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Abstract
With the global population predicted to grow by at least 25 per cent by 2050, the need for
sustainable production of nutritious foods is critical for human and environmental health. Recent
advances show that specialized plant membrane transporters can be used to enhance yields of
staple crops, increase nutrient content and increase resistance to key stresses, including salinity,
pathogens and aluminium toxicity, which in turn could expand available arable land.

Of The Present Global Population Of Seven Billion People, Almost One billion are
undernourished and lack sufficient protein, fats and carbohydrates in their diets1. An
additional billion people are malnourished because their diets lack required micronutrients
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such as iron, zinc and vitamin A (ref. 2). These dietary deficiencies have an enormous
negative impact on global health, resulting in increased susceptibility to infection and
diseases, as well as increasing the risk of significant mental impairment3. During the next
four decades, an expected additional two billion humans will require nutritious food. Along
with growing urbanization, increased demand for protein in developing countries, coupled
with impending climate change and population growth, will impose further pressures on
agricultural production4. Global demand for food is predicted to increase by 40% by 2030
(ref. 4). Innovative solutions are required to increase production on the land currently used
for agriculture, because we are already close to the sustainable limit of 15% of the Earth’s
surface that can be exploited for crop production5.

Analysis of crop yields globally shows that in those developing regions where humans are
most susceptible to malnutrition, the availabilities of inorganic nutrients and water are the
principal factors that determine crop productivity6,7. Simply increasing inorganic fertilizer
use and water supply or applying organic farming systems to agriculture8 will be unable to
satisfy the joint requirements of increased yield and environmental sustainability. Increasing
food production on limited land resources will rely on innovative agronomic practices
coupled to the genetic improvement of crops9.

Transport proteins embedded within membranes are key targets for improving the efficiency
with which plants take up and use water and nutrients. These proteins not only transport
mineral nutrients and control drought tolerance but are also essential for moving sucrose, the
energy currency of plants, to where it is needed. Furthermore, transporters are also central to
mechanisms that allow plants to tolerate adverse environments such as saline or acid soils.
Advances driven by physiology, genetics and biophysics over the past 20 years have
dramatically improved our understanding of the molecular basis of plant nutrition and how
plants respond to stress. Genome sequencing and the development of experimental systems
for studying transporter function have allowed many of the major families of membrane
transporters to be characterized. Next-generation sequencing is leading to an understanding
of how the natural genetic diversity of plant membrane transporters can be exploited for
agriculture, whether by marker-assisted breeding or through genetic engineering.
Breakthrough approaches involving transcriptional-activator-like effectors and genome
editing10 can provide non-genetically modified (non-GM) yet molecularly directed rapid
solutions to crop improvement.

Here we report on findings demonstrating that understanding the biology of plant membrane
transporters can be a key contributor to the goal of global food security. We discuss
examples where fundamental research is already being translated into practical applications
such as enhancing the micronutrient content of grain and improving the plant tolerance to
saline and acidic soils. We further discuss potential applications linked to breakthroughs in
basic research that are yet to be applied to crop plants. This Perspective reviews the extent to
which the rapid advances in plant transport research address global aspects of food security,
and how we can potentially reduce the time between trait identification in the laboratory and
exploitation in the field.

Transporters, stress resistance and yield
Aluminium-tolerant crops for acid soils

Acid soils comprise 30% of Earth’s ice-free land and thus constrain agricultural production,
given that only a small proportion of these soils is suitable for crops11. At soil pH values
above 5, aluminium exists in the soil in non-toxic complexed forms. However, when soils
are acidic, Al3+ ions are freed in the soil, resulting in plant toxicity. Once in the soil
solution, Al3+ damages the root tips of susceptible plants and inhibits root growth, which
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impairs the uptake of water and nutrients. Natural genetic variation in Al3+ tolerance exists
within major cereal crops. The efflux of organic anions from roots was discovered to be a
naturally occurring tolerance mechanism of several species12. Transport proteins are central
to this mechanism, with members of two families of transport proteins responsible for
exporting the organic anions from inside root cells to the external medium surrounding
roots. The organic anions secreted by roots chelate Al3+ into a non-toxic form, thus
protecting the sensitive tips and allowing the roots to grow unimpeded (Fig. 1).

In wheat, the Triticum aestivum aluminium-activated malate transporter 1 gene TaALMT1
encodes an Al3+-gated anion channel that facilitates malate efflux from roots13 (Fig. 1).
Molecular markers based on the TaALMT1 gene can be used in marker-assisted breeding to
select for Al3+ tolerance in wheat germplasm. The TaALMT1 gene itself can be used to
genetically modify susceptible species for improved Al3+ tolerance. When expressed in
barley, one of the most Al3+-sensitive cereal crops, TaALMT1 confers substantially
improved grain yields in acid soil14 (Fig. 1). Similarly, a unique subgroup of the large
family of plant multidrug and toxic compound extrusion (MATE) transporters mediates
citrate efflux from root cells15,16. In sorghum16, barley17, and maize18, MATE transporters
located at the root tip confer Al3+-activated citrate efflux and represent the primary Al3+

tolerance proteins. Genetic studies in sorghum recently identified markers associated with
Al3+-tolerant alleles of the Sorghum bicolor MATE gene SbMATE. These markers have
been used by breeders to introgress rapidly the most favourable SbMATE alleles into
sorghum germplasm, which is currently being field-tested in acid soils16.

Although genes encoding organic anion transporters are already established as a means of
enhancing the Al3+ tolerance of crops, other recently discovered mechanisms provide
additional options. For instance, rice is the most Al3+ tolerant of the cereal crops and uses
mechanisms distinct from the efflux of organic anions. One of these mechanisms involves
transporters working in concert ultimately to sequester Al3+ into the vacuole, thus removing
Al3+ from mainstream metabolism19,20. Genetic analysis has identified susceptible and
tolerant variants of one of the transporter genes (natural resistance-associated macrophage
protein aluminium transporter 1, Nrat1) that explains a large proportion of the variation in
Al3+ tolerance within the rice aus subpopulation. This finding provides a promising tool for
marker-assisted breeding21.

The discovery of transporters that mediate Al3+ tolerance has identified two principal
strategies that plants use to deal with this toxic cation. In one strategy, Al3+ is excluded from
cells by chelating the toxic ion external to plants and in the other Al3+ is sequestered within
cells in the vacuole. The genes encoding these transporters can be used to develop Al3+-
tolerant crops and represent an important component—along with management practices
such as soil liming to increase soil pH—of a strategy for improving yields on acid soils.

HKT transporters improve salt tolerance
Approximately 7% of the world’s land including agricultural lands is affected by either
salinity or sodium toxicity. Production in over 30% of irrigated crops and 7% of dryland
agriculture worldwide is limited by salinity stress. Crop irrigation is increasing soil salinity,
owing to trace amounts of salt in irrigation waters. Plant plasma membrane transporters in
the HKT family transport sodium (Na+) and potassium (K+) (ref. 22) and play an essential
part in salt tolerance23. Research in the reference plant Arabidopsis showed that the ‘class 1’
HKT transporters are Na+ selective and protect plant leaves from salinity stress by
prohibiting toxic sodium over-accumulation in leaves23. Class 1 HKT transporters are
expressed in veins23 that connect nutrient flux between roots and leaves. These transporters
are expressed in the living cells surrounding the xylem, which are vessels that carry nutrients
and water to the leaves. Class 1 HKT transporters remove excess Na+ from the xylem in
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Arabidopsis and rice, thereby keeping Na+ below toxic levels in the photosynthetic leaf
tissues24–26 (Fig. 2). Analogous mechanisms have been demonstrated in wheat for the
HKT1;4 and HKT1;5 genes27,28 (Fig. 2). Remarkably, the recent introgression of an
ancestral form of the HKT1;5 gene from the more Na+-tolerant wheat relative Triticum
monococcum into susceptible commercial durum wheat (Triticum turgidum ssp durum)
increased grain yields on saline soil by 25% in the field, illustrating the immense potential of
this mechanism28.

Some crops are salt tolerant through the effective sequestration of Na+ in leaf vacuoles by
Na+/H+ antiporters29. Specific ‘class 2’ HKT transporters30 mediate cation influx into
roots31. These class 2 HKT transporters, together with transporters that sequester sodium
and potassium in the vacuole32,33, have the potential to improve the production of cereals
such as barley, a species that copes with high Na+ loads in leaves by compartmentation in
the vacuole34. Thus combining (pyramiding) HKT transporter traits with vacuolar Na+

sequestration mechanisms provides a potentially powerful platform for molecular breeding
and transgenic approaches to improve the salinity tolerance of crops.

SWEET transporters and pathogen resistance
Photosynthesis in leaves produces sugars, which are distributed through the veins to support
growth of roots, meristems and seeds. The translocation rates and relative distribution
critically determine the yield potential of crops. Sucrose is a key energy-carrying molecule
that also acts as the driver for translocation of all other nutrients and signalling molecules in
veins, but until recently, the molecular players were unknown. In the early 1990s the
sucrose-proton co-transporter SUT1 was identified as the key transporter that loads sugar
into veins35, yet the mechanism for sucrose release from the leaf cells that synthesize it
remained elusive. Recently, the ‘SWEET’ sugar transporters were identified with the help of
sugar sensors based on Förster (fluorescence) resonance energy transfer technology36,37.
Known crop genomes possess about 20 SWEET genes. SWEETs are plasma membrane
proteins located in the phloem parenchyma, a cell type inside the veins that exports sucrose
to the SUT1 sugar loaders (Fig. 3). The import and export of sucrose from vein cells is
controlled by hormones, turgor feedback and sugar levels38. Knowledge of this machinery
could provide a new starting point to engineer yield by modifying energy and carbon
distribution within the plant.

Notably, SWEET sugar efflux transporters have been identified as pathogen resistance loci,
leading to a new understanding of disease development in plants39–42. The growth of
pathogens in leaves and stems depends on nutrient supply from their plant hosts. Blight
bacteria directly induce SWEET gene expression in rice in infected cells through
transcriptional-activator-like effectors (bacterial transcription factors that directly target
SWEET promoters). Inhibiting the induction of SWEET genes with an innovative
technology such as chromosomal editing of the promoters of SWEETs with TALENs
(artificial transcriptional-activator-like effector nucleases) or through cell-specific
expression of microRNAs in cells outside the phloem has now enabled blight resistance to
be engineered in rice43,44. The discovery of these key players in combination with TALENs
promises new ways of engineering both crop yield and pathogen resistance, without the
introduction of foreign genetic material, to produce plants with significantly improved
performance in the field.
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Human health and plant nutrition
Pumping iron and zinc

Over two billion people suffer from iron and zinc deficiencies because their plant-based
diets are not a sufficiently rich source of these essential elements. Developing crop cultivars
with increased micronutrient concentrations, an approach known as biofortification, is
challenging because metal ion concentrations in various tissues and compartments are
maintained within narrow physiological limits by coordinated uptake, translocation and
storage. Furthermore, for crops like rice, removal of the outer layers of the grain during
polishing essentially removes all of the micronutrients, leaving only the starchy endosperm.
By expressing key genes involved in the mobilization of micronutrients from the soil to the
seed, scientists have biofortified rice, a staple food consumed by half the world population
every day (Fig. 4). Enhancing iron translocation through overproduction of the metal
chelator nicotianamine and phytosiderophores45–47 or enhancing iron influx into the
endosperm by means of the iron-nicotianamine transporter Oryza sativa yellow-stripe-like-2
(OsYSL2)48, has resulted in greenhouse-grown rice with three- to fourfold higher levels of
iron (Fe) in polished grain. Combining overproduction of nicotianamine with enhanced
expression of the iron storage protein ferritin increased the iron content more than sixfold49,
and combining all three approaches has resulted in paddy-field-grown polished rice with Fe
concentrations 4.4-fold higher than those found in non-transgenic seeds, with no yield
penalty50. Although these results are impressive and bring iron levels close to those
recommended by nutritionists, only a handful of studies have tested whether these enhanced
levels of nutrients are bioavailable. Most encouragingly, enhancing the nicotianamine
concentration does increase the levels of bioavailable iron46 and zinc51 in polished rice.

Vacuolar sequestration is another mechanism to enhance the concentrations of iron and zinc
(Zn) in seeds52. Transporters belonging to several different families transport metals
between the cytoplasm and the vacuole53–55, including the Arabidopsis vacuolar iron
transporter VIT1 protein, which is highly expressed in developing seeds and transports iron
and manganese into the vacuole54. Disruption of the rice VIT orthologues (OsVIT1 and
OsVIT2) increases Fe/Zn accumulation in rice seeds and decreases Fe/Zn in the source organ
flag leaves, probably because VIT genes are highly expressed in rice flag leaves. Without a
sink, there is enhanced Fe/Zn translocation to the seed, providing another strategy with
which to biofortify Fe/Zn in staple foods56. Metal tolerance protein 1 (MTP1) also transports
divalent cations into the vacuole and is another promising candidate for use in
biofortification57. Thus several strategies are being used to enhance iron and zinc
micronutrients in edible plant tissues, but more improvements are needed. We can use our
growing knowledge of the transporters that take up micronutrients from the soil, such as
iron-regulated transporter 1 (IRT1)58, the major entry point for Fe in many plant species.
Enhanced nutrient content is a crucial goal in the light of the world’s growing population
and the central roles of staple crops in human diets.

Enhancing phosphate use efficiency
Phosphorus (P) is a macro-element that is essential for plant growth and of vital importance
to crop yield. The availability of inorganic P, or orthophosphate (the only form of P directly
accessible to plants), is influenced by the biogeochemical properties of the soil and limits
crop production on nearly 70% of the world’s agricultural soils59. Consequently, global crop
production depends on orthophosphate fertilizers, which are produced from rock phosphate,
a finite, non-renewable mineral resource (Fig. 5a). Only 20–30% of the P fertilizer applied is
used by cultivated plants and at the current rate of use, it is estimated that rock phosphate
reserves will be consumed within the next 70–200 years60, so ensuring the sustainable use of
orthophosphate is of paramount importance for human nutrition. Improving orthophosphate

Schroeder et al. Page 5

Nature. Author manuscript; available in PMC 2014 March 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



acquisition and use-efficiency in plants is a complex problem and recent solutions have
included modifications to root growth and architecture61,62, and novel engineering strategies
to use alternative P sources60. An understanding of plant transporter proteins may offer
additional approaches. Plants possess several families of orthophosphate transporter
proteins, and both high- and low-affinity transporters are important for orthophosphate
uptake into roots63,64. Phosphate transporters are also critical for orthophosphate distribution
throughout the plant, and for remobilization between source and sink tissues65,66. A
phosphate efflux transporter (PHO1), essential for orthophosphate transfer to the shoot, is a
major player in the regulation of orthophosphate homeostasis67 and may provide strategies
for optimizing orthophosphate distribution within plants.

In addition to the direct acquisition of orthophosphate from soil, most crop species have the
capacity to form symbiotic associations (called arbuscular mycorrhizae) with soil fungi.
These fungi capture orthophosphate through extensive hyphal networks and deliver it to
symbiotic compartments in the root, where plant orthophosphate transporters transfer this
ion into the root cells. Plant symbiotic orthophosphate transporter function is essential for
this process and is also required to maintain the symbiosis68,69. Phosphate transporters are
important targets for breeding plants with improved orthophosphate acquisition and use-
efficiency, and that benefit maximally from their fungal symbionts.

Nitrate sensing and transport
The application of nitrogen (N) fertilizers has greatly increased crop yields and alleviated
hunger over the past five decades. However, N fertilizer production consumes 1% of global
energy usage and poses the highest input cost for many crops. Nevertheless, only 30% to
50% of the N fertilizer applied is used by plants. The remainder can lead to production of
the greenhouse gas N2O, or to eutrophication of aquatic ecosystems through water run-off.
Therefore, enhancing crop nitrogen utilization efficiency is an important goal70. For most
crops, nitrate is the primary nitrogen source and so enhancing nitrate uptake is one strategy
for improving nitrogen utilization efficiency.

Multiple nitrate uptake transporters of the NRT1 and NRT2 families work together to enable
nitrogen uptake in plants71,72. Most NRT1 transporters are low-affinity nitrate transporters,
meaning that they function mainly when nitrate is abundant. In contrast, chlorate resistant 1
(CHL1, also known as NRT1.1) is a dual-affinity nitrate transporter involved in nitrate
acquisition73,74. A recent study found that CHL1 also functions as a nitrate sensor, thus
regulating nitrate-induced gene expression75, which implies that plants use this transporter
to monitor changes in external nitrate concentration to trigger proper metabolic acclimation.
CHL1 has therefore become a paradigm for how nutrient transporters may also serve as
nutrient sensors, and how optimization of transport and signalling can be used
simultaneously to improve nutrient efficiency.

Using dual-affinity binding, and with the help of two protein kinases (CIPK23 and CIPK8),
CHL1 senses a wide range of nitrate concentration changes in the soil to alter its own
transport properties75,76 (Fig. 5b). CHL1 and NRT2.1 are also important for nitrate-
regulated root development77,78. Vigorous root development is important for plants to
compete for nutrients and sustain crop yield61,79. Therefore, nitrate transporters and other
proteins that regulate nitrate uptake and sensing provide potential tools for engineering crops
with tailored N uptake activity, N metabolism and improved root growth for enhanced
nitrogen-use efficiency and reduced-N-fertilizer requirements.
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Future outlook
Our knowledge of the molecular nature and regulation of transporters has expanded vastly
over the past twenty years. As shown in the examples here, fundamental research into
transport mechanisms in plants is leading to rapid innovations for improving yields,
extending the range of arable land that can be used for crops and improving the performance
of plants under stress. This research also points to new solutions for more sustainable use of
limited soil nutrients and for enhanced human nutrition through biofortification.

Recent advances on other plant transporters add to the list of potentially innovative
applications in agriculture. For example, plants in the Brassica family, which includes
oilseed rape (canola) and mustard, produce glucosinolates, which are potent defence
compounds against herbivores and plant pathogens. A transporter controls the distribution of
glucosinolates in Arabidopsis80 and may be engineered to enhance herbivore resistance, as a
way of reducing the application of pesticides. In another example, toxic heavy metal and
arsenic accumulation in edible plant tissues, including rice in the United States, poses a
threat to human health81. Plant transporters have recently been identified that control toxic
metal and arsenic accumulation in seeds and other tissues82–84, pointing directly to potential
applications for developing plants with reduced levels of toxicant accumulation in grain and
other edible tissues. Rice with nearly cadmium-free grain has been produced by identifying
cadmium transporters and also using a molecular marker to select for genotypes that
accumulate low cadmium concentrations85.

Drought tolerance and desiccation avoidance by plants is critical for conserving water
during drought periods. Plants lose over 90% of their water by transpiration from stomatal
pores in the epidermis of leaves. Stomatal pores are also the gateways for CO2 intake into
plants for photosynthesis and have a key role in determining the water-use efficiency of
plants. Research has shown that modification in the expression level of ion channels in
guard cells (which control the opening and closing of stomatal pores) can be used to reduce
water loss, enhance water-use efficiency and regulate efficient CO2 intake for
photosynthesis86–88. Moreover, transporters for the plant abiotic stress resistance hormone,
abscisic acid, have been identified89,90, and these may be used to target drought resistance
responses. Targeting drought tolerance to particularly drought-sensitive tissues or organs
during particularly susceptible stages of reproductive development (for example, grain
filling and pollen meiosis) could become an important strategy during prolonged droughts
and other predicted consequences of climate change.

Transport processes are key to photosynthesis. Since Peter Mitchell’s groundbreaking
‘chemiosmotic hypothesis’ in 1961, the relevance of transporters in photosynthesis has
become abundantly clear. Major advances have been made in identifying metabolite
transporters across chloroplast membranes91. Yet many of the key transporters in chloroplast
membranes remain unidentified. Discovery of the many predicted transporters in subcellular
compartments, specifically in chloroplasts, has potential for improving energy capture.

A major challenge in future agriculture is establishing which genetic traits can be combined,
or ‘pyramided’, without adversely affecting yield. Many transport processes reviewed here
enhance plant performance via defined functions in specific tissues or cell types, so these
may be particularly amenable to pyramiding. For instance, salinity tolerance that operates by
removal of toxic sodium ions from the xylem sap23–25,28 could be combined with traits that
enhance sequestration of sodium into vacuoles32,33, to confer additional salt tolerance. More
work will be needed to determine whether or not traits will be compatible when combined.
Moreover, many fundamental mechanisms for essential transport processes remain to be
uncovered and many essential transporters undoubtedly remain to be discovered. Therefore,
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knowledge-targeted pyramiding of traits will require future advances in fundamental
research into plant membrane transport processes.

Recent advances have identified plant membrane transporters and underlying mechanisms
that increase the stress resistance and yield of staple crops. We expect that research into
fundamental mechanisms of plant membrane transport processes will continue to produce
surprises and breakthroughs that will provide new avenues towards a more sustainable and
productive agriculture in the face of impending challenges.
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Figure 1. Engineering plants for enhanced aluminium (Al3+) tolerance
The photograph shows barley seedlings grown on an acid soil that contains high
concentrations of toxic Al3+. One seedling has been genetically engineered with an Al3+-
tolerance transporter gene from wheat (TaALMT1), whereas the other seedling is the non-
transgenic parental line (wild type, WT). The diagram shows the TaALMT1 anion channel
(blue structure) embedded within the plasma membrane of apical root cells. In acid soils,
Al3+ activates TaALMT1 (dashed line) resulting in malate efflux into the apoplast (cell
wall) external to the cytoplasm. Malate molecules (OA−, yellow circles) bind Al3+ in the
apoplast to protect cells from aluminium toxicity at the root apex. The diagram is modified
from figure 2 in ref. 92.
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Figure 2. HKT transporter-mediated salt tolerance in plants
The drawing illustrates the function of class I HKT transporters in protecting plants from
salinity stress. These HKT transporters mediate Na+ unloading from the xylem under
salinity stress, which prevents Na+ over-accumulation in leaves, thereby protecting
photosynthetic organs. An example of this mechanism in wheat plants is shown.
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Figure 3. The role of SWEET sugar transporters in efflux of sucrose into the cell-wall space and
induction by pathogenic bacteria
a, SWEETs (red) localized in the phloem parenchyma (a cell type of the plant vasculature),
export sucrose produced by photosynthesis into the cell wall, from where it is loaded
actively, with the help of the transporter SUT1 and energized by H+-ATPases into the actual
conduits, the sieve element companion cell complex for translocation to seeds.
Photosynthesis mainly occurs in the palisade parenchyma. b, The role of SWEETs as the
‘Achilles’ heel’ (susceptibility factors) of host plants during pathogen infection. SWEETs
are induced directly as a consequence of the injection of transcriptional-activator-like
effectors from pathogens via type III secretion systems into the infected plant cell, leading to
release of sugars as a critical source of nutrition for the pathogens.
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Figure 4. Iron transport in rice
Rice takes up iron from the soil as Fe3+ deoxymugineic acid (DMA) by the OsYSL15
transporter. Rice also uses the OsIRT1 transporter to take up Fe2+, which is abundant in
submerged and anaerobic conditions. DMA, which is the primary phytosiderophore that aids
in iron transport, is synthesized from S-adenosyl methionine through three sequential
enzymatic reactions mediated by nicotianamine synthase (NAS), nicotianamine
aminotransferase (NAAT), and DMA synthase (DMAS), and then secreted by the efflux
transporter TOM1 to solubilize iron in the soil. Nicotianamine, which is the biosynthetic
precursor of DMA, is a chelator of divalent metals and plays a part in translocation of metals
within plants. Nicotianamine is secreted into the cell wall by the nicotianamine efflux
transporter ENA1. The iron–nicotianamine transporter OsYSL2 mediates iron influx into
rice grains. The photograph shows iron staining (blue coloration) of a rice seed (inset shows
rice seeds). Iron is mainly localized to the embryo and the outer layers of the grain.
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Figure 5. Global phosphate availability and nitrate sensing
a, Global distribution map of reserves of rock phosphate. The percentage of effective
reserves is illustrated (data from ref. 93). b, Dual functions of the nitrate transporter and
nitrate sensor, CHL1, in nitrate uptake and sensing. Photographs show Arabidopsis
seedlings at low (left) and high (right) nitrate. At low nitrate, CHL1 is phosphorylated at a
specific amino acid, T101, converting it to a high-affinity nitrate uptake transporter,
enabling nitrate accumulation at limiting soil nitrate concentrations. At high nitrate, the
T101 amino acid is not phosphorylated, and CHL1 functions as a low-affinity transporter.
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