Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The remarkable metal-catalysed olefin metathesis reaction

Abstract

Catalytic olefin metathesis—through which pairs of C = C bonds are reorganized—transforms simple molecules to those that are complex and precious. This class of reactions has noticeably enriched chemical synthesis, which is the art of preparing scarce molecules with highly desirable properties (for example, medicinal agents or polymeric materials). Research in the past two decades has yielded structurally well-defined catalysts for olefin metathesis that are used to synthesize an array of molecules with unprecedented efficiency. Nonetheless, the full potential of olefin metathesis will be realized only when additional catalysts are discovered that are truly practical and afford exceptional selectivity for a significantly broader range of reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different types of olefin metathesis.
Figure 2: Representative olefin metathesis catalysts.
Figure 3: The general mechanism for ring-closing olefin metathesis.
Figure 4: A concise synthesis of longithorone A.
Figure 5: General mechanism for catalytic ring-opening/cross metathesis.
Figure 6: Catalytic ring-opening/cross metathesis provides uniquely efficient pathways for synthesis of biologically active natural products.
Figure 7
Figure 8: Catalytic olefin metathesis has been used in the large-scale preparation of pharmaceutical candidates.
Figure 9: More recent and modified variants of Ru-based olefin metathesis catalysts 44–49 and an easier way to access a range of chiral Mo catalysts.

Similar content being viewed by others

References

  1. Corey, E. J. The logic of chemical synthesis: Multistep synthesis of complex carbogenic molecules (Nobel Lecture). Angew. Chem. Int. Edn Engl. 30, 455–465 (1991)

    Google Scholar 

  2. Meng, D. et al. Total synthesis of epothilones A and B. J. Am. Chem. Soc. 119, 10073–10092 (1997)

    CAS  Google Scholar 

  3. Nicolaou, K. C. et al. Synthesis of epothilones A and B in solid and solution phase. Nature 387, 268–272 (1997)

    ADS  CAS  PubMed  Google Scholar 

  4. Morrissey, S. R. NIH director has steered agency through congressional inquiries and penalty budget increases with bold actions to position agency for future. Chem. Eng. News 84 (27). 12–17 (2006)

    Google Scholar 

  5. Katz, T. J. & McGinnis, J. The mechanism of the olefin metathesis reaction. J. Am. Chem. Soc. 97, 1592–1593 (1975)

    CAS  Google Scholar 

  6. Casey, C. P. & Burkhardt, T. J. Reactions of (diphenylcarbene)pentacarbonyltungsten(0) with alkenes. Role of metal-carbene complexes in cyclopropanation and olefin metathesis reactions. J. Am. Chem. Soc. 96, 7808–7809 (1974)

    CAS  Google Scholar 

  7. Grubbs, R. H., Carr, D. D., Hoppin, C. & Burk, P. L. Consideration of the mechanism of the metal catalyzed olefin metathesis reaction. J. Am. Chem. Soc. 98, 3478–3483 (1976)

    CAS  Google Scholar 

  8. Schrock, R. R. Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel Lecture). Angew. Chem. Int. Edn 45, 3748–3759 (2006)

    ADS  CAS  Google Scholar 

  9. Grubbs, R. H. Olefin metathesis molecules for the preparation of molecules and materials (Nobel Lecture). Angew. Chem. Int. Edn 45, 3760–3765 (2006)

    CAS  Google Scholar 

  10. Chauvin, Y. Olefin metathesis: The early days (Nobel Lecture). Angew. Chem. Int. Edn 45, 3740–3747 (2006)

    Google Scholar 

  11. Trost, B. M. The atom economy — a search for synthetic efficiency. Science 254, 1471–1478 (1991)

    ADS  CAS  PubMed  Google Scholar 

  12. Grubbs, R. H. Handbook of Metathesis (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  13. Connon, S. J. & Blechert, S. Recent developments in olefin cross metathesis. Angew. Chem. Int. Edn 42, 1900–1923 (2003)

    CAS  Google Scholar 

  14. Han, S.-Y. & Chang, S. in Handbook of Metathesis Vol. 2 (ed. Grubbs, R. H.) 5–127 (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  15. Schrader, T. O. & Snapper, M. L. in Handbook of Metathesis Vol. 2 (ed. Grubbs, R. H.) 205–237 (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  16. Wiberg, K. B. The concept of strain in organic chemistry. Angew. Chem. Int. Edn Engl. 25, 312–322 (1986)

    Google Scholar 

  17. Conrad, J. C. et al. Oligomers as intermediates in ring-closing metathesis. J. Am. Chem. Soc. 129, 1024–1025 (2007)

    CAS  PubMed  Google Scholar 

  18. Schrock, R. R. & Hoveyda, A. H. Molybdenum and tungsten imido alkylidene complexes as efficient olefin metathesis catalysts. Angew. Chem. Int. Edn 42, 4592–4633 (2003)

    CAS  Google Scholar 

  19. Nguyen, S. T. & Trnka, T. M. in Handbook of Metathesis Vol. 1 (ed. Grubbs, R. H.) 61–85 (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  20. Schrock, R. R. High oxidation state multiple metal–carbon bonds. Chem. Rev. 102, 145–179 (2002)

    CAS  PubMed  Google Scholar 

  21. Katz, T. J. in Handbook of Metathesis Vol. 1 (ed. Grubbs, R. H.) 47–60 (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  22. Toreki, R. & Schrock, R. R. A well-defined rhenium(VII) olefin metathesis catalyst. J. Am. Chem. Soc. 112, 2448–2449 (1990)

    CAS  Google Scholar 

  23. Castarlenas, R., Esteruelas, M. A. & Onate, E. N-heterocyclic carbene–osmium complexes for olefin metathesis reactions. Organometallics 24, 4343–4346 (2005)

    CAS  Google Scholar 

  24. Schrock, R. R. et al. Synthesis of molybdenum imido alkylidene complexes and some reactions involving acyclic olefins. J. Am. Chem. Soc. 112, 3875–3886 (1990)

    CAS  Google Scholar 

  25. Scholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett. 1, 953–956 (1999)

    CAS  PubMed  Google Scholar 

  26. Weskamp, T., Schattenmann, W. C., Spegler, M. & Herrmann, W. A. A novel class of ruthenium catalysts for olefin metathesis. Angew. Chem. Int. Edn Engl 37, 2490–2493 (1995)

    Google Scholar 

  27. Huang, J., Stevens, E. D., Nolan, S. P. & Petersen, J. L. Olefin metathesis — active ruthenium complexes bearing nucleophilic carbene ligand. J. Am. Chem. Soc. 121, 2674–2678 (1999)

    CAS  Google Scholar 

  28. Halback, T. S. et al. Novel ruthenium-based metathesis catalysts containing electron-withdrawing ligands: synthesis, immobilization, and reactivity. J. Org. Chem. 70, 4687–4694 (2005)

    Google Scholar 

  29. Garber, S. B., Kingsbury, J. S., Gray, B. L. & Hoveyda, A. H. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc. 122, 8168–8179 (2000)

    CAS  Google Scholar 

  30. Cortez, G. A., Schrock, R. R. & Hoveyda, A. H. Efficient enantioselective synthesis of piperidines through catalytic asymmetric ring-opening/cross-metathesis reactions. Angew. Chem. Int. Edn 46, 4534–4538 (2007)

    CAS  Google Scholar 

  31. Slinn, C. A. et al. Synthesis of unprotected and borane-protected phosphines using Ru- and Mo-based olefin metathesis catalysts. Org. Biomol. Chem. 1, 3820–3825 (2003)

    CAS  PubMed  Google Scholar 

  32. Jafarpour, L., Schanz, H.-J., Stevens, E. D. & Nolan, S. P. Indenylidene-imidazolidene complexes of ruthenium as ring-closing metathesis catalysts. Organometallics 18, 5416–5419 (1999)

    CAS  Google Scholar 

  33. Barbasiewicz, M. et al. Probing of the ligand anatomy: Effects of the chelating alkoxy ligand modifications on the structure and catalytic activity of ruthenium carbene complexes. Adv. Synth. Catal. 349, 193–203 (2007)

    CAS  Google Scholar 

  34. Stewart, I. C. et al. Highly efficient ruthenium catalysts for the formation of tetrasubstituted olefins via ring-closing metathesis. Org. Lett. 9, 1589–1592 (2007)

    CAS  PubMed  Google Scholar 

  35. Alexander, J. B., La, D. S., Cefalo, D. S., Hoveyda, A. H. & Schrock, R. R. Catalytic enantioselective ring-closing metathesis by a chiral biphen-Mo complex. J. Am. Chem. Soc. 120, 4041–4042 (1998)

    CAS  Google Scholar 

  36. Funk, T. W., Berlin, J. M. & Grubbs, R. H. Highly active chiral ruthenium catalysts for asymmetric ring-closing olefin metathesis. J. Am. Chem. Soc. 128, 1840–1846 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Veldhuizen, J. J., Campbell, J. E., Giudici, R. E. & Hoveyda, A. H. A readily available chiral Ag-based N-heterocyclic carbene complex for use in efficient and highly enantioselective Ru-catalyzed olefin metathesis and Cu-catalyzed allylic alkylation reactions. J. Am. Chem. Soc. 127, 6877–6882 (2005)

    CAS  PubMed  Google Scholar 

  38. Thayer, A. Chiral catalysts. Chem. Eng. News 83, 40–48 (2005)

    Google Scholar 

  39. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis (Springer, Berlin, 1999)

    Google Scholar 

  40. Hoveyda, A. H. in Handbook of Metathesis Vol. 2 (ed. Grubbs, R. H.) 128–150 (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  41. Berlin, J. M., Goldberg, S. D. & Grubbs, R. H. Highly active chiral ruthenium catalysts for asymmetric cross- and ring-opening cross-metathesis. Angew. Chem. Int. Edn 45, 7591–7595 (2006)

    CAS  Google Scholar 

  42. Giudici, R. E. & Hoveyda, A. H. Directed catalytic asymmetric olefin metathesis. Selectivity control by enoate and ynoate groups in Ru-catalyzed asymmetric ring-opening/cross-metathesis. J. Am. Chem. Soc. 129, 3824–3825 (2007)

    CAS  PubMed  Google Scholar 

  43. Cortez, G. A., Baxter, C. A., Schrock, R. R. & Hoveyda, A. H. Comparison of Ru- and Mo-based chiral olefin metathesis catalysts. Complementarity in asymmetric ring-opening/cross-metathesis reactions of oxa- and azabicycles. Org. Lett. 9, 2871–2874 (2007)

    CAS  PubMed  Google Scholar 

  44. Hérisson, J.-L. & Chauvin, Y. Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques. Makromol. Chem. 141, 161–176 (1971)

    Google Scholar 

  45. Tallarico, J. A., Bonitatbus, P. J. & Snapper, M. L. Ring-opening metathesis. A ruthenium catalyst caught in the act. J. Am. Chem. Soc. 119, 7157–7158 (1997)

    CAS  Google Scholar 

  46. Anderson, D. R., Hickstein, D. D., O’Leary, D. J. & Grubbs, R. H. Model compounds of ruthenium-alkene intermediates in olefin metathesis reactions. J. Am. Chem. Soc. 128, 8386–8387 (2006)

    CAS  PubMed  Google Scholar 

  47. Poater, A., Solans-Monfort, X., Clot, E., Copèret, C. & Eisenstein, O. Understanding d0-olefin metathesis catalysts: Which metal? Which ligands? J. Am. Chem. Soc. 129, 8207–8216 (2007)

    CAS  PubMed  Google Scholar 

  48. Sanford, M. S., Love, J. A. & Grubbs, R. H. Mechanism and activity of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc. 123, 6543–6554 (2001)

    CAS  PubMed  Google Scholar 

  49. McGuinness, D. S. & Cavell, K. J. Zerovalent palladium and nickel complexes of heterocyclic carbenes: Oxidative addition of organic halides, carbon-carbon coupling processes, and Heck reaction. Organometallics 18, 1596–1605 (1999)

    CAS  Google Scholar 

  50. Romero, P. E. & Piers, W. E. Direct observation of a 14-electron ruthenacyclobutane relevant to olefin metathesis. J. Am. Chem. Soc. 127, 5032–5033 (2005)

    CAS  PubMed  Google Scholar 

  51. Tsang, W. C. P. et al. Alkylidene and metallacyclic complexes of tungsten that contain a chiral biphenoxide ligand. Asymmetric ring-closing metathesis, and mechanistic investigations. J. Am. Chem. Soc. 125, 2652–2666 (2003)

    CAS  PubMed  Google Scholar 

  52. Aldhart, C. & Chen, P. Mechanism and activity of ruthenium olefin metathesis catalysts: The role of ligands and substrates from a theoretical perspective. J. Am. Chem. Soc. 126, 3496–3510 (2004)

    Google Scholar 

  53. Tsang, W. P. C. et al. Investigations of reactions between chiral molybdenum imido alkylidene complexes and ethylene: Observation of unsolvated base-free methylene complexes, metalacyclobutane and metalacyclopentane complexes, and molybdenum (IV) olefin complexes. Organometallics 23, 1997–2007 (2004)

    CAS  Google Scholar 

  54. Hoveyda, A. H. in Handbook of Combinatorial Chemistry Vol. 2 (eds Nicolaou, K. C., Hanko, R. & Hartwig, W.) 991–1016 (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  55. Nicolaou, K. C., Bulger, P. G. & Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Edn 44, 4490–4527 (2005)

    CAS  Google Scholar 

  56. Gradillas, A. & Perez-Castells, J. Macrocyclization by ring-closing metathesis in total synthesis of natural products: Reaction conditions and limitation. Angew. Chem. Int. Edn 45, 6086–6101 (2006)

    CAS  Google Scholar 

  57. Deiters, A. & Martin, S. F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev. 104, 2199–2238 (2004)

    CAS  PubMed  Google Scholar 

  58. Xu, Z. et al. Applications of Zr-catalyzed carbomagnesation and Mo-catalyzed macrocyclic ring-closing metathesis in asymmetric synthesis. Enantioselective total synthesis of Sch 38516 (fluvirucin B1). J. Am. Chem. Soc. 119, 10302–10316 (1997)

    CAS  Google Scholar 

  59. Smith, A. B., Adams, C. M., Kozmin, S. A. & Paone, D. V. Total synthesis of (–)-cylindrocyclophanes A and F exploiting the reversible nature of olefin cross metathesis reaction. J. Am. Chem. Soc. 123, 5925–5937 (2001)

    CAS  PubMed  Google Scholar 

  60. Nicolaou, K. C. & Sorensen, E. J. in Classics in Total Synthesis 1–19 (Wiley-VCH, Weinheim, 1996)

    Google Scholar 

  61. Layton, M. E., Morales, C. A. & Shair, M. D. Biomimetic synthesis of (–)-longithorone A. J. Am. Chem. Soc. 124, 773–775 (2002)

    CAS  PubMed  Google Scholar 

  62. Schwab, P., Grubbs, R. H. & Ziller, J. W. Synthesis and application of RuCl2( = CHR’)(PR3)2: The influence of the alkylidene moiety on metathesis activity. J. Am. Chem. Soc. 118, 100–110 (1995)

    Google Scholar 

  63. Katz, T. J., Lee, S. J., Nair, M. & Savage, E. B. Reactivities of metal carbenes towards alkenes and alkynes. J. Am. Chem. Soc. 102, 7942–7944 (1980)

    CAS  Google Scholar 

  64. Katz, T. J., Savage, E. B., Lee, S. J. & Nair, M. Induction of olefin metathesis by acetylenes. J. Am. Chem. Soc. 102, 7940–7942 (1980)

    CAS  Google Scholar 

  65. Diver, S. T. & Giessert, S. J. Enyne metathesis (enyne bond reorganization). Chem. Rev. 104, 1317–1382 (2004)

    CAS  PubMed  Google Scholar 

  66. Bornand, M. & Chen, P. Mechanism-based design of a ROMP catalyst for sequence-selective copolymerization. Angew. Chem. Int. Edn 44, 7909–7911 (2005)

    Google Scholar 

  67. Statsuk, A. V., Liu, D. & Kozmin, S. A. Synthesis of bistramide A. J. Am. Chem. Soc. 126, 9546–9547 (2004)

    CAS  PubMed  Google Scholar 

  68. Gillingham, D. G. & Hoveyda, A. H. Chiral N-heterocyclic carbenes in natural product synthesis: Application of Ru-catalyzed asymmetric ring-opening/cross-metathesis and Cu-catalyzed allylic alkylation to total synthesis of baconipyrone C. Angew. Chem. Int. Edn. 46, 3860–3864 (2007)

    CAS  Google Scholar 

  69. Goldman, A. S. et al. Catalytic alkane metathesis by tandem alkane dehydrogenation-olefin metathesis. Science 312, 257–261 (2006)

    ADS  CAS  PubMed  Google Scholar 

  70. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002)

    ADS  CAS  PubMed  Google Scholar 

  71. Dragutan, V. & Dragutan, I. A resourceful new strategy in organic synthesis: Tandem and stepwise metathesis/non-metathesis catalytic processes. J. Organomet. Chem. 681, 5129–5147 (2006)

    Google Scholar 

  72. Nickel, A. et al. Total synthesis of ingenol. J. Am. Chem. Soc. 126, 16300–16301 (2004)

    CAS  PubMed  Google Scholar 

  73. Wipf, P. & Spencer, S. R. Asymmetric total synthesis of tuberstemonine, didehydrotuberstemonine, and 13-epituberstemonine. J. Am. Chem. Soc. 127, 225–235 (2004)

    Google Scholar 

  74. Kinderman, S. S. et al. Aminopalladation of alkoxyallenes applied in the synthesis of an enantiopure 1-ethylquinolizidine frog alkaloid. J. Am. Chem. Soc. 126, 4100–4101 (2004)

    CAS  PubMed  Google Scholar 

  75. Kuramochi, A., Usuda, H., Yamatsugu, K., Kanai, M. & Shibasaki, M. Total synthesis of (±)-garsubellin A. J. Am. Chem. Soc. 127, 14200–14201 (2005)

    CAS  PubMed  Google Scholar 

  76. Kummer, D. A., Brenneman, J. B. & Martin, S. F. Application of a domino intramolecular enyne metathesis/cross-metathesis reaction to the total synthesis of (+)-8-epi-xanthatin. Org. Lett. 7, 4621–4623 (2005)

    CAS  PubMed  Google Scholar 

  77. Kingsbury, J. S., Harrity, J. P. A., Bonitatebus, P. J. & Hoveyda, A. H. A recyclable Ru-based metathesis catalyst. J. Am. Chem. Soc. 121, 791–799 (1999)

    CAS  Google Scholar 

  78. Nicola, T., Brenner, M., Donsbach, K. & Kreye, P. First scale-up to production scale of a ring closing metathesis reaction forming a 15-membered macrocycle as a precursor of an active pharmaceutical ingredient. Org. Proc. Res. Dev. 9, 513–515 (2005)

    CAS  Google Scholar 

  79. Poirer, M. et al. RCM of tripeptide dienes containing a chiral vinylcyclopropane moiety: Impact of different Ru-based catalysts on the stereochemical integrity of the macrocyclic products. J. Org. Chem. 70, 10765–10773 (2005)

    Google Scholar 

  80. Yee, N. K. et al. Efficient large-scale synthesis of BILN 2061, a potent HCV protease inhibitor, by a convergent approach based on ring-closing metathesis. J. Org. Chem. 71, 7133–7145 (2006)

    CAS  PubMed  Google Scholar 

  81. Streck, R. Economic and ecological aspects in applied olefin metathesis. J. Mol. Catal. 76, 359–372 (1992)

    CAS  Google Scholar 

  82. Mol, J. C. Industrial applications of olefin metathesis. J. Mol. Catal. A 213, 39–45 (2004)

    CAS  Google Scholar 

  83. Johnson, H. F. (Standard Oil Development Co.) Cyclopentadiene. US patent 2636054. (1953)

  84. Malenfant, P. R. L., Wan, J., Taylor, S. T. & Manoharan, M. Self-assembly of an organic-inorganic block copolymer for nano-ordered ceramics. Nature Nanotechnol. 2, 43–46 (2007)

    ADS  CAS  Google Scholar 

  85. Wei, X., Carroll, P. J. & Sneddon, L. G. New routes to organodecaborane polymers via ruthenium-catalyzed ring-open metathesis polymerization. Organometallics 23, 163–165 (2004)

    CAS  Google Scholar 

  86. Tulevski, G. S., Myers, M. B., Hybertsen, M. S., Steigerwald, M. L. & Nuckolls, C. Formation of catalytic metal-molecule surface. Science 309, 591–594 (2005)

    ADS  CAS  PubMed  Google Scholar 

  87. White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001)

    CAS  PubMed  Google Scholar 

  88. Hong, S. H., Wenzel, A. G., Salguero, T. T., Day, M. W. & Grubbs, R. H. Decomposition of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc. 127. 7961–7968 (2007)

    Google Scholar 

  89. De Vos, D. E., Vankelecom, I. F. J. & Jacobs, P. A. Chiral Catalyst Immobilization and Recycling (VCH-Wiley, Weinheim, 2000)

    Google Scholar 

  90. Kingsbury, J. S. & Hoveyda, A. H. in Polymeric Materials in Organic Synthesis and Catalysis (ed. Buchmeiser, M. R.) 467–502 (VCH-Wiley, Weinheim, 2003)

    Google Scholar 

  91. Wakamatsu, H. & Blechert, S. A new highly efficient ruthenium catalyst. Angew. Chem. Int. Edn 41, 2403–2405 (2002)

    CAS  Google Scholar 

  92. Grela, K., Harutyunyan, S. & Michrowska, A. A highly efficient ruthenium catalyst for metathesis reactions. Angew. Chem. Int. Edn 41, 4038–4040 (2002)

    CAS  Google Scholar 

  93. Hong, S. H. & Grubbs, R. H. Highly active water-soluble olefin metathesis catalyst. J. Am. Chem. Soc. 128, 3508–3509 (2006)

    CAS  PubMed  Google Scholar 

  94. Kingsbury, J. S. et al. Immobilization of olefin metathesis catalysts on monolithic sol–gel: Practical, efficient, and easily recyclable catalysts for organic and combinatorial synthesis. Angew. Chem. Int. Edn 40, 4251–4256 (2001)

    CAS  Google Scholar 

  95. Bielawski, C. W., Benitez, D. & Grubbs, R. H. An “endless” route to cyclic polymers. Science 297, 2041–2044 (2006)

    ADS  Google Scholar 

  96. Hock, A. S., Schrock, R. R. & Hoveyda, A. H. Dipyrrolyl precursors to bisalkoxide molybdenum olefin metathesis catalysts. J. Am. Chem. Soc. 128, 16373–16375 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in our laboratories regarding the development of catalysts for olefin metathesis has been funded by the US National Science Foundation and the US National Institutes of Health, Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir H. Hoveyda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoveyda, A., Zhugralin, A. The remarkable metal-catalysed olefin metathesis reaction. Nature 450, 243–251 (2007). https://doi.org/10.1038/nature06351

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06351

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing