Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ATP-dependent reduction of cysteine–sulphinic acid by S. cerevisiae sulphiredoxin

Abstract

Proteins contain thiol-bearing cysteine residues that are sensitive to oxidation, and this may interfere with biological function either as ‘damage’ or in the context of oxidant-dependent signal transduction. Cysteine thiols oxidized to sulphenic acid are generally unstable, either forming a disulphide with a nearby thiol or being further oxidized to a stable sulphinic acid1,2. Cysteine–sulphenic acids and disulphides are known to be reduced by glutathione or thioredoxin in biological systems, but cysteine–sulphinic acid derivatives have been viewed as irreversible protein modifications. Here we identify a yeast protein of relative molecular mass Mr = 13,000, which we have named sulphiredoxin (identified by the US spelling ‘sulfiredoxin’, in the Saccharomyces Genome Database), that is conserved in higher eukaryotes and reduces cysteine–sulphinic acid in the yeast peroxiredoxin Tsa1. Peroxiredoxins are ubiquitous thiol-containing antioxidants that reduce hydroperoxides3,4,5 and control hydroperoxide-mediated signalling in mammals6,7,8. The reduction reaction catalysed by sulphiredoxin requires ATP hydrolysis and magnesium, involving a conserved active-site cysteine residue which forms a transient disulphide linkage with Tsa1. We propose that reduction of cysteine–sulphinic acids by sulphiredoxin involves activation by phosphorylation followed by a thiol-mediated reduction step. Sulphiredoxin is important for the antioxidant function of peroxiredoxins, and is likely to be involved in the repair of proteins containing cysteine–sulphinic acid modifications, and in signalling pathways involving protein oxidation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Srx1, a member of a new eukaryotic protein family, is induced by H2O2 and contributes to H2O2 resistance.
Figure 2: Srx1 is associated to Prxs non-covalently and by DTT-sensitive linkages.
Figure 3: Srx1-dependent recycling of the Tsa1 cysteine–sulphinic acid form in vivo.
Figure 4: ATP-dependent reduction of the cysteine–sulphinic acid of Tsa1 by Srx1 in vitro.

Similar content being viewed by others

References

  1. Kice, J. L. Mechanisms and reactivity in reactions of organic oxyacids of sulfur and their anhydrides. Adv. Phys. Org. Chem. 17, 65–181 (1980)

    CAS  Google Scholar 

  2. Claiborne, A., Mallett, T. C., Yeh, J. I., Luba, J. & Parsonage, D. Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation. Adv. Protein Chem. 58, 215–276 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Wood, Z. A., Schroder, E., Robin Harris, J. & Poole, L. B. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32–40 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Rhee, S. G., Kang, S. W., Chang, T. S., Jeong, W. & Kim, K. Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52, 35–41 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Hofmann, B., Hecht, H. J. & Flohe, L. Peroxiredoxins. Biol. Chem. 383, 347–364 (2002)

    CAS  PubMed  Google Scholar 

  6. Fujii, J. & Ikeda, Y. Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep. 7, 123–130 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. Kang, S. W. et al. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J. Biol. Chem. 273, 6297–6302 (1998)

    Article  CAS  PubMed  Google Scholar 

  8. Jin, D. Y., Chae, H. Z., Rhee, S. G. & Jeang, K. T. Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation. J. Biol. Chem. 272, 30952–30961 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. Jeong, J. S., Kwon, S. W., Kang, S. W., Rhee, S. G. & Kim, K. Purification and characterization of a second type thioredoxin peroxidase (Type II TPx) from Saccharomyces cerevisiae. Biochemistry 38, 776–783 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. Chae, H. Z., Chung, S. J. & Rhee, S. G. Thioredoxin-dependent peroxide reductase from yeast. J. Biol. Chem. 269, 27670–27678 (1994)

    CAS  PubMed  Google Scholar 

  11. Lee, J., Spector, D., Godon, C., Labarre, J. & Toledano, M. B. A new antioxidant with alkyl hydroperoxide defense properties in yeast. J. Biol. Chem. 274, 4537–4544 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Park, S. G., Cha, M. K., Jeong, W. & Kim, I. H. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275, 5723–5732 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Wong, C. M., Zhou, Y., Ng, R. W., Kung Hf, H. F. & Jin, D. Y. Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. J. Biol. Chem. 277, 5385–5394 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Chae, H. Z., Uhm, T. B. & Rhee, S. G. Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc. Natl Acad. Sci. USA 91, 7022–7026 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hirotsu, S. et al. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. Proc. Natl Acad. Sci. USA 96, 12333–12338 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schroder, E. et al. Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 Å resolution. Struct. Fold. Des. 8, 605–615 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Ellis, H. R. & Poole, L. B. Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium. Biochemistry 36, 13349–13356 (1997)

    Article  CAS  PubMed  Google Scholar 

  18. Poole, L. B. & Ellis, H. R. Identification of cysteine sulfenic acid in AhpC of alkyl hydroperoxide reductase. Methods Enzymol. 348, 122–136 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Yang, K. S. et al. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277, 38029–38036 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Woo, H. A. et al. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300, 653–656 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Rabilloud, T. et al. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J. Biol. Chem. 277, 19396–19401 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. Prouzet-Mauleon, V. et al. Identification in Saccharomyces cerevisiae of a new stable variant of alkyl hydroperoxide reductase 1 (Ahp1) induced by oxidative stress. J. Biol. Chem. 277, 4823–4830 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. Furukawa, M., Ohkawara, T., Noguchi, Y., Isoda, M. & Hitoshi, T. O-, S-, and N-sulfinylations with sulfinic acid in the presence of phenyl phosphorodichloridate and pyridine. Synthesis 937–940 (1980)

  24. Noguchi, Y., Kurogi, K., Sekioka, M. & Furukawa, M. C-sulfinylation of Grignard reagents and enamines with sulfinic acid. Bull. Chem. Soc. Jpn 56, 349–350 (1983)

    Article  CAS  Google Scholar 

  25. Giles, G. I. & Jacob, C. Reactive sulfur species: an emerging concept in oxidative stress. Biol. Chem. 383, 375–388 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Kice, J. L. & Liu, C.-A. Reactivity of nucleophiles towards the site of nucleophilic attack on phenyl benzenethiolsulfinate. J. Org. Chem. 44, 1918–1921 (1979)

    Article  CAS  Google Scholar 

  27. Wood, Z. A., Poole, L. B. & Karplus, P. A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650–653 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Maillet, I., Lagniel, G., Perrot, M., Boucherie, H. & Labarre, J. Rapid identification of yeast proteins on two-dimensional gels. J. Biol. Chem. 271, 10263–10270 (1996)

    Article  CAS  PubMed  Google Scholar 

  30. Delaunay, A., Isnard, A. D. & Toledano, M. B. H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J. 19, 5157–5166 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Clement for mass spectrometry analysis, M.-B. Barrault for technical assistance, G. Lagniel for 2D-PAGE analysis, J. Acker and C. Ducrot for baculovirus protein expression, and I. Artaud and B. Rousseau for suggestions on the chemistry of sulphur. Many thanks to T. Rabilloud for sharing unpublished results, to A. Sentenac, A. Delaunay, G. Rousselet, F. Tacnet, S. Desaint, and S. Le Maout for discussion and comments on the manuscript and A. Sentenac for his support. This work was supported by grant from ARC to M.B.T. and a CFR CEA fellowship to B.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel B. Toledano.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biteau, B., Labarre, J. & Toledano, M. ATP-dependent reduction of cysteine–sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980–984 (2003). https://doi.org/10.1038/nature02075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02075

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing