Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Break-induced replication and telomerase-independent telomere maintenance require Pol32

Abstract

Break-induced replication (BIR) is an efficient homologous recombination process to initiate DNA replication when only one end of a chromosome double-strand break shares homology with a template1,2,3,4,5. BIR is thought to re-establish replication at stalled and broken replication forks and to act at eroding telomeres in cells that lack telomerase in pathways known as ‘alternative lengthening of telomeres’ (reviewed in refs 2, 6). Here we show that, in haploid budding yeast, Rad51-dependent BIR induced by HO endonuclease requires the lagging strand DNA Polα-primase complex as well as Polδ to initiate new DNA synthesis. Polε is not required for the initial primer extension step of BIR but is required to complete 30 kb of new DNA synthesis. Initiation of BIR also requires the nonessential DNA Polδ subunit Pol32 primarily through its interaction with another Polδ subunit, Pol31. HO-induced gene conversion, in which both ends of a double-strand break engage in homologous recombination, does not require Pol32. Pol32 is also required for the recovery of both Rad51-dependent and Rad51-independent survivors in yeast strains lacking telomerase. These results strongly suggest that both types of telomere maintenance pathways occur by recombination-dependent DNA replication. Thus Pol32, dispensable for replication and for gene conversion, is uniquely required for BIR; this finding provides an opening into understanding how DNA replication re-start mechanisms operate in eukaryotes. We also note that Pol32 homologues have been identified both in fission yeast and in metazoans where telomerase-independent survivors with alternative telomere maintenance have also been identified2,6,7.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental system to study BIR and kinetics of DSB repair.
Figure 2: The Polα-primase complex, Polδ and Polε are required for BIR.
Figure 3: POL32 is required for BIR.
Figure 4: Effect of POL32 on gene conversion and on telomere maintenance.

Similar content being viewed by others

References

  1. Haber, J. E. Transpositions and translocations induced by site-specific double-strand breaks in budding yeast. DNA Repair 5, 998–1009 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. McEachern, M. J. & Haber, J. E. Break-induced replication and recombinational telomere elongation in yeast. Annu. Rev. Biochem. 75, 111–135 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Morrow, D. M., Connelly, C. & Hieter, P. “Break copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147, 371–382 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Davis, A. P. & Symington, L. S. RAD51-dependent break-induced replication in yeast. Mol. Cell. Biol. 24, 2344–2351 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Malkova, A., Naylor, M., Yamaguchi, M., Ira, G. & Haber, J. E. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol. Cell. Biol. 25, 933–944 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Henson, J. D., Neumann, A. A., Yeager, T. R. & Reddel, R. R. Alternative lengthening of telomeres in mammalian cells. Oncogene 21, 598–610 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. Nakamura, T. M., Cooper, J. P. & Cech, T. R. Two modes of survival of fission yeast without telomerase. Science 282, 493–496 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Pâques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Symington, L. S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66, 630–670 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Michel, B. Replication fork arrest and DNA recombination. Trends Biochem. Sci. 25, 173–178 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Haber, J. E. DNA recombination: the replication connection. Trends Biochem. Sci. 24, 271–275 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Lundblad, V. & Blackburn, E. H. An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell 73, 347–360 (1993)

    Article  CAS  PubMed  Google Scholar 

  13. Le, S., Moore, J. K., Haber, J. E. & Greider, C. RAD50 and RAD51 define two different pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152, 143–152 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Teng, S., Chang, J., McCowan, B. & Zakian, V. A. Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol. Cell 6, 947–952 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. Torres, J. Z., Schnakenberg, S. L. & Zakian, V. A. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol. Cell. Biol. 24, 3198–3212 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Torres, J. Z., Bessler, J. B. & Zakian, V. A. Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p. Genes Dev. 18, 498–503 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Holmes, A. & Haber, J. E. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 96, 415–424 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. Wang, X. et al. Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 6891–6899 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ira, G., Satory, D. & Haber, J. E. Conservative inheritance of newly synthesized DNA in double-strand break-induced gene conversion. Mol. Cell. Biol. 26, 9424–9429 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giot, L., Chanet, R., Simon, M., Facca, C. & Faye, G. Involvement of the yeast DNA polymerase delta in DNA repair in vivo. Genetics 146, 1239–1251 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Budd, M. E. & Campbell, J. L. DNA polymerases δ and ε are required for chromosomal replication in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 496–505 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith, C. E., Llorente, B. & Symington, L. S. Template switching during break-induced replication. Nature 447, 102–105 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Johansson, E., Majka, J. & Burgers, P. M. Structure of DNA polymerase δ from Saccharomyces cerevisiae. J. Biol. Chem. 276, 43824–43828 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Corrette-Bennett, S. E., Borgeson, C., Sommer, D., Burgers, P. M. & Lahue, R. S. DNA polymerase δ, RFC and PCNA are required for repair synthesis of large looped heteroduplexes in Saccharomyces cerevisiae. Nucleic Acids Res. 32, 6268–6275 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, M. E., de Calignon, A., Nicolas, A. & Galibert, F. POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase δ, defines a link between DNA replication and the mutagenic bypass repair pathway. Curr. Genet. 38, 178–187 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. Huang, M. E., Rio, A. G., Galibert, M. D. & Galibert, F. Pol32, a subunit of Saccharomyces cerevisiae DNA polymerase δ, suppresses genomic deletions and is involved in the mutagenic bypass pathway. Genetics 160, 1409–1422 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vaze, M. et al. Recovery from checkpoint-mediated arrest after repair of a double- strand break requires srs2 helicase. Mol. Cell 10, 373–385 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. Johansson, E., Garg, P. & Burgers, P. M. The Pol32 subunit of DNA polymerase δ contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J. Biol. Chem. 279, 1907–1915 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Chen, Q., Ijpma, A. & Greider, C. W. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol. Cell. Biol. 21, 1819–1827 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Teng, S. C. & Zakian, V. A. Telomere–telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8083–8093 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sugawara, N., Wang, X. & Haber, J. E. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12, 209–219 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. Sugawara, N. & Haber, J. E. Repair of DNA double strand breaks: in vivo biochemistry. Methods Enzymol. 408, 416–429 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Burgers for his generosity in providing Pol32 mutant plasmids and for comments, to M. Budd and J. Campbell for plasmids, and to members of the Haber laboratory for their comments. This work was supported by the NIH. J.R.L. was supported by an NIH Genetics Training Grant.

Author Contributions J.R.L., S.J., M.Y. and J.E.H. designed experiments. J.R.L. carried out experiments and analysed BIR in the CAN1 system, S.J. carried out and analysed experiments in the LEU2 system and M.Y. performed experiments and analysed the MAT switching system and survivors in the absence of TLC1. J.R.L. and J.E.H. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Haber.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S3 with Legends and Supplementary Tables S1-S2. (PDF 435 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lydeard, J., Jain, S., Yamaguchi, M. et al. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448, 820–823 (2007). https://doi.org/10.1038/nature06047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06047

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing