Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An atypical haem in the cytochrome b6f complex

Abstract

Photosystems I and II (PSI and II) are reaction centres that capture light energy in order to drive oxygenic photosynthesis; however, they can only do so by interacting with the multisubunit cytochrome b6f complex. This complex receives electrons from PSII and passes them to PSI, pumping protons across the membrane and powering the Q-cycle. Unlike the mitochondrial and bacterial homologue cytochrome bc1, cytochrome b6f can switch to a cyclic mode of electron transfer around PSI using an unknown pathway. Here we present the X-ray structure at 3.1 Å of cytochrome b6f from the alga Chlamydomonas reinhardtii. The structure bears similarities to cytochrome bc1 but also exhibits some unique features, such as binding chlorophyll, β-carotene and an unexpected haem sharing a quinone site. This haem is atypical as it is covalently bound by one thioether linkage and has no axial amino acid ligand. This haem may be the missing link in oxygenic photosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystallography of b6f complex.
Figure 2: Three views of b6f normal to the membrane.
Figure 3: Cofactors in the dimer.
Figure 4: Qo site with inhibitor.
Figure 5: Qi site.

Similar content being viewed by others

References

  1. Mitchell, P. Possible molecular mechanisms of the protomotive function of cytochrome systems. J. Theor. Biol. 62, 327–367 (1976)

    Article  CAS  Google Scholar 

  2. Crofts, A. & Wraight, C. A. The electrochemical domain of photosynthesis. Biochim. Biophys. Acta 726, 149–185 (1983)

    Article  CAS  Google Scholar 

  3. Sazanov, L. A., Burrows, P. A. & Nixon, P. J. The plastid ndh genes code for an NADH-specific dehydrogenase: isolation of a complex I analogue from pea thylakoid membranes. Proc. Natl Acad. Sci. USA 95, 1319–1324 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Zhang, H., Whitelegge, J. P. & Cramer, W. A. Ferredoxin:NADP+ oxidoreductase is a subunit of the chloroplast cytochrome b6f complex. J. Biol. Chem. 276, 38159–38165 (2001)

    CAS  Google Scholar 

  5. Lavergne, J. Membrane potential-dependant reduction of cytochrome b6 in an algal mutant lacking photosystem I centers. Biochim. Biophys. Acta 725, 25–33 (1983)

    Article  CAS  Google Scholar 

  6. Joliot, P. & Joliot, A. The low potential electron transfer chain in cytochrome b/f complex. Biochim. Biophys. Acta 933, 319–333 (1988)

    Article  CAS  Google Scholar 

  7. Depege, N., Bellafiore, S. & Rochaix, J.-D. Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299, 1572–1575 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Wollman, F.-A. State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J. 20, 3623–3630 (2001)

    Article  CAS  Google Scholar 

  9. Joliot, P. & Joliot, A. In vivo analysis of the effect of dicyclohexylcarbodiimide on electron and proton transfers in cytochrome bf complex of Chlorella sorokiniana. Biochemistry 37, 10404–10410 (1998)

    Article  CAS  Google Scholar 

  10. Pierre, Y. et al. On the presence and role of a molecule of chlorophyll a in the cytochrome b6f complex. J. Biol. Chem. 272, 21901–21908 (1997)

    Article  CAS  Google Scholar 

  11. Xia, D. et al. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277, 60–66 (1997)

    Article  CAS  Google Scholar 

  12. Zhang, Z. et al. Electron transfer by domain movement in cytochrome bc1 . Nature 392, 677–684 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Iwata, S. et al. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281, 64–71 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Hunte, C., Koepke, J., Lange, C., Rossmanith, T. & Michel, H. Structure at 2.3 Å resolution of the cytochrome bc1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Struct. Fold Des. 8, 669–684 (2000)

    Article  CAS  Google Scholar 

  15. Breyton, C., Tribet, C., Olive, J., Dubacq, J.-P. & Popot, J.-L. Dimer to monomer conversion of the cytochrome b6f complex. Causes and consequences. J. Biol. Chem. 272, 21892–21900 (1997)

    Article  CAS  Google Scholar 

  16. Pierre, Y., Breyton, C., Kramer, D. & Popot, J.-L. Purification and characterization of the cytochrome b6f complex from Chlamydomonas reinhardtii. J. Biol. Chem. 270, 29342–29349 (1995)

    Article  CAS  Google Scholar 

  17. Zhang, H., Kurisu, G., Smith, J. L. & Cramer, W. A. A defined protein-detergent-lipid complex for crystallization of integral membrane proteins: The cytochrome b6f complex of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 100, 5160–5163 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Breyton, C. The cytochrome b6f complex: structural studies and comparison with the bc1 complex. Biochim. Biophys. Acta 1459, 467–474 (2000)

    Article  CAS  Google Scholar 

  19. Martinez, S. E., Huang, D., Szczepaniak, A., Cramer, W. A. & Smith, J. L. Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure 2, 95–105 (1994)

    Article  CAS  Google Scholar 

  20. Darrouzet, E., Moser, C. C., Dutton, P. L. & Daldal, F. Large scale domain movement in cytochrome bc1: a new device for electron transfer in proteins. Trends Biochem. Sci. 26, 445–451 (2001)

    Article  CAS  Google Scholar 

  21. Carrell, C. J., Zhang, H., Cramer, W. A. & Smith, J. L. Biological identity and diversity in photosynthesis and respiration: structure of the lumen-side domain of the chloroplast Rieske protein. Structure 5, 1613–1625 (1997)

    Article  CAS  Google Scholar 

  22. Lange, C., Nett, J. H., Trumpower, B. L. & Hunte, C. Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J. 20, 6591–6600 (2001)

    Article  CAS  Google Scholar 

  23. Zhang, H., Huang, D. & Cramer, W. A. Stoichiometrically bound β-carotene in the cytochrome b6f complex of oxygenic photosynthesis protects against oxygen damage. J. Biol. Chem. 274, 1581–1587 (1999)

    Article  CAS  Google Scholar 

  24. Yan, J., Liu, Y., Mao, D., Li, L. & Kuang, T. The presence of 9-cis-β-carotene in cytochrome b6f complex from spinach. Biochim. Biophys. Acta 1506, 182–188 (2001)

    Article  CAS  Google Scholar 

  25. Peterman, E. J. et al. Fluorescence and absorption spectroscopy of the weakly fluorescent chlorophyll a in cytochrome b6f of Synechocystis PCC6803. Biophys. J. 75, 389–398 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Hart, S. E., Schlarb-Ridley, B. G., Delon, C., Bendall, D. S. & Howe, C. J. Role of charges on cytochrome f from the cyanobacterium Phormidium laminosum in its interaction with plastocyanin. Biochemistry 42, 4829–4836 (2003)

    Article  CAS  Google Scholar 

  27. Choquet, Y., Zito, F., Wostrikoff, K. & Wollman, F.-A. Cytochrome f translation in Chlamydomonas chloroplast is autoregulated by its carboxyl-terminal domain. Plant Cell 15, 1443–1454 (2003)

    Article  CAS  Google Scholar 

  28. Crofts, A. R. et al. Pathways for proton release during ubihydroquinone oxidation by the bc1 complex. Proc. Natl Acad. Sci. USA 96, 10021–10026 (1999)

    Article  ADS  CAS  Google Scholar 

  29. Zito, F., Finazzi, G., Joliot, P. & Wollman, F.-A. Glu78, from the conserved PEWY sequence of subunit IV, has a key function in cytochrome b6f turnover. Biochemistry 37, 10395–10403 (1998)

    Article  CAS  Google Scholar 

  30. Finazzi, G. Redox-coupled proton pumping activity in cytochrome b6f, as evidenced by the pH dependence of electron transfer in whole cells of Chlamydomonas reinhardtii. Biochemistry 41, 7475–7482 (2002)

    Article  CAS  Google Scholar 

  31. Mukai, K. et al. An atypical heme-binding structure of cytochrome c1 of Euglena gracilis mitochondrial complex III. Eur. J. Biochem. 178, 649–656 (1989)

    Article  CAS  Google Scholar 

  32. Berry, E. A. & Trumpower, B. L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal. Biochem. 161, 1–15 (1987)

    Article  CAS  Google Scholar 

  33. Hurt, E. & Hauska, G. A cytochrome f/b6 complex of five polypeptides with plastoquinol-plastocyanin-oxidoreductase activity from spinach chloroplasts. Eur. J. Biochem. 117, 591–595 (1981)

    Article  CAS  Google Scholar 

  34. Whitelegge, J. P., Zhang, H., Aguilera, R., Taylor, R. M. & Cramer, W. A. Full subunit coverage liquid chromatography electrospray ionization mass spectrometry (LCMS+) of an oligomeric membrane protein: cytochrome b6f complex from spinach and the cyanobacterium Mastigocladus laminosus. Mol. Cell Proteom. 1, 816–827 (2002)

    Article  CAS  Google Scholar 

  35. Kuras, R. et al. Molecular genetic identification of a pathway for heme binding to cytochrome b6 . J. Biol. Chem. 272, 32427–32435 (1997)

    Article  CAS  Google Scholar 

  36. Pond, A. E. et al. Assignment of the heme axial ligand(s) for the ferric myoglobin (H93G) and heme oxygenase (H25A) cavity mutants as oxygen donors using magnetic circular dichroism. Biochemistry 38, 7601–7608 (1999)

    Article  CAS  Google Scholar 

  37. Hirst, J. et al. Replacement of the axial histidine ligand with imidazole in cytochrome c peroxidase. 2. Effects on heme coordination and function. Biochemistry 40, 1274–1283 (2001)

    Article  CAS  Google Scholar 

  38. Schoepp, B., Chabaud, E., Breyton, C., Vermeglio, A. & Popot, J.-L. On the spatial organization of hemes and chlorophyll in cytochrome b6f. A linear and circular dichroism study. J. Biol. Chem. 275, 5275–5283 (2000)

    Article  CAS  Google Scholar 

  39. Nitschke, W. & Hauska, G. On the nature of the g = 6 EPR signal in isolated cytochrome b6f complex from spinach chloroplasts. Biochim. Biophys. Acta 892, 314–319 (1987)

    Article  CAS  Google Scholar 

  40. Yu, J. & Le Brun, N. E. Studies of the cytochrome subunits of menaquinone:cytochrome c reductase (bc complex) of Bacillus subtilis. Evidence for the covalent attachment of heme to the cytochrome b subunit. J. Biol. Chem. 273, 8860–8866 (1998)

    Article  CAS  Google Scholar 

  41. Schütz, M. et al. Early evolution of cytochrome bc complexes. J. Mol. Biol. 300, 663–675 (2000)

    Article  Google Scholar 

  42. Hope, A. B. The chloroplast cytochrome bf complex: a critical focus on function. Biochim. Biophys. Acta 1143, 1–22 (1993)

    Article  CAS  Google Scholar 

  43. Kurisu, G., Zhang, H., Smith, J. L. & Cramer, W. A. Structure of the cytochrome b6f complex of oxygenic photosynthesis: Tuning the cavity. Science, 2 October 2003 (doi:10.1126/science.1090165).

  44. Höffle, G., Kunze, B., Zorzin, C. & Reichenbach, H. Antibiotica aus gleitende Bakterien XIII:Stigmatellin A und B—zwei neue Antibiotika aus Stigmatella aurantiaca (Myxobacterales). Liebigs Annal. Chem. 12, 1883–1904 (1984)

    Article  Google Scholar 

  45. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  46. Sainz, G. et al. Interruption of the internal water chain of cytochrome f impairs photosynthetic function. Biochemistry 39, 9164–9173 (2000)

    Article  CAS  Google Scholar 

  47. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  48. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  49. Kraulis, P. J. A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

  50. Merritt, E. & Bacon, D. Raster3D photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997)

    Article  CAS  Google Scholar 

  51. Murakami, S. & Packer, L. Protonation and chloroplast membrane structure. J. Cell Biol. 47, 332–351 (1970)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the local contacts of beamline BM30 (ESRF, CRG FIP) J.-L. Ferrer, R. Kahn and P. Carpentier for assistance in data collection; C. Lebreton for membrane preparations; P. Hervé and P. Fellmann for the synthesis of TDS; Y. Pierre, F. Zito and C. Breyton for biochemical expertise; P. Joliot, J. Lavergne, F. Daldal, F. Baymann, W. Nitschke and G. Ajlani for discussions; and C. Breyton, G. Finazzi and A. A. Pascal for discussions and critical reading of the manuscript. This work was supported by the CNRS and Paris-7 University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Luc Popot or Daniel Picot.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroebel, D., Choquet, Y., Popot, JL. et al. An atypical haem in the cytochrome b6f complex. Nature 426, 413–418 (2003). https://doi.org/10.1038/nature02155

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02155

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing