
primers used to analyse IkBa transcripts (þ2180 to þ2378) contained the sequences
5
0
-GATCCGCCAGGTGAAGGG-3

0
and 5

0
-GCAATTTCTGGCTGGTTGG-3

0
, the

primers used to analyse IL-8 transcripts (þ1 to þ239) contained the sequences
5
0
-ATGACTTCCAAGCTGGCCGT-3

0
and 5

0
-TTACATAATTTCTGTGTTGGC-3

0
, and

the primers used to analyse the 18S ribosomal RNA contained the sequences
5 0 -AGGAATTGACGGAAGGGCAC-3 0 and 5 0 -GGACATCTAAGGGCATCACA-3 0 .

ChIP assays
ChIP assays were performed with a previously described protocol (Upstate
Biotechnology). In brief, chromatin from crosslinked cells was sheared by sonication
(three times, 15 s each; one-third power) and incubated overnight with specific antibody
followed by incubation with protein G–Sepharose saturated with salmon sperm DNA.
Precipitated DNAs were analysed by quantitative PCR (34 cycles) with a Taq PCR Master
mix kit (Qiagen) and primers for either the human 5 0 -GACGACCCCAATTCAAATCG-3 0

and 5
0
-TCAGGCTCGGGGAATTTCC-3

0
or murine 5

0
-GGACCCCAAACCAAAATCG-3

0

and 5 0 -TCAGGCGCGGGGAATTTCC-3 0 IkBa promoters (2316 to 215), together
with the human IL-8 promoter (2121 to þ61) 5 0 -GGGCCATCAGTTGCAAATC-3 0 and
5
0
-TTCCTTCCGGTGGTTTCTTC-3

0
and the human b-actin promoter (2980 to 2915)

5 0 -TGCACTGTGCGGCGAAGC-3 0 and 5 0 -TCGAGCCATAAAAGGCAA-3 0 . Quantitative
real-time PCR was performed in triplicate to determine the association of IKK-a, p65 and
CBP with the IkBa and IL-8 promoters by using 500 nM of the above oligonucleotide
primers and input DNA standards diluted in threefold increments from 10% to 0.01%
with SYBR Green Master Mix and the ABI Prism 7700 Sequence Detection System.

In vitro interaction assay
Fragments of the CBP coding sequence were cloned into pGEX vector (Pharmacia).
Purified GST–CBP fusion proteins were immobilized to glutathione–agarose and
incubated overnight with cell lysates (100 mg protein). After extensive washing with cold
PBS, the protein complexes were analysed by immunoblotting.

IKK-a kinase assay
Total cell lysates (100 mg protein) prepared from cells transfected with expression vectors
encoding Flag-tagged IKK-a, IKK-a(K/M) or IKK-a(SS/AA) were incubated for 1 h with
anti-Flag antibody (Sigma) and with protein A–agarose for a further 1 h. After extensive
washing of the immunoprecipitates, kinase assays were performed as described29 with 5 mg
of histone H3 (Sigma) as a substrate.
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NF-kB is a principal transcriptional regulator of diverse cyto-
kine-mediated processes and is tightly controlled by the IkB
kinase complex (IKK-a/b/g). IKK-b and IKK-g are critical for
cytokine-induced NF-kB function, whereas IKK-a is thought to
be involved in other regulatory pathways1–4. However, recent data
suggest a role for IKK-a in NF-kB-dependent gene expression in
response to cytokine treatment1,5–7. Here we demonstrate nuclear
accumulation of IKK-a after cytokine exposure, suggesting a
nuclear function for this protein. Consistent with this, chromatin
immunoprecipitation (ChIP) assays reveal that IKK-a was
recruited to the promoter regions of NF-kB-regulated genes on
stimulation with tumour-necrosis factor-a. Notably, NF-kB-
regulated gene expression is suppressed by the loss of IKK-a
and this correlates with a complete loss of gene-specific phos-
phorylation of histone H3 on serine 10, a modification previously
associated with positive gene expression. Furthermore, we show
that IKK-a can directly phosphorylate histone H3 in vitro,
suggesting a new substrate for this kinase. We propose that
IKK-a is an essential regulator of NF-kB-dependent gene
expression through control of promoter-associated histone phos-
phorylation after cytokine exposure. These findings provide
additional insight into the role of the IKK complex in NF-kB-
regulated gene expression.

Characteristic cytokine-mediated activation of the NF-kB path-
way involves IKK-b-directed phosphorylation of and subsequent
degradation of inhibitors of NF-kB (IkBs), resulting in rapid nuclear
accumulation of NF-kB subunits1–3. It has been found that IKK-a,
but not IKK-b, constitutively shuttles between the cytoplasm and
the nucleus, suggesting a nuclear function for this IKK subunit8. To
address whether the subcellular localization of IKK-a changes on
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cytokine exposure, nuclear and cytoplasmic extracts from mouse
embryonic fibroblasts (MEFs) stimulated with tumour-necrosis
factor-a (TNF-a) were immunoblotted with antibodies against
p65 and the different IKK subunits. Notably, stimulation of MEFs
with TNF-a results in marked nuclear accumulation of IKK-a (Fig.
1a). In contrast to IKK-a, both IKK-b and IKK-g are present in the
nucleus and the cytoplasm, and exhibit no appreciable changes on
TNF-a induction (Fig. 1a). We demonstrated the purity of nuclear
and cytoplasmic fractions with antibodies specific for p105, an
NF-kB precursor known to be cytoplasmic, and for TFIIB, a known
nuclear protein (Fig. 1a). Immunofluorescence staining with an
anti-IKK-a antibody confirms the western analysis. IKK-a is pre-
dominantly cytoplasmic with low but detectable nuclear levels in
unstimulated wild-type MEFs, whereas TNF-a-induced cells exhi-
bit higher levels of nuclear IKK-a (Fig. 1b, left panel). Loss of
immunoreactivity in IKK-a2/2 cells confirms antibody specificity
(Supplementary Information). Consistent with previous reports,
TNF-a treatment induces nuclear translocation of p65 (Fig. 1b,
right panel). Although the kinetics of induced IKK-a nuclear
accumulation are similar to those of p65, TNF-a induction leads
to nuclear accumulation of IKK-a in p652/2 cells (data not shown),
indicating that IKK-a does not require p65 for nuclear entry. These
data suggest that IKK-a may have a nuclear function distinct from
the canonical NF-kB activation pathway.

Consistent with previous reports1, we observed normal TNF-a-
induced IkBa degradation and induced p65 nuclear translocation in
MEFs lacking IKK-a (data not shown). However, IkBa resynthesis
is delayed in IKK-a2/2 cells compared with wild-type MEFs (Fig.

1c). The defect in resynthesis is consistent with a previous report
implicating a role for IKK-a in TNF-a-induced IkBa gene
expression5. Accordingly, we performed real-time polymerase
chain reaction (PCR) analysis to examine the expression profile of
the NF-kB-regulated IkBa gene (Nfkbia) in IKK-a2/2, IKK-b2/2

and wild-type MEFs. TNF-a rapidly induces IkBa gene expression
in wild-type MEFs (Fig. 2a), whereas TNF-a-induced IkBa gene
expression is significantly decreased in both IKK-a2/2 and IKK-b2/

2 cells. We next examined the kinetics of TNF-a-induced inter-
leukin-6 (IL-6) gene expression by northern analysis. Both IKK-a2/

2 and IKK-b2/2 cells are deficient in IL-6 gene (Il6) activation at all
time points after TNF-a-induction (Fig. 2c). Previous reports have
shown that loss of IKK-a and IKK-b results in altered transcrip-
tional activation of IkBa, IL-6 and other NF-kB-dependent genes5–7.
Thus, our results support a requirement for IKK-a and IKK-b in
optimal IkBa and IL-6 gene expression.

The molecular mechanism(s) through which IKK-a regulates the
expression of specific cytokine-induced NF-kB-dependent genes
has not been determined previously. To investigate a nuclear role for
IKK-a, we performed ChIP assays with antibodies directed against
p65, IKK-a and IKK-b in TNF-a-stimulated wild-type MEFs.
Furthermore, we used phosphorylated and acetylated histone H3
antibodies to examine histone H3 modifications that are known to
correlate with active gene expression at the IkBa promoter9. The
results reveal a rapid recruitment of p65 to the IkBa promoter in
response to TNF-a (Fig. 2b, left panel). Of note, both IKK-a and
IKK-b recruitment are observed after TNF-a-induction, whereas
we detect a low level of IKK-a recruitment in unstimulated cells.

Figure 1 TNF-a-induced nuclear accumulation of endogenous IKK-a. a, MEFs were

stimulated with TNF-a (10 ng ml21) and fractionated into nuclear and cytoplasmic

fractions, and then analysed directly by western blotting with IKK-a, IKK-b, IKK-g and p65

antibodies. Antibodies specific for cytoplasmic p105/p50 and nuclear TFIIB demonstrate

the purity of these fractions. b, MEFs were treated for 15 min with TNF-a as indicated,

and were processed for indirect immunofluorescence and stained with IKK-a or p65

antibodies. c, Kinetics of TNF-a-induced IkBa degradation in IKK wild-type and

IKK-a2/2 MEFs. Cells were treated with TNF-a for the indicated times and western

analysis was performed with anti-IkBa antibody.
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The kinetics of IKK-a recruitment and histone H3 Ser 10 phos-
phorylation correlate in uninduced and TNF-a-induced cells.
Consistent with previous reports and with evidence of basal IkBa
gene expression9–11, we observed constitutive levels of acetylated
histone H3 at this promoter (Fig. 2b, left panel). Enrichment of
promoter sequences is not detected at the b-actin promoter or when

the antibody is omitted from the immunoprecipitation reaction,
confirming the specificity of the ChIP assay (data not shown). These
results demonstrate a TNF-a-inducible association of IKK-a and
IKK-b with the IkBa promoter, and suggest a new function for these
kinases in NF-kB-dependent gene regulation.

To address whether IKK-a has a unique nuclear function in
modulating gene expression, we examined the recruitment profile
of p65 and the status of histone modifications at the IkBa promoter
in IKK-a2/2 cells following TNF-a treatment. The kinetics of p65
recruitment in these cells is similar to those of wild-type MEFs,
whereas IKK-b recruitment is delayed (Fig. 2b, right panel),
indicating that p65 and IKK-b association with the IkBa promoter
does not require IKK-a. The levels of TNF-a-induced p65 recruit-
ment are reduced in IKK-a2/2 cells. Notably TNF-a-induced H3
Ser 10 phosphorylation levels are completely abolished in the
IKK-a2/2 cells. Basal levels of H3 acetylation are decreased in the
IKK-a2/2 cells but normal levels are restored after TNF-a-induction.
These data indicate that IKK-a is required for Ser 10 phosphoryl-
ation of histone H3 at the IkBa promoter. The requirement for
IKK-a in controlling H3 Ser 10 phosphorylation is also observed on
another immediately accessible NF-kB-regulated gene, Mip2 (also
known as Cxcl2; data not shown).

Next, we investigated recruitment of p65 and IKK-a, and the
status of H3 Ser 10 phosphorylation at the IkBa promoter, using
IKK-b2/2 MEFs. We detected reduced and transient levels of
promoter-associated p65 and IKK-a after stimulation with
TNF-a. The onset of Ser 10 phosphorylation matches the pattern
of IKK-a recruitment in these cells after stimulation with TNF-a
(Fig. 2b, lower panel). These data show that the loss of IKK-b does
not affect Ser 10 phosphorylation at the IkBa promoter.

To examine further a requirement for IKK-a in regulating Ser 10
phosphorylation of histone H3, we evaluated the IL-6 gene, an
NF-kB-regulated gene that requires prior chromatin modifications
to ensure accessibility to NF-kB11. In wild-type MEFs, p65, IKK-a
and IKK-b all show a similar profile of promoter recruitment
occurring 2 h after stimulation with TNF-a (Fig. 2d, left panel).
Similar to the results obtained with the IkBa promoter, the presence
of IKK-a directly correlates with the onset of H3 Ser 10 phos-
phorylation. Promoter-associated IKK-a levels decrease 4 h after
treatment whereas Ser 10 levels remain detectable, suggesting that
either additional H3 kinases may be involved in the maintenance of
Ser 10 levels at the IL-6 promoter or that Ser 10 phosphorylation
levels remain stable after transient recruitment of IKK-a. Notably,
we did not detect TNF-a-induced Ser 10 phosphorylation in
IKK-a2/2 cells at the IL-6 promoter (Fig. 2d, right panel). p65
recruitment in IKK-a2/2 cells exhibits similar kinetics to wild-type
cells, although overall levels appear to be lower. We did not detect
IKK-b at this promoter in IKK-a2/2 cells, suggesting a role for IKK-
a in recruiting IKK-b to the IL-6 promoter. Collectively, these
results indicate a requirement for IKK-a in mediating H3 Ser 10
phosphorylation at different NF-kB-dependent promoters.

The timing of TNF-a-induced expression of IL-6 messenger RNA
does not coincide with recruitment of p65 to the IL-6 promoter
(Fig. 2c, d). We examined IL-6 mRNA levels in wild-type and p652/2

MEFs to determine whether expression of IL-6 is strictly p65-
dependent. Northern blotting experiments revealed decreased
IL-6 expression in p652/2 cells, although low-level induction of
IL-6 by TNF-a is observed (data not shown). This is consistent with
p65 being necessary for efficient IL-6 transcription but suggests that
other transcription factors, probably additional NF-kB subunits
(J.L.H., unpublished observations), can initiate IL-6 transcription
at a minimal level after TNF-a stimulation.

The co-occupancy of p65 and IKK-a at both IkBa and IL-6
promoters in wild-type MEFs stimulated with TNF-a led us to
examine whether p65 is required for the recruitment of IKK-a at
these promoters. In p652/2 MEFs, neither IKK-a recruitment nor
Ser 10 phosphorylation is detected, indicating that p65 activation

 

Figure 2 Promoter-associated IKK-a is essential for TNF-a-induced NF-kB-dependent

gene expression and histone H3 phosphorylation. a, c, IKK-a2/2 and IKK-b2/2 cells

are defective in TNF-a-induced IkBa and IL-6 gene expression. IKK wild-type (WT),

IKK-a2/2 and IKK-b2/2 MEFs were stimulated with TNF-a and RNA levels were

measured by real-time PCR for IkBa (a) and northern blot analysis for IL-6 gene

expression (c). b, d, Chromatin immunoprecipitation assays were performed on

TNF-a-induced IKK WT (left panel), IKK-a2/2 (right panel), or IKK-b2/2 MEFs (bottom

panel) with p65, IKK-a, IKK-b, H3 Ser 10 phospho-specific or acetyl-H3 antibodies (AS).

Associated DNA was analysed by PCR using IkBa (b) or IL-6 promoter-specific primers

(d). These results are representative of three independent experiments.
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complexes are required for IKK-a association with NF-kB-regulated
promoters (data not shown). Further investigation is needed to
clarify whether p65 binding may function to alter the chromatin
environment for IKK-a recruitment and subsequent Ser 10 phos-
phorylation of histone H3, or whether p65 directly recruits IKK-a
in this response.

The role of IKK-a in controlling promoter-specific Ser 10
phosphorylation may be indirect through the regulation of other
H3 kinases, or alternatively, IKK-a may directly phosphorylate
histone H3. To address this latter point, we tested free core histones
as substrates for recombinant IKK-a by in vitro kinase assays. IKK-a
efficiently phosphorylates histone H3 in vitro in a dose-dependent
fashion (Fig. 3a). Furthermore, H3 phosphorylation catalysed by
IKK-a is comparable to levels obtained with known H3 kinases,
MSK1 and RSK2 (refs 12, 13; Fig. 3a). Site-specificity for histone H3
phosphorylation by IKK-a was confirmed by protein immunoblot-
ting with a well-characterized anti-H3 (Ser 10) phospho-specific
antibody (Fig. 3b). IKK-b fails to phosphorylate H3 on free core
histones after incubation with [g-32P]ATP in vitro or using the
Ser 10 phospho-specific antibody (Fig. 3a, b). As a positive control
for IKK activity, phosphorylation of glutathione S-transferase
(GST)–IkBa fusion by IKK-a and IKK-b is shown (Fig. 3b, lower
panel). The analysis of the histone H3 primary sequence does not
reveal the IKK phosphorylation consensus sequence. These results
demonstrate that IKK-a directly phosphorylates histone H3 protein
on Ser 10 in vitro.

Our data demonstrate TNF-a-inducible IKK-a recruitment and
subsequent Ser 10 phosphorylation on specific NF-kB-regulated
promoters. To address the potential involvement of IKK-a in
mechanisms associated with global levels of histone H3 phosphoryl-
ation, we took two approaches. First, we acid-extracted core
histones from wild-type, IKK-a2/2 and IKK-b2/2 MEFs and

examined H3 Ser 10 phosphorylation by western blotting. In
wild-type and IKK-b2/2 MEFs, TNF-a treatment leads to increased
Ser 10 phosphorylation (Fig. 4). However, both basal and TNF-a-
induced levels of Ser 10 phosphorylation are significantly reduced in
IKK-a2/2 cells (Fig. 4) but are restored by the introduction of stably
expressed IKK-a (data not shown). Previous reports suggest that
impaired recognition of phosphorylated Ser 10 by phospho-H3
antibodies may occur when adjacent lysine groups are acetyl-
ated14,15. Therefore, we tested an antibody against dimodified H3
to examine H3 phosphorylated on Ser 10 and acetylated on Lys 14.
Levels of phosphorylated and acetylated H3 increase in response to
TNF-a stimulation, with kinetics similar to that of Ser 10 phos-
phorylation in wild-type and IKK-b2/2 MEFs (Fig. 4). However,
levels of phosphorylated and acetylated H3 remain reduced in the
IKK-a2/2 MEFs. This suggests that the reduced affinity for Ser 10
phosphorylation in IKK-a2/2 MEFs is not due to antibody occlu-
sion by adjacent acetylation on Lys 14. In addition, global levels of
acetylated H3 are largely unaffected in IKK-a2/2 MEFs (data not
shown). Second, immunofluorescence staining of asynchronous
wild-type and IKK-a2/2 cells with the same phospho-specific
antibody demonstrates similar H3 Ser 10 phosphorylation levels
in both cell types (data not shown). However, this probably
represents mitotic-associated Ser 10 phosphorylation16, not tran-
scriptionally associated histone phosphorylation. Thus, although it
is clear that IKK-a controls promoter-associated Ser 10 phos-
phorylation on a set of NF-kB-regulated genes, current investigation
is aimed towards examining the role of IKK-a in modulating global
levels of histone H3 phosphorylation.

Although a role for IKK-a in controlling NF-kB-dependent gene
expression has been suggested previously, a mechanism whereby
IKK-a might facilitate such a response has remained unclear. Our
results suggest that one role for IKK-a in controlling gene
expression is through an unexpected nuclear mechanism involving
histone H3 phosphorylation. Furthermore, the data indicate that
IKK-a directly phosphorylates histone H3 under TNF-a stimu-
lation. However, we cannot rule out the possibility that IKK-a is
involved in the regulation of other known H3 kinases. In this regard,
we observe no TNF-a-induced changes in MSK1 or RSK2 protein
levels in wild-type or IKK-a2/2 MEFs (data not shown). Also,
MSK1 activity is minimally induced by TNF-a stimulation in wild-
type or IKK-a2/2 MEFs using core histones as a substrate (data not
shown). Therefore, our results suggest that IKK-a-mediated histone
phosphorylation may provide one nucleosomal component in the
overall mechanism required for optimal gene expression. Future
experiments will be necessary to determine whether IKK-a-
mediated Ser 10 phosphorylation regulates other histone modifi-
cations associated with positive gene expression, such as acetylation
of Lys 14 on histone H3 as predicted by the histone code hypoth-
esis15,17–20.

Our observation that IKK-b is recruited to NF-kB-dependent
promoters and is not required for histone phosphorylation (Fig. 2b,
lower panel) indicates that IKK-a does not require IKK-b to
control histone phosphorylation, and suggests a distinct chromatin-
associated role for IKK-b in controlling NF-kB-dependent gene

Figure 4 IKK-a modulates global levels of histone H3 phosphorylation. Acid-soluble

proteins were extracted from asynchronous IKK wild-type, IKK-a2/2 and IKK-b2/2

MEFs, and were immunoblotted with anti-phospho-specific Ser 10, anti-phosphorylated/

acetylated H3, or anti-H3 antibodies.

Figure 3 IKK-a directly phosphorylates histone H3 in vitro. a, Free core histones were

incubated with increasing amounts of IKK-a or IKK-b (0.5, 1 and 2 mg, respectively) and

[g-32P]ATP in vitro to analyse the dose response for histone H3 phosphorylation. For

comparison, the activities of the H3 kinases (MSK1 (20 mU) and RSK2 (70 U)) towards the

histones were included. Reactions were resolved by SDS–PAGE (15%) and analysed by

autoradiography. Coomassie staining shows histones that were incubated with either

IKK-a (lanes 1–3), no kinase (lane 4), IKK-b (lanes 5–7), MSK1 (lane 8) and RSK2 (lane 9).

b, In vitro kinase assays were performed essentially as described in a, except that they

were carried out in the absence (lane 1) or presence of IKK-a (lane 2, 3) and IKK-b (lanes

3, 4), and without radioactive ATP. Western blotting with anti-phospho-specific Ser 10

antibody indicates that IKK-a directly phosphorylates H3 on Ser 10 with a greater

efficiency than IKK-b.

letters to nature

NATURE | VOL 423 | 5 JUNE 2003 | www.nature.com/nature662 © 2003        Nature  Publishing Group



expression. Current experiments are directed towards investigating
the role of promoter-localized IKK-b. Additionally, TNF-a induces
recruitment of IKK-g to the IkBa promoter, albeit at later time
points than IKK-a and IKK-b in wild-type MEFs (data not shown).
Collectively, these data support a function for IKK-a that is distinct
from the classical role of the cytoplasmic IKK-a/b/g complex in
controlling cytokine-induced NF-kB-regulated gene expression.
Thus, we propose independent roles for IKK-a, IKK-b and IKK-g
in cytokine-induced NF-kB-dependent gene expression. Whereas
IKK-b controls IkBa degradation and efficient DNA binding of
NF-kB subunits1 and IKK-g acts as a structural or regulatory
mediator of this kinase complex1,3,21, IKK-a functions as a chro-
matin modifier through histone phosphorylation. The data also
raise the possibility of a role for IKK-a in NF-kB-independent gene
expression. A

Methods
Cells and reagents
IKK wild-type, IKK-a2/2 and IKK-b2/2 MEFs were provided by I. Verma and M. Karin.
Antibodies against IKK-a, IKK-b, IKK-g, p105/p50, actin and tubulin were obtained from
Santa Cruz and Upstate Biotechnology. The p65/RelA-specific antibody was obtained
from Rockland. Phosphorylated histone H3 (Ser 10) antibody was obtained from Cell
Signal Technology. Acetylated (Lys 9/Lys 14) histone H3 antibody and phosphorylated/
acetylated (Ser 10/Lys 14) histone H3 antibody was obtained from Upstate Biotechnology.
TFIIB antibody was obtained from Transduction Laboratories. TNF-a (Kamiya) was used
at a final concentration of 10 ng ml21.

Immunofluorescence
IKKwild-type, IKK-a2/2 or IKK-b2/2 cells were seeded onto chamber slides (Nalge Nunc
International) and treated with TNF-a (10 ng ml21) for 15 min. After fixation with 4%
paraformaldehyde, cells were permeabilized with 0.2% Triton-X and blocked with 10%
goat serum, 1% bovine serum albumin in phosphate-buffered saline (PBS). Primary
antibodies were incubated at 4 8C overnight. One-hour incubations with fluorescein
isothiocyanate-conjugated secondary antibodies (Santa Cruz Biotechnology) were used to
detect primary antibody and were visualized on a Zeiss Axioskop. All images are shown at
£ 200.

Real-time quantitative PCR
Five micrograms of total RNA was incubated with Moloney murine leukaemia virus-
reverse transcriptase (Invitrogen) as recommended by the manufacturer. The resulting
complementary DNA was analysed quantitatively for the expression of IkBa by
fluorogenic 5 0 -nuclease PCR as described previously. Specific primers (forward 5 0 -
AGGATGAGCTGCCCTATGATGA-3 0 and reverse 5 0 -
TGCCACTTTCCACTTATAATGTCAGA-3

0
) and probe (5

0
-6-FAM

TGTGTGTTTGGAGGCCA-TAMRA) were designed to the IkBa gene and PCR products
were continuously measured by means of ABI Prism 7900 during 40 cycles. All data were
normalized to 18S ribosomal RNA.

Northern blot analysis
Total RNA was isolated using Trizol (Invitrogen) as recommended by the manufacturer. A
total of 10–20 mg total cellular RNA was separated on 1.5% formaldehyde-agarose gels and
transferred overnight to a nylon filter according to standard procedures. RNA was then
crosslinked to the membrane by ultraviolet irradiation (Stratagene) and probed with
randomly labelled IL-6 probe. Hybridization and wash was preformed using ExpressHyb
(Stratagene) as described by the manufacturer.

ChIP assay
ChIP analysis was performed following a protocol provided by Upstate Biotechnology
under modified conditions. After TNF-a (20 ng ml21) stimulation, 3 £ 106 cells were
fixed with 1% formaldehyde. After 5 min, cells were washed extensively with ice-cold PBS
and lysed for 10 min in lysis buffer (Upstate Biotechnology). Chromatin was sheared by
sonication to an average size of approximately 1 kilobase and pre-cleared for 2 h at 4 8C
with salmon sperm DNA-saturated protein G Sepharose. Chromatin solutions were
precipitated overnight at 4 8C using 10 ml anti-p65, 10 mg anti-IKK-a or anti-IKK-b, 10 ml
anti-phospho-H3 (Ser 10), and 5 ml acetylated H3-specific antibodies or beads alone.
Immune complexes were collected with salmon sperm DNA-saturated protein G
Sepharose for 1 h and washed extensively following the manufacturer’s protocol. Input
and immunoprecipitated chromatin were incubated at 65 8C overnight to reverse
crosslinks. After proteinase K digestion, DNA was extracted with phenol/chloroform and
precipitated with ethanol. Precipitated DNAs were analysed by PCR (30–35 cycles) using
Platinum Taq PCR Master Mix (Invitrogen). The following promoter-specific primers
were used: primer pair 5

0
-TGGCGAGGTCTGACTGTTGTGG-3

0
and 5

0
-

GCTCATCAAAAAGTTCCCTGTGC-3 0 was used to amplify a 230-base-pair (bp) region
in the mouse IkBa promoter; primer pair 5

0
-TGTGTGTGTGTGTATGTGTGTGTCG-3

0

and 5 0 -TCGTTCTTGGTGGGCTCCAG-3 0 was used to amplify a 440-bp region in the
mouse IL-6 promoter or the b-actin promoter (5

0
-TGCACTGTGCGGCGAAGC-3

0
and

5 0 -TCGAGCCATAAAAGGCAA-3 0 ).

In vitro kinase assay
Kinase assays were performed following a previously described protocol (Upstate
Biotechnology). Kinase activity was determined by incubating purified chicken core
histones (10 mg ml21) with increasing amounts of recombinant IKK-a or IKK-b, or
MSK1 (20 mU) and RSK2 (77 U) in the presence of 1 mCi ml21 [g-32P]ATP or cold ATP
(100 mM) for 30 min at 30 8C. Reactions were resolved by SDS–polyacrylamide gel
electrophoresis (PAGE; 15%) and processed for autoradiography or protein
immunoblotting. Recombinant IKK-a and IKK-b were provided by L. Dang.

Western blot analysis
Extractions of acid-soluble proteins were done according to the protocol described by
Upstate Biotechnology and resolved on 10–20% Tris-tricine SDS–PAGE gels.
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