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The rich set of interactions between individuals in the society [1,2,3,4,5,6,7] results in 
complex community structure, capturing highly connected circles of friends, families, or 
professional cliques in a social network [3,7,8,9,10]. Thanks to frequent changes in the 
activity and communication patterns of individuals, the associated social and 
communication network is subject to constant evolution [7,11,12,13,14,15,16].  Our 
knowledge of the mechanisms governing the underlying community dynamics is limited, 
but is essential for a deeper understanding of the development and self-optimisation of 
the society as a whole [17,18,19,20,21,22]. We have developed a new algorithm based on 
clique percolation [23,24], that allows, for the first time, to investigate the time 
dependence of overlapping communities on a large scale and as such, to uncover basic 
relationships characterising community evolution. Our focus is on networks capturing 
the collaboration between scientists and the calls between mobile phone users. We find 
that large groups persist longer if they are capable of dynamically altering their 
membership, suggesting that an ability to change the composition results in better 
adaptability. The behaviour of small groups displays the opposite tendency, the condition 
for stability being that their composition remains unchanged. We also show that the 
knowledge of the time commitment of the members to a given community can be used for 
estimating the community's lifetime. These findings offer a new view on the fundamental 
differences between the dynamics of small groups and large institutions.  
 
The data sets we consider contain the monthly roster of articles in the  Los Alamos cond-mat 
archive spanning 142 months, with over 30000 authors [25], and the complete record of phone-
calls between the customers of a mobile phone company spanning 52 weeks (accumulated over 
two week long periods), and containing the communication patterns of over 4 million users. 
Both type of collaboration events (a new article or a phone-call) document the presence of 
social interaction between the involved individuals (nodes), and can be represented as (time-
dependent) links. The extraction of the changing link weights from the primary data is 
described in the Supplementary Information. In Fig.1a-b we show the local structure at a given 
time step in the two networks in the vicinity of a randomly chosen individual (marked by a red 
frame). The communities (social groups represented by more densely interconnected parts 
within a network of social links) are colour coded, so that black nodes/edges do not belong to 
any community, and those that simultaneously belong to two or more communities are shown 
in red.  
 
The two networks have rather different local structure: due to its bipartite nature, the 
collaboration network is quite dense and the overlap between communities is very significant, 
whereas in the phone-call network the communities are less interconnected and are often 
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separated by one or more inter-community nodes/edges. Indeed, while the phone record 
captures the communication between two people, the publication record assigns to all 
individuals that contribute to a paper a fully connected clique. As a result, the phone data is 
dominated by single links, while the co-authorship data has many dense, highly connected 
neighbourhoods. Furthermore, the links in the phone network correspond to instant 
communication events, capturing a relationship as it happens. In contrast, the co-authorship  
data records the results of a long term collaboration process. These fundamental differences 
suggest that any common features of the community evolution in the two networks represent 
potentially generic characteristics of community formation, rather than being rooted in the 
details of the network representation or data collection process.  
 
The communities at each time step were extracted using the Clique Percolation Method [23,24] 
(CPM).  The key features of the communities obtained by the CPM are that (i) their members 
can be reached through well connected subsets of nodes, and (ii) the communities may overlap 
(share nodes with each other). This latter property is essential, since most networks are 
characterised by overlapping and nested communities [6,23].  As a first step, it is important to 
check if the uncovered communities correspond to groups of individuals with a shared 
common activity pattern. For this purpose we compared the average weight of the links inside 
communities, wc, to the average weight of the inter-community links, wic. For the co-authorship 
network wc/wic is about 2.9, while for the phone-call network the difference is even more 
significant, since wc/wic≈5.9, indicating that the intensity of collaboration/communication 
within a group is significantly higher than with contacts belonging to a different group  
[26,27,28]. While for co-authors the quality of the clustering can be directly tested by studying 
their publication records in more detail, in the phone-call network personal information is not 
available. In this case the zip-code and the age of the users provide additional information for 
checking the homogeneity of the communities. According to Fig.1c the <nreal>/<nrand>  ratio is 
significantly larger than 1 for both the zip-code and the age, indicating that communities have a 
tendency to contain people from  the same generation and living in the same neighbourhood 
(<nreal>  is the size of the largest subset of people having the same zip code averaged over time 
steps and the set of available communities, while <nrand> represents the same average but with 
randomly selected users). It is of specific interest that <nreal>/<nrand> for the zip-code has a 
prominent peak at s≈35, suggesting that communities of this size are geographically the most 
homogeneous ones. However, as Fig.1d shows, the situation is more complex: on average, the 
smaller communities are more homogeneous in respect of both the zip-code and the age, but 
there is still a noticeable peak at s≈30-35 for the zip-code.  In summary, the phone-call 
communities uncovered by the CPM tend to contain individuals living in the same 
neighbourhood, and having a comparable age, a homogeneity that supports  the validity of the 
uncovered community structure. Further support  is given in the Supplementary Information. 
 
The basic events that may occur in the life of a community are shown in Fig.1e: a community  
can grow or contract; groups may  merge  or split; new communities are born while other ones 
may disappear. We have developed a method for the appropriate matching of the evolving 
communities from the information available for relatively distant points in time only (see 
Methods). 
 
After determining the dynamically changing community structure, we first consider two basic 
quantities characterising a community:  its size s and its age τ, representing the time passed 
since its birth. s and τ are positively correlated: larger communities  are on average older 
(Fig.2a. Next we used the auto-correlation function, C(t), to quantify the relative overlap  
between two states of the same community A(t) at t time steps apart: 
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where )()( 00 ttAtA +∩  is the number of common nodes (members) in A(t0) and A(t0+t), 

and )()( 00 ttAtA +∪  is the number of nodes in the union of A(t0) and A(t0+t).  Fig.2b shows 
the average time dependent auto-correlation function for communities born with different 
sizes. The data indicate that the collaboration network is more “dynamic” (<C(t)> decays 
faster). We also find that in both networks, the auto-correlation function decays faster for the 
larger communities, showing that the membership of the larger communities is changing at a 
higher rate. On the contrary, small communities change at a smaller rate, their composition 
being  more or less static. To quantify this aspect of community evolution, we define the 
stationarity  ζ of a community as the average  correlation between subsequent states: 
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where t0 denotes the birth of the community, and tmax is the  last step before the extinction of 
the community. Thus, ζ−1  represents the average ratio of members changed in one step.  
 
We observe an interesting effect when investigating the relationship between the lifetime τ* 
(the number of steps between the birth and disintegration of a community), the stationarity and 
the community size. The lifetime can be viewed as a simple measure of ``fitness'':  
communities having higher fitness have an extended life, while the ones with small fitness 
quickly disintegrate. In Fig.2c-d we show the average life-span <τ*> (colour coded) as a 
function of the stationarity ζ  and the community size s (both s and ζ  were binned). In both 
networks, for small community sizes the highest average life-span is at a stationarity value very 
close to one, indicating that for small communities it is optimal to have static, time independent 
membership. On the other hand, the peak in <τ*> is shifted towards low ζ  values for large 
communities, suggesting that for these the optimal regime is to be  dynamic, i.e., a continually 
changing membership. 
 
To illustrate the difference in the optimal behaviour (a pattern of membership dynamics 
leading to extended lifetime) of small and  large communities, in Fig.3. we show the time 
evolution of four communities from the co-authorship network. As Fig.3. indicates, a typical 
small and stationary community  undergoes minor changes, but lives for a long time. This is 
well illustrated by the snapshots of the community structure,  showing  that the community's 
stability is conferred by a core of three individuals  representing a collaborative group spanning 
over 52 months. In contrast, a small community with high turnover of its members  has a 
lifetime of nine time steps only (Fig.3b). The opposite is seen for large communities: a large 
stationary community disintegrates after four time steps (Fig.3c). In contrast, a large non-
stationary community whose members change dynamically, resulting in significant fluctuations 
in both size and the composition, has quite extended lifetime (Fig.3d).  
 
The quite different stability rules followed by the small and large communities raise an 
important question: could the inspection of a community itself predict its future? To address 
this issue, for each member in a community we measured the total weight of this member's 
connections to outside of the community (wout) as well as to members belonging to the same 
community (win). We then calculated the probability that the member will abandon the 
community as a function of the  wout/(win+wout) ratio. As Fig.4a shows for both networks, if the 
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relative commitment of a user to individuals outside a given community is higher, then it is 
more likely that he/she will leave the community. In parallel, the average time spent in the 
community by the nodes, <τn>, is a decreasing function of the above ratio (Fig.4a inset). As 
Fig.4a shows, those with the least commitment have a quickly growing likelihood of leaving 
the community. Taking this idea from individuals to communities, we measured for each 
community the total weight of links (a measure of how much a member is committed) from the 
members to others, outside of the community (Wout), as well as the aggregated link weight 
inside the community (Win). We find that the lifetime of a community decreases for large 
Wout/(Win+Wout) ratios (Fig.4b inset). However, an interesting observation is that, while the 
lifetime of the phone-call communities for moderate levels is relatively insensitive to outside 
commitments, the lifetime of the collaboration communities possesses a maximum at 
intermediate levels of inter-collaborations (collaboration between colleagues who belong to 
different communities). These results suggest that a tracking of the individual's as well as the 
community's relative commitment to the other members of the community provides a clue for 
predicting the community's fate.  
 
 In summary, our results indicate the significant difference between smaller collaborative or 
friendship circles and institutions. At the heart of small cliques are a few strong relationships, 
and as long as these persist, the community around them is stable. It appears to be almost 
impossible to maintain this strategy for large communities. Our calculations show that the 
condition for stability of large communities is continuous changes allowing that after some 
time practically all members are exchanged. Such loose, rapidly changing communities are 
reminiscent of institutions, that can continue to exist even after all members have been replaced 
by new members. For example, in a few years most members of a school or a company could 
change, yet the school and the company will be detectable as a distinct community at any time  
during its existence.  
 
METHODS 
 
Locating communities. In the CPM method a community is defined as a union of all k-cliques 
(complete sub-graphs of size k) that can be reached from each other through a series of 
adjacent k-cliques (where adjacency means sharing k-1 nodes) [24,29].  When applied to 
weighted networks, the CPM has two parameters: the k-clique size k, (in Fig.1a-b we  show the 
communities for k=4),  and the weight threshold w* (links weaker than w* are ignored). The 
criterion for selecting these parameters is discussed in the Supplementary Information.  
 
Identifying evolving communities. The basic idea of the algorithm developed by us to 
identify community evolution is shown in Fig.1f.  For each consecutive time steps t and t+1 we 
construct a joint  graph consisting of the union of links from the corresponding two networks, 
and extract the CPM community structure of this joint  network (we thank I. Derényi for 
pointing out this possibility). Any community from either the t or the t+1 snap-shot is  
contained in exactly one community in the joint graph, since by adding  links to a network, the 
CPM communities can only grow, merge or  remain unchanged. Thus, the communities in the 
joint graph provide a natural connection between the communities at t and at t+1. If a 
community in the joint graph contains a single community from t and a single community from 
t+1, then they are matched. If the joint group contains more than one community from either 
time steps, the communities are matched in descending order of  their relative node overlap 
(see the Supplementary Information).  
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Figure legends 
 
Figure 1. Structure and schematic dynamics of the two networks considered. a) The local 
community structure at a given time step in the vicinity of a randomly selected node in case of 
the co-authorship network. b) The same picture in the phone-call network. c) The black 
symbols correspond to the average size of the largest subset of members with the same zip-
code, <nreal>, in the phone-call communities divided by  the same quantity found in random 
sets, <nrand>, as the function of the  community size s. Similarly, the white symbols show the 
average  size of the largest subset of community members with an age falling in a three year 
time window, divided by the same quantity in random sets. The error-bars in both cases 
correspond to <nreal>/( <nrand>+σrand) and nreal>/(<nrand>-σrand), where σrand  is the standard 
deviation in case of the random sets. d) The <nreal>/s as  a function of s, for both the zip-code 
(black symbols)  and the age (white symbols). e) Possible events in the community evolution. 
f) The identification of evolving communities. The links at t (blue) and the links at t+1 
(yellow) are merged into a joint graph (green). Any CPM community at t or t+1 is part of a 
CPM community in the joined graph, therefore, these can be used to match the two sets of 
communities. 
 
Figure 2. Characteristic features of community evolution. a) The age τ of communities with 
a given size (number of people) s, averaged over the set of available communities and the time 
steps, divided by the average age of all communities <τ>, as the function of s. The increasing 
nature of the plot indicates that larger communities are on average older. b) The auto-
correlation function C(t) of communities  with different sizes averaged over the communities 
and t0.The unit of time, t, is two weeks, thus, for the co-authorship network, where the data 
samples were taken monthly, the C(t) values are shown for every other time step.  c) The life-
span τ* averaged over the communities as the function of the stationarity ζ  and the 
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community size s for the co-authorship network. (The communities still living at the last 
available time step in the dataset were excluded from this investigation). The peak in <τ*> is 
close to 1=ζ  for small sizes, whereas it  is shifted towards lower ζ  values for large sizes. d) 
Similar results found in the phone-call network.  In panels (c) and (d) the highlighted white line 
corresponds to the optimal stationarity. 
 
 
 
Figure 3. Evolution of four types of communities in the co-authorship network. The height 
of the columns corresponds to the  actual community size, and within  one column the yellow 
colour indicates the number of "old" nodes (that have been  present in the community at least 
in the previous time step as well),  while newcomers are shown with green. The members 
abandoning  the community in the next time step are shown with orange or purple colour,  
depending on whether they are old or new. (This latter type of member joins the community for 
only one time step).  From top to bottom, we show a small and stationary community (a), a  
small and non-stationary community (b), a large and stationary community (c) and, finally, a 
large and non-stationary  community (d). A mainly growing stage (two time steps) in the 
evolution of the latter community is detailed in panel e). 
 
Figure 4. Effects of links between communities. a) The probability pl for a member to 
abandon its community  in the next step as a  function of the ratio of its aggregated link 
weights  to other parts of the network (wout) and its total aggregated link weight (win+ wout). The 
inset shows the average time spent in the community by the nodes,  <τn>, in function  of  wout/( 
win+ wout). b) The probability pd for a community to disintegrate in the next step in function of 
the ratio of the aggregated weights of links from the community to other parts of the network 
(Wout) and the aggregated weights of all links starting from the community (Win+ Wout). The 
inset shows the average life time <τ*> of communities as a  function  of Wout/(Win+ Wout).  
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