns (see Fig. 2c inset), approxi-

mately 10 cavity lifetimes, is in good agreement with the expected 1 µs correction time constant

of the autonomous feedback loop.

As expected, the steady-state reached by the autonomous feedback loop is impure. By ana-

lyzing the density-matrix constructed from tomography, we calculate that it contains 67 % weight

in |φ−〉 〈φ−|, while the weights in the undesired states |gg〉 〈gg|, |ee〉 〈ee| and |φ+〉 〈φ+| are 15 %,

10 % and 8 % respectively. However, the reservoir (cavity output) contains information on the

qubits’ parity that can be exploited. Thus the state fidelity can be conditionally enhanced by pas-

sively monitoring this output and performing tomography only when the loop indicates that the

qubits are in an odd-parity state (eliminating weights in even-parity states |gg〉 〈gg| and |ee〉 〈ee|).

A version of this protocol, shown in Fig. 3, is implemented in essence by passively recording the

cavity output at the ωggc frequency for the last 240 ns of the stabilization period (labeled M1). A

reference histogram (Fig. 3b) for M1 shows Gaussian distributions separated by two standard de-

viations, allowing us to remove any |gg〉 〈gg| present in the ensemble at the end of the stabilization

period by applying an exclusionary threshold I thm /σ. We again perform single-shot tomography

(M2) after 100 ns and post-select M2 for outcomes M1 = GG, in the process keeping ' 1 % of

counts. This conditioned tomography improves F to 77 % (C = 0.54) in good agreement with a

simple estimate of 67/(67 + 10 + 8) = 79 % when the weight of |gg〉 〈gg| is removed. Addition-

ally monitoring the cavity output at ωeec could straightforwardly improve the conditioned fidelity

to 90 %, achievable through modest improvements of the Josephson amplifier bandwidth. Thus,
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in addition to fully autonomous Bell state stabilization, we have demonstrated a proof-of-principle

that real-time electronics monitoring can significantly increase the Bell-state purity.

We now address the basic imperfections of our experiment which determine the current value

of the steady-state, unconditioned infidelity of 1 − 0.67 = 0.33. First, the fidelity measured by

tomography is ' 0.05 less than the theoretical steady-state value during the stabilization period,

due to the 500 ns wait time before tomography, where the state decays under the influence of T1 and

Tφ. This waiting period, introduced to ensure that the single-qubit rotations during tomography are

not perturbed by residual cavity photons, can be reduced with conditioned tomography (= 100 ns,

see Fig. 3a) as there will be fewer cavity photons when the qubits are in the target state. As shown

in Methods, due to this waiting period, the fidelity measured by tomography is not expected to

be affected by extraneous systematic errors in calibration of single-qubit rotations (Extended Data

Fig. 3). Furthermore, we also show that the fidelity is unaffected by the measurement infidelity

of the readout. Instead, the sources of error are intrinsically determined by the environmental

couplings inherently part of the system and its coupling to the reservoir.

One would naturally suppose that mismatch between χA and χB would be a dominant cause

for infidelity through measurement-induced dephasing23, but simulations (see Methods) indicate

that the present 10 % mismatch contributes only 0.02 to the infidelity. This robust property of the

feedback loop is achieved by setting the cavity drives on ωggc and ωeec transitions, which mitigate

the measurement-induced dephasing, compared to the more straightforward irradiation between

ωgec and ωegc proposed in usual parity measurement8, 22, 23. The dominant mechanism for infidelity
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turns out to be the T1 and Tφ processes which contribute 0.12 and 0.08, respectively. The severity of

these processes may actually be enhanced in the presence of cavity drives which tend to shorten T1

in transmon qubits28. The remaining infidelity can possibly be attributed to this shortening of T1,

in combination with the presence of |f〉 (second excited state) population in each qubit due to finite

qubit temperature. Overall, the dominant sources of infidelity (T1, Tφ) are likely to be mitigated in

future experiments by expected improvements in qubit coherence (see Methods), which will allow

a larger ratio κ/Γ and thus fidelities in excess 90 %.

In conclusion, we have demonstrated the stabilization of two-qubit entanglement that makes

a Bell state available for indefinite time using a completely autonomous protocol. While the fidelity

to the Bell state doesn’t presently exceed that needed for Bell’s inequality violation, straightfor-

ward improvements to the setup should allow it17. In addition to sufficiently coherent qubits, the

resources required, consisting of matching dispersive couplings and six pure tones sent through the

same input line, are modest in comparison with the hardware that would be needed in a conven-

tional measurement-based scheme to stabilize |φ−〉. While the pure tones can be generated using

microwave modulation techniques from three sources only, the tolerance to imperfections in the

matching of the couplings amounts to about 10 %, easily achieved in superconducting qubit design.

A primary virtue of our protocol is that it can be extended to larger systems as it only assumes that

(a) the system Hamiltonian can be precisely engineered (a general requirement for all quantum

information implementations) and (b) that abundant, off-the-shelf room temperature microwave

generators are available. Moreover, the protocol can take advantage of any available high-fidelity

readout capability by passively monitoring the cavity output(s), enabling purification by real-time
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conditioning as demonstrated by our 30 % reduction in state infidelity using a Josephson amplifier.

Therefore autonomous feedback is uniquely suited to take advantage of all the state-of-the-art

hardware available, and is an ideal platform to construct more complicated protocols. Possible av-

enues for future experiments include implementing a “compound” Bell-state stabilization protocol,

using a four-qubit quantum register operating two-pairwise autonomous stabilization stages com-

plemented by an entanglement distillation step29. The quantum engineering concept implemented

in our experiment could also be applied to autonomously stabilize a coherent two-state manifold of

Schrödinger cat states of a superconducting cavity30, thus possibly achieving a continuous version

of quantum error-correction of a qubit.

Methods summary

Alice and Bob are single-junction 3D transmons with qubit frequencies ω0
A/2π = 5.238 GHz,

ω0
B/2π = 6.304 GHz, anharmonicities αA/2π = 220 MHz, αB/2π = 200 MHz, relaxation

times TA1 = 16 µs, TB1 = 9 µs and pure dephasing times TAφ = 11 µs, TBφ = 36 µs. They

are coupled to a rectangular cavity (ωggc /2π = 7.453 GHz) with nearly equal dispersive couplings

χA/2π = 6.5 MHz, χB/2π = 5.9 MHz, that are larger than the cavity linewidth, κ/2π = 1.7 MHz.

The setup is mounted to the base of a dilution refrigerator (Extended Data Fig. 1) and controlled

using heavily attenuated and filtered microwave lines. The room temperature microwave setup gen-

erates all microwave drives in a manner which is insensitive to drifts in generator phases. Single-

shot joint readout with fidelity of 96 % was performed using a JPC (Extended Data Fig. 2). We
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checked by performing tomography of Clifford states that the measured fidelity of the Bell-state

was not significantly altered by systematic errors in single-qubit rotations and measurements (Ex-

tended Data Fig. 3). The choice of drive amplitudes used for Bell-state stabilization was guided by

Lindblad master equation simulations (Extended Data Fig. 4). These simulations also provided an

error-budget analysis for the steady state infidelity suggesting that the dominant source of infidelity

is the finite T1 and Tφ.
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Figure 1: Bell state stabilization : setup schematic and frequency landscape of au-

tonomous feedback loop. a. The qubits (Alice, Bob) are coupled to the fundamental mode of a 3D

cavity. Six continuous drives applied to the cavity input stabilize the Bell state |φ−, 0〉. The cavity

output is schematically shown to jump between low and high amplitude when the qubits are in the

desired Bell state or not. The output is monitored by a quantum-limited amplifier (JPC). b. Spectra

of the qubits and cavity coupled with nearly equal dispersive shifts (χA, χB). Cavity linewidth is κ.

Colors denote transitions which are driven to establish the autonomous feedback loop. c. Effective

states of the system involved in the feedback loop. Qubit states consist of the odd-parity states in

the Bell basis {|φ−〉 , |φ+〉} and the even-parity computational states {|gg〉 , |ee〉}. Cavity states,

arrayed horizontally, are the photon number basis kets |n〉. Sinusoidal double lines represent the

two cavity tones whose amplitudes create on average n̄ photons in the cavity when the qubits are
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in even-parity states. The cavity level populations are Poisson distributed with mean n̄ and we just

show |n〉 such that n ≈ n̄. Straight double lines represent four tone on qubit transitions. Collec-

tively, the six tones and the cavity decay (decaying sinusoidal lines) drive the system towards the

“dark” state |φ−, 0〉, which builds up a steady-state population.
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Figure 2: Convergence of two qubit-state to the target Bell state. a. The six drives are

turned on during the stabilization period for time TS . Next, the drives are turned off and the system

is left idle for 500 ns, allowing any remaining cavity photons to decay away. Finally, two-qubit

tomography is performed using single-qubit rotations followed by single-shot joint readout. The

system is then allowed to reach thermal equilibrium by waiting at least 5T1 before repetition. b.

Time variation of the relevant Pauli operator averages, showing the system’s evolution from ther-
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mal equilibrium (nearly |gg〉) towards |φ−〉. The system remains in this steady-state for arbitrarily

long times, as demonstrated by data acquired at TS = 50, 100 and 500 µs. c. Fidelity (F ) to

the target state |φ−〉 versus stabilization time TS . The dashed line at 50 % is the entanglement

threshold. The fidelity converges to 67 % with a time constant of about 10 cavity lifetimes, in good

agreement with the theoretical prediction (see inset showing F from TS = 0 to 10 µs as red circles,

with fit to exponential dependence as blue line).
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Figure 3: Fidelity improved by monitoring the feedback loop. a. Pulse sequence con-

sisting of a TS = 10 µs period followed by two-qubit tomography. Here, the cavity output at ωggc

is recorded during the last 240 ns of the stabilization period (M1). The outcomes obtained during

M1 are used to condition the tomography in post-processing. After waiting 100 ns for any cav-

ity photons to decay away, two-qubit state tomography is performed using a second 240 ns long

measurement (M2) similar to that used in the unconditioned tomography (Fig. 2). b. Reference

histogram for M1, with qubits prepared in thermal equilibrium (denoted as GG) and after a π pulse

on Alice (denoted as GG). The standard deviation σ of the Gaussian distributions scales the hori-

zontal axis of measurement outcomes Im. c. Complete set of Pauli operator averages measured by

tomography without conditioning, as in Fig. 2, showing a fidelity of 67 % to |φ−〉. d. Tomography

conditioned on M1 being GG, that is outcomes Im/σ during M1 < I thm /σ = −2.2, resulting in an

increased fidelity of 77 %.
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Methods

1 Qubit-cavity implementation

The two transmon qubits were fabricated with double-angle evaporated Al/AlOx/Al Josephson

junctions, defined using the bridge-free e-beam lithography technique31, 32, on double-side-polished

3 mm by 10 mm chips of c-plane sapphire. They were coupled to the TE101 mode of a rectangular

copper cavity. The room-temperature junction resistances, (Alice: 7.5 kΩ , Bob: 5.6 kΩ), antenna

pad dimensions (Alice: 1.4 mm by 0.2 mm, Bob: 0.68 mm by 0.36 mm) and cavity dimensions

(35.6 mm by 21.3 mm by 7.6 mm) were designed using finite-element simulations and black-

box circuit quantization analysis20 to give Alice and Bob qubit frequencies ω0
A/2π = 5.238 GHz,

ω0
B/2π = 6.304 GHz, qubit anharmonicities αA/2π = 220 MHz, αB/2π = 200 MHz, cav-

ity frequency ωggc /2π = 7.453 GHz, and nearly equal dispersive couplings χA/2π = 6.5 MHz,

χB/2π = 5.9 MHz. The cavity was coupled to input and output transmission lines with quality

factors QIN ∼ 100, 000 and QOUT = 4, 500 such that its linewidth, κ/2π = 1.7 MHz, was set

predominantly by the QOUT .

As shown in the experiment schematic (Fig. ED1), the cavity and the JPC setup was mounted

to the base-stage of a cryogen-free dilution refrigerator (Oxford Triton200). As is common practice

for superconducting qubit experiments, the cavity and JPC were shielded from stray magnetic

fields by aluminum and cryogenic µ-metal (Amumetal A4K) shields. The input microwave lines

going to the setup were attenuated at various fridge stages and filtered using commercial 12 GHz
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reflective, low-pass and home-made, lossy Eccosorb filters. The attenuators and filters serve to

protect the qubit and cavity from room temperature thermal noise and block microwave or optical

frequency signals from reaching the qubit. The output line of the fridge consisted of reflective and

Eccosorb filters as well as two cryogenic isolators (Quinstar CWJ1019K) at base for attenuating

noise coming down from higher temperature stages. In addition, a cryogenic HEMT amplifier

(Low Noise Factory LNF-LNC7 10A) at the 3 K stage provided 40 dB of gain to overcome the

noise added by the following room-temperature amplification stages.

Relaxation times were measured to be TA1 = 16 µs, TB1 = 9 µs and coherence times

measured with a Ramsey protocol were TA2 = 8 µs, TB2 = 12 µs, resulting in dephasing times

TAφ = 11 µs, TBφ = 36 µs. Black-box quantization analysis of the qubit-cavity system suggest that

the relaxation times were limited by the Purcell effect33. Coherence times did not improve using

an echo pulse suggesting that they were limited by thermal photons present in the fundamental and

higher modes of the cavity34 as well as non-zero qubit temperature (∼ 75 mK).

2 Control of stabilization drives

The room-temperature setup must generate and control microwave tones in a manner such that

the experiment is insensitive to drifts in the phase between microwave sources over the time-scale

of the experiment. While all sources are locked to a common rubidium frequency standard (SRS

FS725), they drift apart in phase on a time-scale of a few minutes. Therefore, for example, the

four Rabi drives on the qubits during Bell state stabilization cannot be produced by four separate
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sources as the phase of the drives need to be controlled precisely. The phase drift was eliminated

by using one microwave source per qubit and generating the desired frequencies using single-

sideband modulation (see Extended Data Fig. 1). The qubit drives were produced by sources

fAlice and fBob (Vaunix Labbrick LMS-802), set 100 MHz below the respective zero-photon qubit

frequencies. For Bell-state stabilization, these tones were mixed by IQ mixers (Marki IQ4509)

with 100 MHz and 82 MHz sinewaves produced from a Tektronix AWG5014C arbitrary wave-

form generator (AWG). The mixer outputs at the desired frequencies can be expressed mathe-

matically as A0
Acos

(
ω0
At+ φarb

A + φ0
A

)
, A0

Bcos
(
ω0
Bt+ φarb

B + φ0
B

)
, AnAcos

(
ωnAt+ φarb

A + φnA
)

and

AnBcos
(
ωnBt+ φarb

B + φnB
)
. Here φarb

A , φarb
B are the arbitrary phases of the microwave sources fAlice

and fBob which can drift during an experiment, while φ0
A, φ0

B, φnA and φnB are set by the AWG as

well as the length of cables going to the qubit/cavity system, and are therefore fixed over the course

of the experiment. The relationship between the drive phases required for the stabilization protocol

is φ0
A−φnA = φ0

B−φnB +π. This is achieved in experiment by fixing φ0
A, φnA, φ0

B and sweeping φnB.

The cavity drives for stabilization were generated by two sources (Agilent E8267 and N5183),

fGG
c set to ωggc and fEE

c set to ωeec = (ωggc − χA − χB). These drives could potentially also be pro-

duced using a single microwave source and single-sideband modulation, however this was not done

as control over the phase of these drives was not important for the stabilization protocol.
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3 Joint-readout implementation with JPC

The joint-readout of the qubits used for tomography, was implemented with high-fidelity single-

shot measurements35, by pulsing the cavity input for 500 ns using the source fGG
c (msmt) (Agilent

N5183) set at ωggc (see Fig. ED1). The transmitted microwave pulse was directed via two circulators

(Quinstar CTH1409) to the JPC amplifier, reflected with gain, then amplified at 3 K followed by

further signal processing at room temperature. The JPC was biased at ωggc to provide a reflected

power gain of 20 dB in a bandwidth of 6 MHz. A noise-rise of 6 dB was recorded when the

amplifier was on versus off implying that 80 % of the noise measured at room-temperature was

amplified quantum fluctuations originating from the base-stage of the fridge.

The circulators also provide reverse-isolation which prevents amplified quantum fluctuations

output by the JPC from impinging on the cavity and causing dephasing. In our experiment, the

T2 of the qubits was found to reduce to 3 µs when the amplifier was turned on, suggesting that

either this reverse-isolation was insufficient or that the pump tone was accidentally aligned with a

higher mode of the cavity. Therefore, the amplifier was turned on 100 ns before the cavity pulse

was applied and turned off 1 µs after the cavity rung down. This pulsing of the JPC ensured that

the excess dephasing was absent during the stabilization period of the experiment described in the

main text. Rather, it was present only during the tomography phase, when it was less important.

The output of the fridge at ωggc had to be shifted to radio-frequencies (< 500 MHz) before

it could be digitized using commercial hardware. This processing was performed in a manner

that was insensitive to drifts in digitizer offsets and generator phases over the timescale of the
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experiment. As shown in Fig. ED1, the fridge output was demodulated using an image-reject mixer

(Marki IRW0618) with a local oscillator (fGG
c (msmt)+50 MHz, Agilent N5183), set 50 MHz above

fGG
c (msmt), to produce a signal centered in frequency domain at 50 MHz. A copy of the cavity

input that did not pass through the dilution refrigerator was also demodulated to give a reference

copy for comparison. The signal and reference were digitized (in an analog-to-digital converter

Alazar ATS9870) and finally digitally demodulated in the PC to give in-phase and quadrature

signals (I(t), Q(t)). This room-temperature analog and digital signal processing ensured that the

measured (I(t), Q(t)) were insensitive to drifts in digitizer offsets and generator phases.

A 240 ns section of the cavity response after ring-up was averaged to give a measurement

outcome (Im, Qm). Reference histograms along the Im axis are shown in Fig. ED2a. These ref-

erence histograms were produced using qubits initialized in |gg〉, by a heralding measurement36,

with a fidelity 99.5 %. The histogram labeled GG was recorded using this initialized state, while

that labeled GG was recorded after a π pulse on Alice. Similar GG histograms could be produced

after a π pulse on Bob or on both qubits. The two histograms are fitted with Gaussian distri-

butions; the GG histogram has a standard deviation that is smaller by approximately a factor of

0.75 smaller, due to amplifier saturation, resulting in a larger amplitude. However, the area under

each histogram is identical, as expected. The different standard deviations imply that the threshold(
I thm /σ

)
distinguishing outcomes associated with GG from those associated with GG can not be

set symmetrically between the two distributions. Rather, I thm /σ = 5, shifted towards GG, ensuring

that the error induced by the overlap of the distributions are equal. Since the Gaussians are sepa-

rated by 5.5 standard deviations, the indicated threshold would imply a readout fidelity of 99.5 %
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calculated from the overlap of the distributions.

These well-separated Gaussian distributions indicate that the readout implements a close to

ideal measurement of the observable |gg〉 〈gg|. However, excess counts are observed in GG when

the qubits are prepared in |gg〉 and vice-versa, due to T1 events as well as transitions induced by the

measurement tone. These errors reduce the fidelity from that calculated simply from the overlap of

the two distributions. Thus, the total measurement fidelity of the observable |gg〉 〈gg|, summarized

by the diagram in Fig. ED2b, is found to be 96 % for the state |gg〉 and 97 % for states |ge〉, |eg〉

and |ee〉.

4 Calibration of systematic errors in tomography

Standard two-qubit tomography is performed by applying one out of a set of four single-qubit

rotations (Id, Rx(π), Rx(π/2), Ry(π/2)) on each qubit followed by the readout of the observable

|gg〉 〈gg|25, 37. To implement these rotations, the AWG shapes a 100 MHz sinewave with a 6σ long

Gaussian envelope having σ = 12 ns and DRAG correction38, 39. The output of the IQ mixers

(Fig. ED1) are thus Gaussian pulses resonant on the zero-photon qubit transition frequencies. The

resulting set of 16 measured observables are expressed in the Pauli basis and the Pauli operator

averages are calculated by matrix inversion. The density matrix constructed from the Pauli operator

averages is then used to calculate the fidelity of the measured state to a desired target, as described

in the main text.

The ability of the tomography to faithfully represent the state of the two qubits is limited by
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systematic errors in the readout, in single-qubit rotations and due to qubit decoherence. While these

errors have been individually reduced below a percent in superconducting qubit experiments40,

they are in the few percent range in our system due to insufficient combined optimization. We

have estimated a worst-case combined effect of these errors on the tomography by preparing the

qubits in one of 36 possible two-qubit Clifford states and then performing tomography to extract

the fidelity to the target state. The fidelity of the measured state to the target, shown in Fig. ED3,

varies from a maximum of 94 % for the state |−Z,−Z〉 which is least susceptible to errors from

relaxation and decoherence, to a minimum of 87 % for the state |+Y,+Z〉 which is among the

most susceptible. The average fidelity of 90 % across all 36 states is in good agreement with that

expected from the aggregate of few percent errors arising from readout, rotations and decoherence.

This substantially higher fidelity than the maximum fidelity to the Bell-state we estimate in the

main text, leads us to believe that systematic errors in the tomography do not significantly alter the

maximum measured fidelity of 77 % to |φ−〉.

5 Simulation of the stabilization protocol

The stabilization protocol consists of 6 drives whose amplitudes need to be optimized for maximum

fidelity. We now describe simulations which suggest that this is not such a daunting task as the

continuous-drive protocol is robust against modest errors in the amplitudes. As described in the

theory proposal17, the dynamics of the system comprising two qubits, coupled to the cavity (the

reservoir) in the presence of drives, qubit decay and qubit dephasing can be simulated using the
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Lindblad master equation

d

dt
ρ(t) = − i

~
[H(t),ρ(t)] + κD[a]ρ(t) +

∑
j=A,B

(
1

T j1
D[σj

−]ρ(t) +
1

2T jφ
D[σj

z]ρ(t)

)
,

where

H(t) =

(
χA

σA
z

2
+ χB

σB
z

2

)
a†a + 2εc cos

(
χA + χB

2
t

)(
a + a†

)
+ Ω0

(
σA
x + σB

x

)
+Ωn

(
e−in

χA+χB
2

t
(
σA

+ − σB
+

)
+ c.c.

)
,

is the Hamiltonian of the driven system in the rotating frame of the two qubits (ω0
A, ω0

B) and the

cavity mode ({ωggc + ωeec } /2). The qubits are considered to be perfect two-level systems rather

than anharmonic oscillators assumed in the main text, and therefore we use Pauli operators σz, σx,

σ+ = σx + iσy. The qubit dephasing rate is 1/TA,Bφ = 1/TA,B2 − 1/2TA,B1 , while the Lindblad

super-operator is defined for any operator O as D[O]ρ = OρO† − 1
2
O†Oρ − 1

2
ρO†O. εc is the

amplitude of the drive on the cavity which is taken equal to κ
√
n̄/2 where n̄ is the number of

photons circulating in the cavity. The Lindblad equation is solved numerically for ρ(t) assuming

ρ(0) = |gg〉 〈gg|. The steady-state fidelity to |φ−〉 is estimated as Tr ((|φ−〉 〈φ−| ⊗ Ic)ρ(∞)). The

system was empirically found to have reached steady-state at t = 10 µs, so ρ(∞) is taken to be

ρ(10 µs).

The drive amplitudes are swept in the simulation to optimize fidelity; a representative result

shown in Fig. ED4 for our system characteristics, indicates that a broad range of cavity drive

amplitudes above 3 photons and Rabi drive amplitudes above κ/2 should lead to fidelities around

70 %. The dependence of the fidelity on drive amplitudes can be qualitatively understood as

follows. As discussed in the main text, the two cavity drives perform a quasi-parity measurement
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of the state of the qubits. The parity measurement rate is n̄κ/2 for χA, χB � κ, which increases

with cavity drive amplitude. Thus the fidelity is smaller at low n̄ due to the slow measurement of

parity compared with the error rate induced by decoherence. On the other hand, the fidelity drops

at high n̄ due to the unwanted dephasing between |φ−〉 and |φ+〉 induced by the mismatch between

χA and χB. Next, we see that the Rabi rates required for highest fidelity increase with n̄. This

effect arises from a quantum Zeno-like competition41 between the parity measurement which pins

the qubits in the odd or even parity subspaces and the Rabi drives that try to induce transitions

between these subspaces. The ratio of the rates of these processes is the quantum Zeno parameter,

which must not be too large in order to ensure that the photon number selective Rabi drives correct

the system fast enough. For our optimal parameters of n̄ = 3 and Ω0 = Ωn = κ/2, the quantum

Zeno parameter is 3, not much greater than 1. In this intermediate regime, the feedback loop does

not respond to errors through fully resolved discrete quantum jumps between the various states,

but rather through a quasi-continuous evolution. Moreover as seen in Fig. ED4, this continuous

feedback strategy is insensitive to small errors in setting the drive amplitudes, a favorable quality

for the experimental realization.

In the experiment, the drive amplitudes for the cavity and zero-photon qubit transitions were

pre-calibrated with Ramsey and Rabi experiments so that they could be set to n̄ = 3, Ω0 = κ/2.

On the other hand, Ωn and the phase of the n-photon Rabi drives can not be easily calibrated;

instead they were individually swept till the fidelity was maximized. As a final optimization, n̄

and Ω0 were also swept; the fidelity improved by 1–2 % for n̄ = 3.7 and Ω0 = κ/2, marginally

different from the originally chosen parameters. Overall, we found that the drive amplitudes could
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be varied by about 20 % without reducing the fidelity by more than 1 %. Thus, this result as well

as the good agreement for the steady-state maximum fidelity of 67 % indicates that the Lindblad

simulation captures most of the physics of our experiment.

6 Sources of steady-state infidelity

The Lindblad simulation provides an error budget analysis for the steady-state infidelity, indicat-

ing directions for improvement. We first set χA = χB = 5.9 MHz and T1 = T2 = ∞, and then

individually introduce the imperfections into the simulation. The ideal fidelity with drive ampli-

tudes n̄ = 3, Ω0 = Ωn = κ/2 is 97 %, limited by the finiteness of n̄. Introducing the ∼ 10 % χ

mis-match, reduces this fidelity by only 2 %, indicating the robustness of the protocol to the dif-

ference between χA and χB. On the other hand, individually adding T1 and Tφ processes reduces

the fidelity by 12 % and 8 % respectively. Thus, we find that the dominant sources of infidelity are

the decoherence processes inherent to the qubits and their coupling to the environment.

The T1 of the qubits are believed to be Purcell-limited33 (implying κT1 = constant) and

potentially could be a factor of 10 longer in the 3D cQED architecture24. However, this improve-

ment cannot be achieved by reducing κ, as that would concurrently reduce the feedback correction

time, and thus the steady-state fidelity. Instead, T1 must be improved using a Purcell filter42, which

results in a larger κT1 and thus an overall improvement to the fidelity. Such a filter has been im-

plemented in the 3D architecture in our group recently and will be an immediate upgrade to the

current setup.
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The current limit on Tφ is believed to be set by dephasing arising from thermal photons in

the fundamental and higher modes of the cavity. This dephasing is given by κTφ ' 1/nth, where

nth is the thermal occupancy of the cavity modes. The calculated nth = 10−2 to give our T2, can

be reduced by at-least an order of magnitude34, allowing larger κTφ and thus an improved fidelity.

Other sources of infidelity are ∼ 4 % |f〉 (second excited states) population of the qubits

due to finite temperature, as well as undesired qubit transitions induced by the cavity drives28 that

shorten T1. The |f〉 state population could be reduced in future experiments by additional drives on

the |e〉 ↔ |f〉 transitions. On the other hand, the T1 shortening remains an insufficiently understood

effect which requires further investigation. Nevertheless, these effects are not likely to limit the

fidelity by more than 10 %.
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Extended Data Figure 1: Experiment schematic The qubit-cavity setup as well as the

JPC amplifier is mounted on the base stage of a dilution refrigerator (bottom of diagram) which is

operated below 20 mK. The room-temperature setup consists of electronics used for qubit control

(top left) and for qubit measurement (top right). The experiment is controlled by an arbitrary

waveform generator (AWG) which produces analog waveforms and also supplies digital markers

(not shown) to the pulsed microwave sources. The drives for stabilization and qubit control are

generated from four microwave sources in the present experiment though the two cavity drives fGG
c
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and fEE
c could be produced in principle from the same source. These drives were combined with a

measurement drive and sent through filtered and attenuated lines to the cavity input at the base of

the fridge. The cavity output is directed to the signal port of a JPC, whose idler is terminated in a

50 Ω load. The JPC is powered by a drive applied to its pump port. The fridge input labeled “for

JPC tuning” is used solely for initial tune up and is terminated during the stabilization experiment.

The cavity output signal is amplified in reflection by the JPC and then output from the fridge after

further amplification. The output signal is demodulated at room temperature and then digitized by

an analog-to-digital converter along with a reference copy of the measurement drive.
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Extended Data Figure 2: Single-shot readout of the observable |gg〉 〈gg|. a. Histogram of

measurement outcomes recorded by the projective readout used for tomography. Outcome Im = 0

implies that no microwave field was received in the I quadrature for that measurement. Blue dots

histogram labeled GG was recorded with the qubits initially prepared in |gg〉 with a fidelity of

99.5 %. The red dots histogram labeled GG was recorded after identical preparation followed by

a π-pulse on Alice. Solid lines are Gaussian fits. The horizontal axis of measurement outcomes

Im is scaled by the average of the standard deviations of the two Gaussians, showing 5.5 standard

deviations between the centers of the two distributions. Dashed line indicates threshold that distin-

guishes GG from GG: an outcome Im > I thm is associated with GG while Im < I thm is associated

with GG. b. Summary of the fidelity of a single projective readout of the state of the two qubits

assuming the separatrix I thm /σ = 5
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Extended Data Figure 3: Calibration of systematic errors in tomography. Fidelity of

two-qubit Clifford states measured by tomography identical to that used in the Bell state stabiliza-

tion protocol. Clifford states are prepared by starting in |gg〉with fidelity of 99.5 % followed by in-

dividual single-qubit rotations.The fidelity varies from a maximum of 94 % for the state |−Z,−Z〉,

to a minimum of 87 % for the state |+Y,+Z〉, averaging 90 % over the 36 states (dashed line).
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Extended Data Figure 4: Predicted fidelity to |φ−〉 as a function of drive parameters n̄

and Ωn under the conditions of the present experiment. Ω0 is taken to be κ/2 in this simula-

tion. A broad distribution of parameter values resulting in a fidelity of about 70 %, indicates the

robustness of the autonomous feedback protocol to variations in the drives.
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