Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A roadmap for graphene

Subjects

Abstract

Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Graphene-based display and electronic devices.
Figure 3: Graphene-based photonics applications.
Figure 4: In a supercapacitor device two high-surface-area graphene-based electrodes (blue and purple hexagonal planes) are separated by a membrane (yellow).
Figure 5: Manipulating the hydrophilic–lipophilic properties of graphene (blue hexagonal planes) through chemical modification would allow interactions with biological membranes (purple-white double layer), such as drug delivery into the interior of a cell (blue region).

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011)

    ADS  CAS  PubMed  Google Scholar 

  4. Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008)

    ADS  CAS  PubMed  Google Scholar 

  5. Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    ADS  CAS  PubMed  Google Scholar 

  6. Liu, F., Ming, P. M. & Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76, 064120 (2007)

    ADS  Google Scholar 

  7. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nature Mater. 10, 569–581 (2011)

    ADS  CAS  Google Scholar 

  8. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    ADS  CAS  PubMed  Google Scholar 

  9. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008)

    ADS  CAS  PubMed  Google Scholar 

  10. Moser, J., Barreiro, A. & Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 163513 (2007)

    ADS  Google Scholar 

  11. Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009)

    ADS  CAS  PubMed  Google Scholar 

  12. Loh, K. P., Bao, Q. L., Ang, P. K. & Yang, J. X. The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010)

    CAS  Google Scholar 

  13. Nair, R. R. et al. Fluorographene: a two-dimensional counterpart of Teflon. Small 6, 2877–2884 (2010)

    CAS  PubMed  Google Scholar 

  14. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)In this paper a micromechanical cleavage method was used to obtain high-quality sheets of graphene and its transport and switching properties were studied.

    ADS  CAS  PubMed  Google Scholar 

  15. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnol. 5, 722–726 (2010)

    ADS  CAS  Google Scholar 

  16. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005)This paper demonstrates that a number of 2D atomic crystals can be obtained in a free-standing state and used in various electronic devices.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Geim, A. K. Nobel lecture. Random walk to graphene. Rev. Mod. Phys. 83, 851–862 (2011)

    ADS  CAS  Google Scholar 

  18. Novoselov, K. S. Nobel lecture. Graphene: materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011)

    ADS  CAS  Google Scholar 

  19. Blake, P. et al. Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008)

    ADS  PubMed  Google Scholar 

  20. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnol. 3, 563–568 (2008)

    ADS  CAS  Google Scholar 

  21. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011)

    ADS  CAS  PubMed  Google Scholar 

  22. Dreyer, D. R., Ruoff, R. S. & Bielawski, C. W. From conception to realization: an historical account of graphene and some perspectives for its future. Angew. Chem. Int. Ed. 49, 9336–9344 (2010)

    CAS  Google Scholar 

  23. Schniepp, H. C. et al. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006)

    CAS  PubMed  Google Scholar 

  24. Jiao, L. Y., Zhang, L., Wang, X. R., Diankov, G. & Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)

    ADS  CAS  PubMed  Google Scholar 

  25. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    ADS  CAS  PubMed  Google Scholar 

  26. Segal, M. Selling graphene by the ton. Nature Nanotechnol. 4, 612–614 (2009)

    ADS  CAS  Google Scholar 

  27. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010)

    ADS  CAS  Google Scholar 

  28. Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)This paper indroduces CVD growth of graphene on copper, demonstrating the first large-area reproducible monolayer growth process.

    ADS  CAS  PubMed  Google Scholar 

  29. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol. 5, 574–578 (2010)

    ADS  CAS  Google Scholar 

  30. Forbeaux, I., Themlin, J. M. & Debever, J. M. Heteroepitaxial graphite on 6H-SiC(0001): interface formation through conduction-band electronic structure. Phys. Rev. B 58, 16396–16406 (1998)

    ADS  CAS  Google Scholar 

  31. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)

    CAS  Google Scholar 

  32. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006)

    ADS  CAS  PubMed  Google Scholar 

  33. Virojanadara, C. et al. Homogeneous large-area graphene layer growth on 6H-SiC(0001). Phys. Rev. B 78, 245403 (2008)

    ADS  Google Scholar 

  34. Lin, Y. M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010)This paper discusses the use of graphene epitaxially grown on SiC for high-frequency electronics.

    ADS  CAS  PubMed  Google Scholar 

  35. Tzalenchuk, A. et al. Towards a quantum resistance standard based on epitaxial graphene. Nature Nanotechnol. 5, 186–189 (2010)

    ADS  CAS  Google Scholar 

  36. Cai, J. M. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010)

    ADS  CAS  PubMed  Google Scholar 

  37. Hackley, J., Ali, D., DiPasquale, J., Demaree, J. D. & Richardson, C. J. K. Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl. Phys. Lett. 95, 133114 (2009)

    ADS  Google Scholar 

  38. Dhar, S. et al. A new route to graphene layers by selective laser ablation. AIP Adv. 1, 022109 (2011)

    ADS  Google Scholar 

  39. Han, T. H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photon. 6, 105–110 (2012)

    ADS  CAS  Google Scholar 

  40. Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liao, L. et al. Sub-100 nm channel length graphene transistors. Nano Lett. 10, 3952–3956 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Han, S. J. et al. High-frequency graphene voltage amplifier. Nano Lett. 11, 3690–3693 (2011)

    ADS  CAS  PubMed  Google Scholar 

  43. Meric, I. et al. Channel length scaling in graphene field-effect transistors studied with pulsed current-voltage measurements. Nano Lett. 11, 1093–1097 (2011)

    ADS  CAS  PubMed  Google Scholar 

  44. Meric, I. et al. High-Frequency Performance of Graphene Field Effect Transistors with Saturating IV-characteristics 15–18 (IEEE Electron Devices Society, 2011)

    Google Scholar 

  45. Han, M. Y., Ozyilmaz, B., Zhang, Y. B. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    ADS  PubMed  Google Scholar 

  46. Ponomarenko, L. A. et al. Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008)

    ADS  CAS  PubMed  Google Scholar 

  47. Stampfer, C. et al. Tunable graphene single electron transistor. Nano Lett. 8, 2378–2383 (2008)

    ADS  CAS  PubMed  Google Scholar 

  48. Oostinga, J. B., Heersche, H. B., Liu, X. L., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151–157 (2008)

    ADS  CAS  Google Scholar 

  49. Kim, K., Choi, J. Y., Kim, T., Cho, S. H. & Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011)

    ADS  CAS  PubMed  Google Scholar 

  50. Schwierz, F. Graphene transistors. Nature Nanotechnol. 5, 487–496 (2010)

    ADS  CAS  Google Scholar 

  51. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012)In this paper a new concept of vertical tunnelling transistors based on heterostructures assembled from 2D atomic crystals has been demonstrated.

    ADS  CAS  PubMed  Google Scholar 

  52. Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008)

    ADS  CAS  Google Scholar 

  53. Ishibashi, T. et al. InP/InGaAs uni-traveling-carrier photodiodes. IEICE Trans. Electron. E 83C, 938–949 (2000)

    Google Scholar 

  54. Ishikawa, Y. & Wada, K. Near-infrared Ge photodiodes for Si photonics: operation frequency and an approach for the future. IEEE Photon. J. 2, 306–320 (2010)

    ADS  Google Scholar 

  55. Xia, F. N., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotechnol. 4, 839–843 (2009)This paper demonstrates the performance of planar graphene structures with built-in p–n junctions for ultrafast photodetection applications.

    ADS  CAS  Google Scholar 

  56. Meric, I. et al. Current saturation in zero-bandgap, topgated graphene field-effect transistors. Nature Nanotechnol. 3, 654–659 (2008)

    ADS  CAS  Google Scholar 

  57. Xia, F. N. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009)

    ADS  CAS  PubMed  Google Scholar 

  58. Mueller, T., Xia, F. N. A. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010)

    CAS  Google Scholar 

  59. Echtermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Commun. 2, 458 (2011)

    ADS  CAS  Google Scholar 

  60. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photon. 4, 518–526 (2010)

    ADS  CAS  Google Scholar 

  61. Liao, L. et al. 40 Gbit/s silicon optical modulator for highspeed applications. Electron. Lett. 43, 1196–1197 (2007)

    CAS  Google Scholar 

  62. Li, G. L. et al. 25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning. Opt. Express 19, 20435–20443 (2011)

    ADS  PubMed  Google Scholar 

  63. Tang, Y. B. et al. 50 Gb/s hybrid silicon traveling-wave electroabsorption modulator. Opt. Express 19, 5811–5816 (2011)

    ADS  PubMed  Google Scholar 

  64. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008)

    ADS  CAS  PubMed  Google Scholar 

  65. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011)

    ADS  CAS  PubMed  Google Scholar 

  66. Sensale-Rodriguez, B. et al. Unique prospects for graphene-based terahertz modulators. Appl. Phys. Lett. 99, 113104 (2011)

    ADS  Google Scholar 

  67. Liu, X., Du, D. & Mourou, G. Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quantum Electron. 33, 1706–1716 (1997)

    ADS  CAS  Google Scholar 

  68. Drexler, W. et al. In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24, 1221–1223 (1999)

    ADS  CAS  PubMed  Google Scholar 

  69. Keller, U. et al. Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Quantum Electron. 2, 435–453 (1996)

    CAS  Google Scholar 

  70. Bao, Q. L. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009)

    CAS  Google Scholar 

  71. Sun, Z. P. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010)

    CAS  PubMed  Google Scholar 

  72. Zhang, H. et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl. Phys. Lett. 96, 111112 (2010)

    ADS  Google Scholar 

  73. Xu, J. L. et al. Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser. Appl. Phys. Lett. 99, 261107 (2011)

    ADS  Google Scholar 

  74. Tan, W. D. et al. Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber. Appl. Phys. Lett. 96, 031106 (2010)

    ADS  Google Scholar 

  75. De Souza, E. A., Nuss, M. C., Knox, W. H. & Miller, D. A. B. Wavelength-division multiplexing with femtosecond pulses. Opt. Lett. 20, 1166–1168 (1995)

    ADS  CAS  PubMed  Google Scholar 

  76. Koch, B. R. et al. Mode locked and distributed feedback silicon evanescent lasers. Laser Photon. Rev. 3, 355–369 (2009)

    ADS  CAS  Google Scholar 

  77. Rana, F. Graphene terahertz plasmon oscillators. IEEE Trans. NanoTechnol. 7, 91–99 (2008)

    ADS  Google Scholar 

  78. Ramakrishnan, G., Chakkittakandy, R. & Planken, P. C. M. Terahertz generation from graphite. Opt. Express 17, 16092–16099 (2009)

    ADS  CAS  PubMed  Google Scholar 

  79. Prechtel, L. et al. Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nature Commun. 3, 646 (2012)

    ADS  Google Scholar 

  80. Bao, Q. et al. Broadband graphene polarizer. Nature Photon. 5, 411–415 (2011)

    ADS  CAS  Google Scholar 

  81. Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nature Photon. 5, 758–762 (2011)

    ADS  CAS  Google Scholar 

  82. Crassee, I. et al. Giant Faraday rotation in single- and multilayer graphene. Nature Phys. 7, 48–51 (2011)

    ADS  CAS  Google Scholar 

  83. Young, R. J., Kinloch, I. A., Gong, L. & Novoselov, K. S. The mechanics of graphene nanocomposites: a review. Compos. Sci. Technol. 72, 1459–1476 (2012)

    CAS  Google Scholar 

  84. Wang, X., Zhi, L. J. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008)This described the first demonstration of the use of graphene (obtained via reduced graphene oxide method) as a transparent electrode in solar cells.

    ADS  CAS  PubMed  Google Scholar 

  85. Li, S. S., Tu, K. H., Lin, C. C., Chen, C. W. & Chhowalla, M. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4, 3169–3174 (2010)

    CAS  PubMed  Google Scholar 

  86. Yang, S. B., Feng, X. L., Ivanovici, S. & Mullen, K. Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew. Chem. Int. Edn 49, 8408–8411 (2010)

    CAS  Google Scholar 

  87. Yoo, E. et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)

    ADS  CAS  PubMed  Google Scholar 

  88. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845–854 (2008)

    ADS  CAS  Google Scholar 

  89. Stoller, M. D., Park, S. J., Zhu, Y. W., An, J. H. & Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)This paper is the first demonstration of the use of graphene in a supercapacitor application.

    ADS  CAS  PubMed  Google Scholar 

  90. Yoo, E. et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 9, 2255–2259 (2009)

    ADS  CAS  PubMed  Google Scholar 

  91. Giesbers, A. J. M. et al. Quantum resistance metrology in graphene. Appl. Phys. Lett. 93, 222109 (2008)

    ADS  Google Scholar 

  92. Nayak, T. R. et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5, 4670–4678 (2011)

    CAS  PubMed  Google Scholar 

  93. Nair, R. R. et al. Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Appl. Phys. Lett. 97, 153102 (2010)

    ADS  Google Scholar 

  94. Kuila, T. et al. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 26, 4637–4648 (2011)

    CAS  PubMed  Google Scholar 

  95. Sanchez, V. C., Jachak, A., Hurt, R. H. & Kane, A. B. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 25, 15–34 (2012)

    CAS  PubMed  Google Scholar 

  96. Yang, K. et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10, 3318–3323 (2010)

    ADS  CAS  PubMed  Google Scholar 

  97. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012)

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the graphene community for years of intensive research and discussions. In particular, A. Geim, F. Bonaccorso, I. Kinloch, R. J. Young, R. Dryfe, A. Tzalenchuk, D. Clarke, J. Kinaret and L. Eaves have commented on this paper. K.S.N. and V.I.F. acknowledge the EC Supporting Coordinated Action “Graphene-CA” Flagship Preparatory Action for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of the paper.

Corresponding author

Correspondence to K. S. Novoselov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novoselov, K., Fal′ko, V., Colombo, L. et al. A roadmap for graphene. Nature 490, 192–200 (2012). https://doi.org/10.1038/nature11458

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11458

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing