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The global distribution and burden of dengue
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Dengue is a systemic viral infection transmitted between humans
by Aedes mosquitoes1. For some patients, dengue is a life-threaten-
ing illness2. There are currently no licensed vaccines or specific
therapeutics, and substantial vector control efforts have not
stopped its rapid emergence and global spread3. The contemporary
worldwide distribution of the risk of dengue virus infection4 and its
public health burden are poorly known2,5. Here we undertake an
exhaustive assembly of known records of dengue occurrence world-
wide, and use a formal modelling framework to map the global
distribution of dengue risk. We then pair the resulting risk map
with detailed longitudinal information from dengue cohort studies
and population surfaces to infer the public health burden of den-
gue in 2010. We predict dengue to be ubiquitous throughout the
tropics, with local spatial variations in risk influenced strongly by
rainfall, temperature and the degree of urbanization. Using car-
tographic approaches, we estimate there to be 390 million (95%
credible interval 284–528) dengue infections per year, of which 96
million (67–136) manifest apparently (any level of disease severity).
This infection total is more than three times the dengue burden
estimate of the World Health Organization2. Stratification of our
estimates by country allows comparison with national dengue re-
porting, after taking into account the probability of an apparent
infection being formally reported. The most notable differences
are discussed. These new risk maps and infection estimates provide
novel insights into the global, regional and national public health
burden imposed by dengue. We anticipate that they will provide a
starting point for a wider discussion about the global impact of this
disease and will help to guide improvements in disease control strat-
egies using vaccine, drug and vector control methods, and in their
economic evaluation.

Dengue is an acute systemic viral disease that has established itself
globally in both endemic and epidemic transmission cycles. Dengue
virus infection in humans is often inapparent1,6 but can lead to a wide
range of clinical manifestations, from mild fever to potentially fatal
dengue shock syndrome2. The lifelong immunity developed after infec-
tion with one of the four virus types is type-specific1, and progression to
more serious disease is frequently, but not exclusively, associated with
secondary infection by heterologous types2,5. No effective antiviral
agents yet exist to treat dengue infection and treatment therefore
remains supportive2. Furthermore, no licensed vaccine against dengue
infection is available, and the most advanced dengue vaccine candidate
did not meet expectations in a recent large trial7,8. Current efforts to
curb dengue transmission focus on the vector, using combinations of
chemical and biological targeting of Aedes mosquitoes and manage-
ment of breeding sites2. These control efforts have failed to stem the
increasing incidence of dengue fever epidemics and expansion of the

geographical range of endemic transmission9. Although the historical
expansion of this disease is well documented, the potentially large
burden of ill-health attributable to dengue across much of the tropical
and subtropical world remains poorly enumerated.

Knowledge of the geographical distribution and burden of dengue is
essential for understanding its contribution to global morbidity and
mortality burdens, in determining how to allocate optimally the limited
resources available for dengue control, and in evaluating the impact of
such activities internationally. Additionally, estimates of both apparent
and inapparent infection distributions form a key requirement for
assessing clinical surveillance and for scoping reliably future vaccine
demand and delivery strategies. Previous maps of dengue risk have
used various approaches combining historical occurrence records and
expert opinion to demarcate areas at endemic risk10–12. More sophis-
ticated risk-mapping techniques have also been implemented13,14, but
the empirical evidence base has since been improved, alongside
advances in disease modelling approaches. Furthermore, no studies
have used a continuous global risk map as the foundation for dengue
burden estimation.

The first global estimates of total dengue virus infections were based
on an assumed constant annual infection rate among a crude approxi-
mation of the population at risk (10% in 1 billion (ref. 5) or 4% in 2
billion (ref. 15)), yielding figures of 80–100 million infections per year
worldwide in 1988 (refs 5, 15). As more information was collated on the
ratio of dengue haemorrhagic fever to dengue fever cases, and the ratio
of deaths to dengue haemorrhagic fever cases, the global figure was
revised to 50–100 million infections16,17, although larger estimates of
100–200 million have also been made10 (Fig. 1). These estimates were
intended solely as approximations but, in the absence of better evidence,
the resulting figure of 50–100 million infections per year is widely cited
and currently used by the World Health Organization (WHO). As the
methods used were informal, these estimates were presented without
confidence intervals, and no attempt was made to assess geographical or
temporal variation in incidence or the inapparent infection reservoir.

Here we present the outcome of a new project to derive an evidence-
based map of dengue risk and estimates of apparent and inapparent
infections worldwide on the basis of the global population in 2010. We
compiled a database of 8,309 geo-located records of dengue occurrence
from a systematic search, resulting from 2,838 published literature
sources as well as newer online resources18 (see Supplementary Infor-
mation, section A; the full bibliography4 and occurrence data are avail-
able from authors on request). Using these occurrence records we:
chose a set of gridded environmental and socioeconomic covariates
known, or proposed, to affect dengue transmission (see Supplemen-
tary Information, section B); incorporated recent work assessing
the strength of evidence on national and subnational-level dengue
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present/absent status4 (Fig. 2a); and built a boosted regression tree
(BRT) statistical model of dengue risk that addressed the limitations
of previous risk maps (see Supplementary Information, section C) to
define the probability of occurrence of dengue infection (dengue risk)
within each 5 km 3 5 km pixel globally (Fig. 2b). The model was run
336 times to reflect parameter uncertainty and an ensemble mean map
was created (see Supplementary Information, section C). We then
combined this ensemble map with detailed longitudinal information
on dengue infection incidence from cohort studies and built a non-
parametric Bayesian hierarchical model to describe the relationship
between dengue risk and incidence (see Supplementary Information,
section D). Finally, we used the estimated relationship to predict the
number of apparent and inapparent dengue infections in 2010 (see
Supplementary Information, section E). Our definition of an apparent
infection is consistent with that used by the cohort studies: an infection
with sufficient severity to modify a person’s regular schedule, such as
attending school. This definition encompasses any level of severity of
the disease.

We predict that dengue transmission is ubiquitous throughout the
tropics, with the highest risk zones in the Americas and Asia (Fig. 2b).
Validation statistics indicated high predictive performance of the BRT
ensemble mean map with area under the receiver operating character-
istic (AUC) of 0.81 (60.02 s.d., n 5 336) (see Supplementary Infor-
mation, section C). Predicted risk in Africa, although more unevenly
distributed than in other tropical endemic regions, is much more
widespread than suggested previously. Africa has the poorest record
of occurrence data and, as such, increased information from this con-
tinent would help to define better the spatial distribution of dengue
within it and to improve its derivative burden estimates. We found
high levels of precipitation and temperature suitability for dengue
transmission to be most strongly associated among the variables con-
sidered with elevated dengue risk, although low precipitation was not
found to limit transmission strongly (see Supplementary Information,
section C). Proximity to low-income urban and peri-urban centres was
also linked to greater risk, particularly in highly connected areas, indi-
cating that human movement between population centres is an import-
ant facilitator of dengue spread. These associations have previously

been cited9, but have not been demonstrated at the global scale and
highlight the importance of including socioeconomic covariates when
assessing dengue risk.

We estimate that there were 96 million apparent dengue infections
globally in 2010 (Table 1). Asia bore 70% (67 (47–94) million infec-
tions) of this burden, and is characterized by large swathes of densely
populated regions coinciding with very high suitability for disease
transmission. India19,20 alone contributed 34% (33 (24–44) million
infections) of the global total. The disproportionate infection burden
borne by Asian countries is emphasized in the cartogram shown in
Fig. 2c. The Americas contributed 14% (13 (9–18) million infections)
of apparent infections worldwide, of which over half occurred in Brazil
and Mexico. Our results indicate that Africa’s dengue burden is nearly
equivalent to that of the Americas (16 (11–22) million infections, or
16% of the global total), representing a significantly larger burden than
previously estimated. This disparity supports the notion of a largely
hidden African dengue burden, being masked by symptomatically simi-
lar illnesses, under-reporting and highly variable treatment-seeking
behaviour6,9,20. The countries of Oceania contributed less than 0.2%
of global apparent infections.

We estimate that an additional 294 (217–392) million inapparent
infections occurred worldwide in 2010. These mild or asymptomatic
infections are not detected by the public health surveillance system and
have no immediate implications for clinical management6. However,
the presence of this huge potential reservoir of infection has profound
implications for: (1) correctly enumerating economic impact (for
example, how many vaccinations are needed to avert an apparent in-
fection) and triangulating with independent assessments of disability
adjusted life years (DALYs)21; (2) elucidating the population dynamics
of dengue viruses22; and (3) making hypotheses about population effects
of future vaccine programmes23 (volume, targeting efficacy, impacts
in combination with vector control), which will need to be adminis-
tered to maximize cross-protection and minimize post-vaccination
susceptibility.

The absolute uncertainties in the national burden estimates are
inevitably a function of population size, with the greatest uncertainties
in India, Indonesia, Brazil and China (see full rankings in Sup-
plementary Table 4). In addition, comparing the ratio of the mean
to the width of the confidence interval24 revealed the greatest contri-
butors to relative uncertainty (see full rankings in Supplementary
Table 4). These were countries with sparse occurrence points and
low evidence consensus on dengue presence, such as Afghanistan or
Rwanda (see Fig. 2a), or those with ubiquitous high risk, such as
Singapore or Djibouti, for which our burden prediction confidence
interval is at its widest (see Supplementary Information, section D,
Fig. 2). Therefore, increasing evidence consensus and occurrence data
availability in low consensus countries and assembling new cohort
studies, particularly in areas of high transmission, will reduce uncer-
tainty in future burden estimates. Our approach, uniquely, provides
new evidence to help maximize the value and cost-effectiveness of
surveillance efforts, by indicating where limited resources can be tar-
geted to have their maximum possible impact in improving our know-
ledge of the global burden and distribution of dengue.

Our estimates of total infection burden (apparent and inapparent)
are more than three times higher than the WHO predicted figure
(Supplementary Information, section E). Our definition of an apparent
infection is broad, encompassing any disruption to the daily routine of
the infected individual, and consequently is an inclusive measurement
of the total population affected adversely by the disease. Within this
broad class, the severity of symptoms will affect treatment-seeking
behaviours and the probability of a correct diagnosis in response to
a given infection. Our definition is therefore more comprehensive than
those of traditional surveillance systems which, even in the most effi-
cient system, report a much narrower range of dengue infections. By
reviewing our database of longitudinal cohort studies, in which total
infections in the community were documented exhaustively, we find
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Figure 1 | Global estimates of total dengue infections. Comparison of
previous estimates of total global dengue infections in individuals of all ages,
1985–2010. Black triangle, ref. 5; dark blue triangle, ref. 15; green triangle, ref.
17; orange triangle, ref. 16; light blue triangle, ref. 30; pink triangle, ref. 10; red
triangle, apparent infections from this study. Estimates are aligned to the year of
estimate and, if not stated, aligned to the publication date. Red shading marks the
credible interval of our current estimate, for comparison. Error bars from ref. 10
and ref. 16 replicated the confidence intervals provided in these publications.
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that the biggest source of disparity between actual and reported infec-
tion numbers is the low proportion of individuals with apparent infec-
tions seeking care from formal health facilities (see Supplementary
Information, section E, Fig. 5 for full analysis). Additional biases are

introduced by misdiagnosis and the systematic failure of health
management information systems to capture and report presenting
dengue cases. By extracting the average magnitude of each of these
sequential disparities from published cohort and clinical studies, we
can recreate a hypothetical reporting chain with idealized reporting
and arrive at estimates that are broadly comparable to those countries
reported to the WHO. This is most clear in more reliable reporting
regions such as the Americas. Systemic under-reporting and low hos-
pitalization rates have important implications, for example, in the
evaluation of vaccine efficacy based on reduced hospitalized caseloads.
Inferences about these biases may be made from the comparison of
estimated versus reported infection burdens in 2010, highlighting
areas where particularly poor reporting might be strengthened (see
Supplementary Information, section E).

Table 1 | Estimated burden of dengue in 2010, by continent
Apparent Inapparent

Millions (credible interval) Millions (credible interval)

Africa 15.7 (10.5–22.5) 48.4 (34.3–65.2)
Asia 66.8 (47.0–94.4) 204.4 (151.8–273.0)
Americas 13.3 (9.5–18.5) 40.5 (30.5–53.3)
Oceania 0.18 (0.11–0.28) 0.55 (0.35–0.82)
Global 96 (67.1–135.6) 293.9 (217.0–392.3)
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Figure 2 | Global evidence consensus, risk and burden of dengue in 2010.
a, National and subnational evidence consensus on complete absence (green)
through to complete presence (red) of dengue4. b, Probability of dengue
occurrence at 5 km 3 5 km spatial resolution of the mean predicted map (area
under the receiver operator curve of 0.81 (60.02 s.d., n 5 336)) from 336

boosted regression tree models. Areas with a high probability of dengue
occurrence are shown in red and areas with a low probability in green.
c, Cartogram of the annual number of infections for all ages as a proportion of
national or subnational (China) geographical area.
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We have strived to be exhaustive in the assembly of contemporary
data on dengue occurrence and clinical incidence and have applied
new modelling approaches to maximize the predictive power of these
data. It remains the case, however, that the empirical evidence base for
global dengue risk is more limited than that available, for example, for
Plasmodium falciparum25 and Plasmodium vivax26 malaria. Records of
disease occurrence carry less information than those of prevalence and,
as databases of the latter become more widespread, future approaches
should focus on assessing relationships between seroprevalence and
clinical incidence as a means of assessing risk27. Additional car-
tographic refinements are also required to help differentiate endemic-
from epidemic-prone areas, to determine the geographic diversity of
dengue virus types and to predict the distributions of future risk under
scenarios of socioeconomic and environmental change.

The global burden of dengue is formidable and represents a growing
challenge to public health officials and policymakers. Success in tack-
ling this growing global threat is, in part, contingent on strengthening
the evidence base on which control planning decisions and their
impact are evaluated. It is hoped that this evaluation of contemporary
dengue risk distribution and burden will help to advance that goal.

METHODS SUMMARY
We compiled a database of 8,309 geo-located occurrence records for the period
1960 to 2012 from a combination of published literature and online resources18.
All records were standardized annually (that is, repeat records in the same location
within a year merged as one occurrence) and underwent rigorous quality control.
From a suite of potential environmental and socioeconomic covariates, we chose a
relevant subset including: (1) two precipitation variables interpolated from global
meteorological stations; (2) an index of temperature suitability for dengue trans-
mission adapted from an equivalent index for malaria28; (3) a vegetation/moisture
index; (4) demarcations of urban and peri-urban areas; (5) an urban accessibility
metric; and (6) an indicator of relative poverty. We then built a disease distribution
model using a boosted regression tree (BRT) framework. To compensate for the
lack of absence data, we created an evidence-based probabilistic framework for
generating pseudo-absences that mitigated the main biasing factors in pseudo-
absence generation29, namely: (1) geographical extent; (2) number; (3) contam-
ination bias; and (4) sampling bias. We then created an ensemble of 336 BRT
models using different plausible combinations of these factors and representing
independent samples of possible sampling distributions. We calculated the final
probability of occurrence (risk) map as the central tendency of these 336 BRT
models predicted at a 5 km 3 5 km resolution. Exclusion criteria were based on the
definitive extents of dengue4 and temperature suitability for dengue transmis-
sion28. Using detailed longitudinal information from 54 dengue cohort studies,
we defined a relationship between the probability of dengue occurrence and inap-
parent and apparent incidence using a Bayesian hierarchical model. We defined a
negative binomial likelihood function with constant dispersion and a rate char-
acterized by a highly flexible data-driven Gaussian process prior. Uninformative
hyperpriors were assigned hierarchically to the prior parameters and the full posterior
distribution determined by Markov Chain Monte Carlo (MCMC) sampling. Using
human population gridded data, estimates of dengue infections were then calculated
nationally, regionally and globally for both apparent and inapparent infections.

Full Methods and any associated references are available in the online version of
the paper.
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