Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A role for mitochondria in NLRP3 inflammasome activation

A Corrigendum to this article was published on 15 June 2011

This article has been updated

Abstract

An inflammatory response initiated by the NLRP3 inflammasome is triggered by a variety of situations of host ‘danger’, including infection and metabolic dysregulation1,2 . Previous studies suggested that NLRP3 inflammasome activity is negatively regulated by autophagy and positively regulated by reactive oxygen species (ROS) derived from an uncharacterized organelle. Here we show that mitophagy/autophagy blockade leads to the accumulation of damaged, ROS-generating mitochondria, and this in turn activates the NLRP3 inflammasome. Resting NLRP3 localizes to endoplasmic reticulum structures, whereas on inflammasome activation both NLRP3 and its adaptor ASC redistribute to the perinuclear space where they co-localize with endoplasmic reticulum and mitochondria organelle clusters. Notably, both ROS generation and inflammasome activation are suppressed when mitochondrial activity is dysregulated by inhibition of the voltage-dependent anion channel. This indicates that NLRP3 inflammasome senses mitochondrial dysfunction and may explain the frequent association of mitochondrial damage with inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondrial ROS can trigger NLRP3 inflammasome activation.
Figure 2: Inhibition of autophagy/mitophagy results in ROS generation and inflammasome activation.
Figure 3: Co-localization of the NLRP3 inflammasome components and endoplasmic reticulum–mitochondria.
Figure 4: VDAC is essential for NLRP3 inflammasome activation.

Similar content being viewed by others

Change history

  • 15 June 2011

    Some figure citations have been corrected. This correction was made on 15 June 2011.

References

  1. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010)

    Article  CAS  Google Scholar 

  2. Latz, E. The inflammasomes: mechanisms of activation and function. Curr. Opin. Immunol. 22, 28–33 (2010)

    Article  CAS  Google Scholar 

  3. Kastner, D. L., Aksentijevich, I. & Goldbach-Mansky, R. Autoinflammatory disease reloaded: a clinical perspective. Cell 140, 784–790 (2010)

    Article  CAS  Google Scholar 

  4. Franchi, L., Munoz-Planillo, R., Reimer, T., Eigenbrod, T. & Nunez, G. Inflammasomes as microbial sensors. Eur. J. Immunol. 40, 611–615 (2010)

    Article  CAS  Google Scholar 

  5. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Latz, E. NOX-free inflammasome activation. Blood 116, 1393–1394 (2010)

    Article  CAS  Google Scholar 

  7. Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W. & Sheu, S.-S. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 287, C817–C833 (2004)

    Article  CAS  Google Scholar 

  8. Li, N. et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278, 8516–8525 (2003)

    Article  CAS  Google Scholar 

  9. Goldman, S. J., Taylor, R., Zhang, Y. & Jin, S. Autophagy and the degradation of mitochondria. Mitochondrion 10, 309–315 (2010)

    Article  CAS  Google Scholar 

  10. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008)

    Article  CAS  Google Scholar 

  11. Veal, E. A., Day, A. M. & Morgan, B. A. Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1–14 (2007)

    Article  CAS  Google Scholar 

  12. Moore, C. B. et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451, 573–577 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Tattoli, I. et al. NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production. EMBO Rep. 9, 293–300 (2008)

    Article  CAS  Google Scholar 

  14. Hayashi, T., Rizzuto, R., Hajnoczky, G. & Su, T. P. MAM: more than just a housekeeper. Trends Cell Biol. 19, 81–88 (2009)

    Article  CAS  Google Scholar 

  15. Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunol. 11, 136–140 (2010)

    Article  CAS  Google Scholar 

  16. Saxena, G., Chen, J. & Shalev, A. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J. Biol. Chem. 285, 3997–4005 (2010)

    Article  CAS  Google Scholar 

  17. Colombini, M. VDAC: the channel at the interface between mitochondria and the cytosol. Mol. Cell. Biochem. 256, 107–115 (2004)

    Article  Google Scholar 

  18. Oliveira, J. M. Nature and cause of mitochondrial dysfunction in Huntington’s disease: focusing on Huntingtin and the striatum. J. Neurochem. 114, 1–12 (2010)

    CAS  PubMed  Google Scholar 

  19. Restivo, N. L., Srivastava, M. D., Schafer, I. A. & Hoppel, C. L. Mitochondrial dysfunction in a patient with crohn disease: possible role in pathogenesis. J. Pediatr. Gastroenterol. Nutr. 38, 534–538 (2004)

    Article  Google Scholar 

  20. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Yamagata, H. et al. Requirement of voltage-dependent anion channel 2 for pro-apoptotic activity of Bax. Oncogene 28, 3563–3572 (2009)

    Article  CAS  Google Scholar 

  22. Sato, T. et al. Fas-mediated apoptosome formation is dependent on reactive oxygen species derived from mitochondrial permeability transition in Jurkat cells. J. Immunol. 173, 285–296 (2004)

    Article  CAS  Google Scholar 

  23. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1adaptors ASC and Ipaf. Nature 430, 213–218 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006)

    Article  ADS  CAS  Google Scholar 

  25. Domen, J., Cheshier, S. H. & Weissman, I. L. The role of apoptosis in the regulation of hematopoietic stem cells: Overexpression of Bcl-2 increases both their number and repopulation potential. J. Exp. Med. 191, 253–264 (2000)

    Article  CAS  Google Scholar 

  26. Wieckowski, M. R., Giorgi, C., Lebiedzinska, M., Duszynski, J. & Pinton, P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nature Protocols 4, 1582–1590 (2009)

    Article  CAS  Google Scholar 

  27. Didierlaurent, A. et al. Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide. Mol. Cell. Biol. 26, 735–742 (2006)

    Article  CAS  Google Scholar 

  28. Papin, S. et al. The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1β processing. Cell Death Differ. 14, 1457–1466 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants of the Swiss National Science Foundation and by the Institute for Arthritis Research. A.S.Y. is a recipient of a stipend of the DFG. We would like to thank K. Schroder, C. Thomas and J. Vince for critical reading of the manuscript and G. W. Knott, EPFL, Lausanne, for help in collecting electron micrographs.

Author information

Authors and Affiliations

Authors

Contributions

R.Z., A.S.Y. and P.M. devised and performed the experiments. J.T. supervised the work.

Corresponding author

Correspondence to Jürg Tschopp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-9 with legends. (PDF 1972 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, R., Yazdi, A., Menu, P. et al. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011). https://doi.org/10.1038/nature09663

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09663

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing