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Catalytic C–H functionalization by metal
carbenoid and nitrenoid insertion
Huw M. L. Davies1 & James R. Manning1

Novel reactions that can selectively functionalize carbon–hydrogen bonds are of intense interest to the chemical community
because they offer new strategic approaches for synthesis. A very promising ‘carbon–hydrogen functionalization’
method involves the insertion of metal carbenes and nitrenes into C–H bonds. This area has experienced considerable
growth in the past decade, particularly in the area of enantioselective intermolecular reactions. Here we discuss several
facets of these kinds of C–H functionalization reactions and provide a perspective on how this methodology has affected the
synthesis of complex natural products and potential pharmaceutical agents.

I
n 2006, 31 new chemical entities were introduced to the world
pharmaceutical market and 2,075 molecules were in phase I or
II of clinical development1. The majority of these were small-
molecule (relative molecular mass ,1,000) organic com-

pounds2. As knowledge about the specific interactions of drugs
in vivo increases, often so does the structural complexity of new drug
targets. A major obstacle to the development of such drugs is the
difficulty associated with synthesizing large quantities in an econo-
mical fashion, because complex multi-step syntheses are usually
required. In the general media, it is often overlooked that the accessi-
bility of the components required for these new treatments will often
govern their eventual success or failure. Likewise, a design element of
any pharmaceutical agent is the expectation that the target com-
pounds can be made economically. Therefore, new strategies for
synthesis can become enabling technologies, making available new
targets and materials that would have been previously out of range.
For example, new methodologies such as metal-catalysed cross-
coupling3 and olefin metathesis4–6 have rapidly become central trans-
formations in the synthesis of new pharmaceutical agents. Selective
C–H functionalization is a class of reactions that could lead to a
paradigm shift in organic synthesis, relying on selective modification
of ubiquitous C–H bonds of organic compounds instead of the
standard approach of conducting transformations on pre-existing
functional groups. The reactive sites in each type of transformation
are very different, as illustrated in Fig. 1.

The many opportunities associated with C–H functionalization
has made this field an active area of research. Organometallic che-
mists have focused much attention on developing ‘C–H activation’

strategies, whereby a highly reactive metal complex inserts into a
C–H bond, activating the system for subsequent transformations7–9.
One of the major challenges associated with this chemistry has been
to render it catalytic in the metal complex10. A partial solution to
this problem has been to use neighbouring functionality to direct less
reactive metal complexes to the site for functionalization. Numerous
reviews have been written about this method for C–H functionaliza-
tion11–17. Here, however, we highlight another approach, in which a
divalent carbon (carbene)18 or a monovalent nitrogen (nitrene)19,
coordinated to a metal complex, inserts into a C–H bond20. This
alternative approach offers many advantages over the metal-induced
C–H insertion because the reactions exhibit high turnover numbers
and can lead to high levels of selectivity, both in terms of regioselec-
tivity and stereoselectivity (Fig. 2).

C–H functionalization by metal carbenoids

The standard method for generating the transient metal carbenes is
by metal-induced extrusion of nitrogen from diazo compounds21.
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Figure 1 | Synthesis by functional group modification compared to C–H
functionalization. Traditional sites for modification of organic molecules
(indicated by blue arrows) rely on reactive (polarizable) functional groups.
Such modes of reactivity include oxidation/reduction, aromatic
substitution, and nucleophilic/electrophilic attack. Sites for direct
functionalization of C–H bonds (red arrows) often have adjacent ‘activating’
groups, but can also occur at isolated positions.
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Figure 2 | Metal carbenoid C–H functionalization versus the ‘traditional’
C–H activation. In a traditional C–H activation manifold, the highly reactive
metal complex (M 5 metal, L 5 ligand) inserts into a C–H bond. Regeneration
of the active metal complex to form the C–H activation product has proved
difficult. In contrast, C–H functionalization via a metal carbenoid approach
typically uses a high-energy diazo compound and loss of nitrogen provides the
driving force for the energetically unfavourable formation of the carbenoid.
The highly reactive carbenoid species then inserts into a C–H bond to form the
C–H activation product and liberates the metal catalyst for another cycle.
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The challenges of regioselectivity associated with the carbene-
induced C–H functionalization meant that most of the early
advances in this field were achieved in systems capable of intra-
molecular reactions21–23. Because the rhodium carbenoid and the
reacting C–H bond are connected by a suitable tether, they are
brought into close proximity, leading to a favourable regioselective
transformation. By using a chiral catalyst, the C–H insertion can be
made enantioselective, favouring the formation of one mirror image
of the product over the other. This type of approach has been used in
the synthesis of various pharmaceutical agents, such as (R)-(2)-
baclofen24 (3) and (R)-(2)-rolipram25 (6) (Fig. 3).

In terms of strategic reactions, controllable intermolecular
transformations would be much more powerful because the
sequence of steps required to make the substrate for an intramole-
cular reaction would no longer be needed. Controlling the regios-
electivity of intermolecular C–H insertions, however, has been

challenging, particularly in the case of the most commonly used
metal carbenoids derived from acceptor-only substituted diazoace-
tates22,26. The metal carbenoids behave as very electrophilic species
and the electron-withdrawing ester group reinforces the high reacti-
vity, generating a system characterized by poor regioselectivity
between different C–H bonds27–29. In recent years, extensive efforts
have been made to attenuate the carbenoid reactivity by altering the
nature of the catalysts, with some improvements having been made
by using very bulky ligands with copper30 and silver31 complexes. The
major breakthrough in this field, however, was the discovery that
carbenoids functionalized with both donor and acceptor groups were
much more chemoselective than the traditional carbenoids, as shown
in Fig. 418,32,33.

The synthetic potential of the donor/acceptor carbenoids is
illustrated in a direct enantioselective synthesis of the most active
enantiomer of threo-methylphenidate (Ritalin) (compound 9).
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Figure 3 | Intramolecular C–H insertions. a, The intramolecular C–H
insertion of an acceptor substituted carbenoid catalysed by the chiral
rhodium carboxamidate catalyst Rh2(4S-MPPIM)4 is the key step in an
enantioselective synthesis of the GABAB receptor agonist (R)-(–)-baclofen

(ref. 24). b, The intramolecular C–H insertion of an acceptor/acceptor-
substituted carbenoid catalysed by the chiral rhodium carboxylate catalyst
Rh2(S-BPTTL)4 results in a concise synthesis of the phosphodiesterase type
IV inhibitor (R)-(2)-rolipram (ref. 25).
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Figure 4 | Controlling factors of carbenoid reactivity. The substituents
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both an electron-donating group (EDG) and an electron-withdrawing group
(EWG) is necessary to reduce carbene dimerization pathways and increase
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partial positive charge build-up occurs at the carbon undergoing C–H
functionalization. Sites adjacent to functionality that can stabilize this
polarization are considered to be electronically ‘activated’ towards
carbenoid reactions (1u, 2u and 3u represent primary, secondary or tertiary
sites, indicating the number of substituents at a particular carbon site).
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Ritalin is an important drug for the treatment of Attention Deficit
Hyperactivity Disorder (ADHD) and, as an old drug, is sold as a
racemate. The most active enantiomer of Ritalin has been marketed
as an independent therapeutic agent34. Its synthesis using conven-
tional functional group manipulations requires multiple steps35,36.
The C–H functionalization approach to Ritalin, conversely, is
direct37,38. The Rh2(S-biDOSP)2

39 catalysed reaction of N-protected
piperidine (compound 7) with methyl phenyldiazoacetate (com-
pound 8) followed by removal of the protecting group leads to the
rapid synthesis of (R,R9)-(1)-methylphenidate (compound 9) in
86% enantiomeric excess (Fig. 5)38.

C–H functionalization can provide complementary approaches to
achieve transformations equivalent to some of the classic reactions of
organic synthesis40–45. For example, C–H functionalization adjacent
to oxygen can lead to products that would be commonly derived
from an aldol reaction (Fig. 6)44,46. In the specific example used to
illustrate this concept, other key elements that control the selectivity

of this chemistry are demonstrated. The carbenoid has an electronic
preference to functionalize C–H bonds in which the carbon can
stabilize positive charge build-up because the C–H insertion has
the partial characteristic of a hydride abstraction event47,48. In this
case, selective functionalization occurs adjacent to the siloxy group
rather than the more electron-withdrawing acetoxy group in
compound 10. Additionally, if there is good steric differentiation at
the C2H insertion site, high levels of diastereoselectivity can be
achieved. Thus, compound 11 is formed in 92% yield, .94% dia-
stereomeric excess and 72% enantiomeric excess44.

C–H functionalization adjacent to nitrogen can lead to products
that would be typically formed from a Mannich reaction, as illu-
strated in the direct synthesis of b-amino ester 13 (ref. 42). This
example illustrates the important controlling influences in steric fac-
tors, because the electronically most activated site in compound 12,
the benzylic carbon, is sterically inaccessible and selective functiona-
lization occurs at the N-methyl group42,49,50.

A further advantage of the carbenoid-induced C–H functionaliza-
tion is the possibility of the C2H insertion step initiating a cascade
sequence. A spectacular example of such an event is termed the ‘com-
bined C–H activation/Cope rearrangement’51–56. One of the earliest
examples of this reaction is shown between the vinyldiazoacetate 15
and 1,3-cyclohexadiene in Fig. 7. Before the C–H functionalization is
complete, a rearrangement occurs to form a 1,4-cyclohexadiene deriv-
ative 16 with exceptional enantiocontrol. The entire process is believed
to occur via a concerted, ordered transition state that leads to higher
stereoselectivity than is normally observed in a direct C–H insertion.
This transformation has been used in a very concise enantioselective
formal synthesis of the antidepressant sertraline (Zoloft, Fig. 7)51.

An even more elaborate sequence of events has been developed
for the enantioselective synthesis of 4-substituted indoles. Indoles
are present in a number of pharmaceutical agents57 and there
has been much interest in the enantioselective synthesis of 1-aryl-
1-indolylalkyl derivatives. Normally the indole is functionalized at
the 2- or 3-position because these are the most reactive sites using
conventional chemistry58–60. In contrast, the C–H functionalization
strategy results in a very efficient method for generating 4-substituted
indoles with high enantioselectivity (Fig. 8)56. These types of
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compounds and related structures have not been extensively studied
as potential therapeutic agents, presumably because they were not
readily accessible.

A powerful enabling synthetic methodology should greatly
simplify the total synthesis of complex natural products. Notable

examples of this have been illustrated in the synthesis of the
natural products derived from the West Indian gorgonian coral
Pseudopterogorgia elisabethae (Fig. 9)61. Previous syntheses have
struggled with controlling the stereochemistry at the three stereo-
centres indicated in red, primarily because the natural products lack
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Figure 7 | Combined C–H activation/Cope rearrangement. The C–H
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intermediate) to give the combined C–H activation/Cope rearrangement
product with exceptionally high enantioselectivity (ref. 51).
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suitable functional groups as handles in the synthetic transforma-
tions62–67. In contrast, an enantiodivergent C–H functionalization of
racemic dihydronaphthalenes 21 generates the core structures 23
with high stereoselectivity at all three stereocentres. In the presence
of the chiral catalyst Rh2(R-DOSP)4 (ref. 68), the other enantiomer of
the dihydronaphthalene 21 reacts in an entirely different manner to
form cyclopropanation products69. This reaction can be conducted
with a variety of dihydronaphthalene derivatives and has been
applied to very efficient syntheses of a range of natural products
including elisapterosin B70 (compound 24), colombiasin A70 (com-
pound 25), elisabethadione71 (compound 26), the p-benzoquinone
2771 and erogorgiaene (compound 28)69.

C–H functionalization by metal nitrenoids

In recent years, metal nitrenoid complexes have also been shown to
be capable reagents for C–H functionalization, a reaction that is
usually called C–H amination14,72,73. Some spectacular intramole-
cular examples have been reported by Du Bois and colleagues
for the synthesis of complex natural products such as manzacidin
A74 (compound 32), (1)-saxitoxin75 (compound 35) and (2)-
tetrodotoxin76 (compound 40) (Fig. 10). These transformations
illustrate how, by judicious choice of substrates, the C–H amination
can be conducted in the presence of a range of functional groups.
Generally, the most broadly used precursors to the transient metal
nitrenes have been aryliminoiodinanes, which are decomposed by a
suitable metal complex77. In the syntheses described here, the aryli-
minoiodinanes are produced in situ from the corresponding amine,
which makes the overall transformations even more attractive78,79.

Lebel and colleagues have shown that N-tosyloxyamides such
as compound 41 are also efficient precursors to transient metal
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nitrenoids80,81. By conducting this nitrene insertion with chiral dir-
hodium catalyst Rh2(S-TCPTAD)4, enantioselective transformations
can be achieved, as illustrated in Fig. 1182. The site for C–H amination
is governed by the length of the tether and in general five-membered
rings are preferred.

Du Bois and colleagues have developed a bridged achiral rhodium
catalyst Rh2(esp)2 that has performed well at low catalyst loadings in
both intra- and intermolecular C2H amination reactions (Fig.
12)83–85. Enantioselective intermolecular reactions of metal nitrenes
are less developed than the parallel reactions of metal carbenes,
although some significant examples have been reported81,82,86,87. A
conceptually interesting approach to stereoselective intermolecular
nitrene chemistry involves the use of a chiral sulphonamide (com-
pound 48) as the amine source in the reactions. Exceptionally high
diastereoselectivity can be obtained in matched reactions between the
appropriate enantiomers of a chiral sulphonamide and a chiral rho-
dium catalyst87. Given the ubiquity of nitrogen atoms in biologically
active compounds, C2H amination as an enabling technology in
pharmaceutical synthesis has broad potential. A number of efficient
transformations have been achieved at benzylic positions, but broad
application of this chemistry is still relatively limited.

Future directions

C–H functionalizations by means of metal carbenoids and metal
nitrenoids are rapidly becoming very general strategic reactions for
the synthesis of natural products and pharmaceutical targets. The
intramolecular C2H insertion of metal carbenoids is now a well-
established transformation, while the corresponding intramolecular
C2H amination has, in the last few years, been shown to be applic-
able to the synthesis of highly complex natural product targets.
The recognition that donor/acceptor functionalized carbenoids are
highly selective intermediates has opened up enantioselective
intermolecular C–H insertion as a powerful transformation.
Enantioselective intermolecular C2H amination is also developing
well and is likely to see broad synthetic application. During the next
few years this field is likely to undergo rapid expansion as improved
chiral catalysts and even more selective reagents are developed. It has
already been shown that these reactions can be considered as com-
plementary to some of the classic reactions of organic synthesis and
this will be further emphasized as additional ingenious applications
of this chemistry to total synthesis are described. As the synthetic
uses of C–H functionalization become more fully appreciated, its

application as an enabling technology for drug discovery and syn-
thesis will become a common practice.
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