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Abstract

Genetically-encodable optical reporters, such as Green Fluorescent Protein, have revolutionized 

the observation and measurement of cellular states. However, the inverse challenge of using light 

to precisely control cellular behavior has only recently begun to be addressed; semi-synthetic 

chromophore-tethered receptors1 and naturally-occurring channel rhodopsins have been used to 

directly perturb neuronal networks2,3. The difficulty of engineering light sensitive proteins 

remains a significant impediment to the optical control to most cell-biological processes. Here we 

demonstrate the use of a new genetically-encoded light-control system based on an optimized 

reversible protein-protein interaction from the phytochrome signaling network of Arabidopsis 

thaliana. Because protein-protein interactions are one of the most general currencies of cellular 

information, this system can in principal be generically used to control diverse functions. Here we 

show that this system can be used to precisely and reversibly translocate target proteins to the 

membrane with micrometer spatial resolution and second time resolution. We show that light-

gated translocation of the upstream activators of rho-family GTPases, which control the actin 

cytoskeleton, can be used to precisely reshape and direct the cell morphology of mammalian cells. 

The light-gated protein-protein interaction that has been optimized in this work should be useful 
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for the design of diverse light-programmable reagents, potentially enabling a new generation of 

perturbative, quantitative experiments in cell biology.

A quantitative understanding of living cells will require methods to perturb and control the 

activities of their constituent proteins at fine spatial and temporal resolutions. By measuring 

responses to precise perturbations, predictive models of cellular networks can be tested and 

iteratively improved. 4,5 A promising approach is to couple the activity of targeted proteins 

to light signals, either by incorporating photoactive allosteric modulators 

semisynthetically1,6,7, or by exploiting naturally-occurring light-sensitive domains2,3,8-10 A 

particularly useful light-sensitive interaction for creating a general genetically-encoded 

light-control system for cell biology comes from the phytochrome signalling network of 

plants.

Phytochromes are photoreceptive signalling proteins responsible for mediating many light-

sensitive processes in plants, including seed germination, seedling de-etiolation, and shade-

avoidance.11 They detect red and near-infrared light through the photoisomerization of a 

covalently-bound tetrapyrrole chromophore such as phycocyanobilin (PCB).11 This 

photoisomerization event is coupled to an allosteric transition in the phytochrome between 

two conformational states called Pr (Red-absorbing) and Pfr (Far-Red-absorbing).(Fig. 1a) 

In one well-studied signalling pathway, upon stimulation with red (650 nm) light, the 

Arabidopsis thaliana phytochrome B (PhyB) protein binds directly to a downstream 

transcription factor, Phytochrome Interaction Factor 3 (PIF3), translocates to the nucleus as 

a heterodimer and directly modulates the transcription of response genes. PIF3 binds only 

the red-light exposed form of phytochrome, Pfr, and shows no measurable binding affinity 

for the dark- or infrared-exposed Pr state.12 Thus, this interaction can be reversed by 

infrared light. This light-sensitive interaction has been mapped to the 650 residue N-terminal 

photosensory core of PhyB and a conserved 100 residue N-terminal Activated Phytochrome 

Binding (APB) domain of PIF3.13

In previous work, this light-sensitive interaction has been used in yeast to construct a 

photoreversible two-hybrid transcriptional activator to tune the expression level of a targeted 

reporter gene10, to target split intein domains to titrate the conditional protein splicing of a 

reporter gene14, and in vitro to directly target Cdc42 to its effector WASP to regulate actin 

nucleation.15 Collectively this work suggests that the PhyB-PIF interaction can be 

functionally coupled to a wide variety of signalling processes through engineered fusion 

proteins.

To date, however, no reported system employing the PhyB-PIF interaction has been 

demonstrated to enable fine spatiotemporal control of dimerization in vivo. Indeed, the 

relatively weak binding strength and slow reverse kinetics of the reported domains15 have 

prevented us from successfully applying these earlier interaction pairs for in vivo control of 

signalling. We have optimized the phytochrome interaction to enable its spatiotemporal 

control in experiments with live mammalian cells.

We first confirmed that PhyB could covalently bind externally supplied PCB chromophore 

in mammalian cells by utilizing a PhyB mutant (Y276H) that fluoresces at far-red 
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frequencies in the PCB-coupled state only.16 NIH3T3 cells transfected with this construct 

show fluorescence after only 30min of exposure to 5μM PCB, confirming rapid autoligation 

at physiological conditions.(Fig. S1) Multiple potential phytochrome-PIF pairs were 

screened by a fluorescence translocation assay in NIH3T3 cells with confocal microscopy. 

We measured the red-light-induced translocation of Yellow Fluorescent Protein (YFP) fused 

to PIF domains to coexpressed phytochrome domains fused through a flexible linker to 

mCherry and localized to the plasma membrane by a C-terminal polybasic, prenylation 

sequence from Kras.17 (Fig. 1b). Of all previously reported PIF domains13,18,19, only the N-

terminus of PIF6 is strong enough to cause significant translocation of YFP to the 

membrane. (Fig. 1c) However, its interaction with the PhyB photosensory core (residues 

1-650) is irreversible in infra-red light. Assaying it against different variants of PhyB 

revealed that the tandem C-terminal PAS domains of plant phytochromes are necessary to 

confer rapid photo-reversibility under infra-red light, underlining the importance of a 

previously reported autoinhibitory interaction for phytochrome signalling.20 We refer to the 

optimized, reversible PhyB-PIF6 interaction simply as the “Phy-PIF” interaction.

Using this optimized Phy-PIF pair we observe rapid translocation to the plasma membrane 

under dilute red light (650nm 20μmol m-2 s-1) and from the membrane under infra-red light 

(>750nm 300μmol m-2 s-1). (Fig. 2a, Supplemental Movies 1,2). Kinetic measurements of 

the Phy-induced cytoplasmic depletion of PIF-YFP under maximum illumination yield 

translocation time constants of 1.3±0.1s (s.d. n=3) for membrane recruitment and 4±1s (s.d. 

n=3) for membrane release (Fig. 2a, S2), demonstrating second-timescale control. These 

rates are an order of magnitude faster than previous chemically-induced translocation 

systems21 and are very near the physical limits for whole-cell diffusion. (See Supplemental 

Calculation) The Phy-PIF translocation proved very robust—it could be cycled over a 

hundred times by alternating red and infrared illumination with no measurable decrease in 

recruitment ratios over time, despite many cycles of imaging at photon fluxes far higher than 

those phytochromes are exposed to in natural lighting conditions. (Fig. 2b, Supplemental 

Movie 3).

The rapid forward and reverse kinetics of our Phy-PIF pair allow for fine spatial control of 

membrane recruitment by simultaneously exposing cells to patterned light at the two 

antagonizing wavelengths. In NIH3T3 cells coexpressing the above Phy-KrasCAAX PIF-

YFP recruitment pair, a nitrogen dye cell laser was used to deliver pulses of “activating” red 

light (650nm, 20Hz) to a focused point on the sample plane, while the whole sample was 

bathed in continuous “inactivating” infrared light obtained by filtering the microscope 

brightfield source (>750nm). (Fig. 3a) When the cell membrane is imaged by total internal 

reflectance (TIRF) microscopy we observe a sharp spot of membrane-localized YFP several 

microns in diameter around the irradiated point. (Fig. 3c) The rapid ‘off’ kinetics of the Phy-

PIF interaction traps the membrane-recruited YFP pool to this spot, since any YFP diffusing 

away is dissociated from the membrane by the surrounding infrared light. This spot of 

recruited YFP can be rapidly relocated across the cell by repositioning the point of incident 

light. (Supplemental Movie 4)

We developed a second, fully automated method of controlling the distribution of both light 

frequencies on the cell membrane by using a digital micromirror array to project patterned 

Levskaya et al. Page 3

Nature. Author manuscript; available in PMC 2010 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



light onto the sample plane of the microscope at micron resolutions.22 By irradiating the 

sample with 650nm and 750nm light sources oriented to take advantage of both micromirror 

angle states a complementary two-color red/infrared pattern can be projected onto the 

sample plane, allowing one to “paint” high-resolution inverse distributions of Pfr and Pr 

phytochrome onto the membrane of the cell. (Fig. 3b) We were able to faithfully project a 

simple pixel-based movie into the membrane-recruited PIF-YFP distribution of a NIH3T3 

cell. TIRF imaging reveals fine features at five microns, demonstrating an unprecedented 

degree of control over protein localization in living cells.(Fig. 3d, Supplemental Movie 5). 

Additionally, by dithering the average amount of red-light in the target mask through 

software, we could smoothly titrate the fraction of active Phy and recruited PIF-YFP, 

demonstrating effective “greyscale” control of the chemical potential. (Fig. 3e, 

Supplemental Movie 6). Using this data, we estimate the in vivo dissociation constant of the 

PhyB-PIF6 interaction to be approximately Kd = 20-100nM (Fig. S5).

We were motivated to engineer a membrane recruitment system because many signalling 

proteins are, at least in part, activated by interactions that relocalize them to the membrane. 

Moreover, plasma membrane recruitment systems have been successfully used as a platform 

for small-molecule-induced chemical biology control systems.21,23-25 For example, 

chemically induced membrane translocation of the rho- and ras-family small G-proteins21,23 

or the guanine nucleotide exchange factors (GEFs) that activate them21 can generate global 

morphological changes. We reasoned that Phy-PIF induced translocation could generate 

similar morphological changes, but with much higher spatial and temporal resolution. We 

chose to focus on spatiotemporal control of the Rho-family GTPases Rac1, Cdc42, and 

RhoA given their central role in the dynamic spatial regulation of the actin cytoskeleton at 

the polarized edges of motile cells. (Fig. 4a)

Gated-recruitment constructs were made from the isolated catalytic modules (the DH-PH 

domain) of the Rac-GEF Tiam, the Cdc42 GEF Intersectin, and the Rho-GEF Tim. The 

optimal construct topologies for DHPH activation were found by screening for Tiam DHPH 

activity via the global morphological changes that occured in transfected, serum-depleted 

NIH3T3 cells when the entire field was exposed to red light. Global recruitment of the 

optimal PIF-Tiam-DHPH chimera caused a pronounced lamellipodial phenotype within 

twenty minutes in the majority (>80%) of cotransfected cells, compared to PIF-YFP-only 

recruitment or control cells lacking the PCB chromophore. (Fig. 4b). This potent effect of 

recruiting the Tiam GEF activity to the membrane is similar to that observed using chemical 

dimerizers21. We further tested the generality of this construct topology by confirming that 

global RhoGEF recruitment induced cell body contraction in fibroblasts. (Supplemental 

Movie 9)

Given the strong global morphological effects of Tiam DH-PH domain membrane 

translocation, we then tested the effects of spatially localized light–activated translocation. 

Red laser stimulation was used for localized recruitment of the Tiam DH-PH domain in 

serum-depleted NIH3T3 cells (within a background of global repression by infrared light), 

effecting within 5-10 minutes a localized lamellipodial ‘bloom’.(Supplemental Movie 8) By 

slowly extending the point of activating light away from the cell, it is even possible to “draw 

out” an extended process up to 30μm from the main body of the cell that is stable after the 
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light has been withdrawn. This suggests the future possibility of programmatically 

specifying cell geometries and intercellular connections with light. (Fig. 4c, Supplemental 

Movies 7-8).

We further verified the signalling activity of our PIF-DHPH reagents by verifying that point 

induction causes local, transient increases of the active form of GTPase as measured by the 

membrane enrichment of biosensors—either mCherry tagged GBD binding domains from 

WASP (Fig 4d, Supplemental Movie 11) or PAK (Fig. S4)—by TIRF microscopy. Using 

these biosensors we see that GTPase activation occurs rapidly—within seconds—indicating 

that a subsequent signalling step is responsible for the typical delay of 5-10 minutes for 

lamellipodial and filopodial protrusions.

In summary, we have developed a genetically-encoded, light-switchable “Phy-PIF” 

interaction module which, because it has a properly titrated tight but reversible interaction, 

has the potential to be applied to control any live cell process that is dependent on a 

recruitment event. Unlike classical uncaging techniques, photoreversibility allows our 

system to defeat diffusive spreading by using patterned light. Further, the direct relationship 

between the recruited fluorescent fraction and signalling activity also enables measurable 

‘dosage’ of signalling flux for quantitative perturbations. We show here that the system 

works robustly in mammalian cells with external PCB, extending previous demonstrations 

in yeast10 and its natural domain in plants, suggesting that it is compatible with most 

eukaryotic cells. For genetically manipulable cells, it is in principle simple to include genes 

for enzymes that will generate PCB from heme or biliverdin.26

The high spatial and temporal resolution of light control allows this module to function as 

novel analytical tool, in which highly complex spatial or temporal patterns can be used to 

drive a process. We have also demonstrated here how this module can be used as a high 

resolution control module to sculpt cell shape in an unprecedented manner. Because of the 

generic nature of this interaction module, it is likely that it can be used to control an 

extremely broad range of cell biological processes without the need for laborious case-by-

case protein engineering.

Methods Summary

For detailed information on all methods, see Supplementary Information.

Phycocyanobilin (PCB) Purification

PCB was extracted by methanolysis at 70°C from protein precipitates of Spirulina cell lysate 

(Seltzer Chemical) that were pre-washed to remove other tetrapyrroles species. Free PCB 

was handled under a green safelight (λmax 550nm).

Light Control Experiments

NIH3T3 cells transiently transfected with the phytochrome and PIF constructs were pre-

incubated in the dark with 5μM PCB for 30min and then washed before experiments. 

Noncoherent control-light frequencies were obtained by filtering white-light sources with 

650nm and 750nm 20nm bandpass filters (Edmund Optics) or a near-infrared RG9 glass 
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filter (Newport). For morphology experiments, cells were serum-depleted (1% Bovine Calf 

Serum) for at least twelve hours before imaging.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The phytochrome-PIF interaction can by used to reversibly translocate proteins to the 

plasma membrane in a light-controlled fashion. a, apoPhyB covalently binds to the 

chromophore phycocyanobilin (PCB) to form a light-sensitive holoprotein. PhyB undergoes 

conformational changes between the Pr and Pfr states catalyzed by red and infrared light, 

reversibly associating with the PIF domain only in the Pfr state. b, This heterodimerization 

interaction can be used to translocate a YFP-tagged PIF domain to PhyB tagged by mCherry 

and localized to the plasma membrane by the C-terminal caax motif of Kras. c, Phytochrome 

and PIF domains functional in mammalian cells were tested for reversible light-dependent 

recruitment of YFP to the plasma membrane using confocal microscopy. Previously 

published PIF constructs either failed to show visible recruitment or showed irreversible 

recruitment. Only PhyB constructs harboring tandem PAS repeats (unique to the plant 

phytochromes) showed detectable but reversible recruitment in vivo.
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Figure 2. 
Confocal microscopy demonstrating the second-scale kinetics and photostability of the Phy-

PIF photoswitchable membrane recruitment system. a, Confocal microscopy of NIH3T3 

cells reveals rapid translocation of YFP between cytosol and plasma membrane under red 

and infrared light. Fitting exponentials to the cytoplasmic depletion of YFP gives typical 

time-constants of 1.3±0.1s for recruitment and 4±1s for dissociation (n=3). White rectangles 

show regions sampled for plotted traces. Arrows in graphs mark the timepoints shown. 

(Supplemental Movies 1,2) b, Rapid alternation between the 650 and 750 nM light can 

generate oscillations in the cytoplasmic concentrations of YFP. Absolute cytoplasmic 

concentration of YFP for this series is plotted along with the ratio change between time-

points to adjust for photobleaching and cell-drift. The red and grey bars represent the 

standard deviations of the recruited and released cytosolic fluorescence, demonstrating near-

fixed recruitment ratios over more than a hundred iterations. (Supplemental Movie 3) Scale 

bars 20μm.
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Figure 3. 
Recruitment to the plasma membrane can be controlled spatially by simultaneously 

irradiating cells with patterned red and infra-red light. a, A nitrogen dye cell laser exciting a 

650nm rhodamine dye was focused onto the sample plane of the microscope at 20Hz while 

IR-filtered white light continuously bathed the entire sample. b, A digital micromirror 

device focused onto the sample plane was used to send high-resolution patterns of 650nm/

750nm light from a DG-4 source into the microscope under software control. This results in 

complementary red and infra-red distributions on the sample plane. c, TIRF imaging of 

localized membrane recruitment by a point source as in a shows highly localized YFP 

recruitment. (Supplementary movie 4) The recruited YFP spot's diameter is roughly 3μm 

and can be quickly moved by repositioning the laser. The final frame shows that the YFP 

spot is not merely bleed-through of the excitatory laser light, but genuine local fluorescent 

protein recruitment. d, TIRF movies of structured membrane recruitment by 

programmatically updating masks for red and infrared light by a digital micromirror device 

as in b were collected, revealing a faithful reproduction in the recruited YFP distribution of 

a movie of the cellular automaton ‘game-of-life glider’ that was projected (Supplementary 

movie 5). e, Images show the raw traces of titrated input 650nm light and recruited PIF-

YFP. The plot at left shows the recruitment level as a function of 650nm ratio for three 

typical experiments. Inset shows the non-saturated regime. Scale bars 20μm.
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Figure 4. 
Rho-family G-protein signalling can be controlled by the light-activated translocation 

system. a, The catalytic DH-PH domains of RhoGEFs Tiam and Intersectin activate their 

respective G-proteins Rac1 and Cdc42 which in turn act through effector proteins to modify 

the actin cytoskeleton. b, Recruitee constructs with Tiam DH-PH domains were assayed for 

their ability to induce lamellipodia in NIH3T3 by exposing serum-depleted cells transfected 

with the indicated constructs to red (650nm) light and counting the percentage of cells that 

produced lamellipodia within 20min under live microscopy. Error bars s.e.m., (n=2, avg. 30 

cells; p-value=.0004 for Tiam) c, Local induction and ‘extrusion’ of lamellipodia in live 

NIH3T3 cells was demonstrated by globally irradiating the whole sample with a infrared 

(750nm) light source while focusing a red (650nm) laser onto a small portion of the cell as 

in 2a and slowly extending this red-targeted region from the cell body. Superimposed 

outlines of the cell show directed extension 30μm along the line of light movement. 

(Supplemental Movie 7) d, Cdc42-GTP binding domain (WASP-GBD) linked to mCherry 

was used to measure the “response function” of Intersectin DHPH recruitment over several 

iterations in time and in space at equilibrium. (Supplemental Movie 11) Scale bars 20μm.
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