Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An all-organic composite actuator material with a high dielectric constant

Abstract

Electroactive polymers (EAPs) can behave as actuators, changing their shape in response to electrical stimulation. EAPs that are controlled by external electric fields—referred to here as field-type EAPs—include ferroelectric polymers, electrostrictive polymers, dielectric elastomers and liquid crystal polymers1,2,3,4,5,6. Field-type EAPs can exhibit fast response speeds, low hysteresis1,2,3,4,5,6,7,8 and strain levels far above those of traditional piezoelectric materials4,5,6,9,10, with elastic energy densities even higher than those of piezoceramics4,5,9,10,11. However, these polymers also require a high field (>70 V µm-1) to generate such high elastic energy densities (>0.1 J cm-3; refs 4, 5, 9, 10). Here we report a new class of all-organic field-type EAP composites, which can exhibit high elastic energy densities induced by an electric field of only 13 V µm-1. The composites are fabricated from an organic filler material possessing very high dielectric constant dispersed in an electrostrictive polymer matrix. The composites can exhibit high net dielectric constants while retaining the flexibility of the matrix. These all-organic actuators could find applications as artificial muscles, ‘smart skins’ for drag reduction, and in microfluidic systems for drug delivery1,2,3,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The strain amplitude as a function of the applied-field amplitude measured at room temperature.
Figure 3: Dielectric properties of the all-organic composites.

Similar content being viewed by others

References

  1. Bar-Cohen, Y. (ed.) Electroactive Polymer Actuators as Artificial Muscles (SPIE, Bellingham, WA, 2001)

  2. Zhang, Q. M., Furukawa, T., Bar-Cohen, Y. & Scheinbeim, J. (eds) Electroactive Polymers (MRS Symp. Proc. Vol. 600, MRS, Warrendale PA, 1999)

  3. Nalwa, H. (ed.) Ferroelectric Polymers (Marcel Dekker, New York, 1995)

  4. Zhang, Q. M., Bharti, V. & Zhao, X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluofoethylene) copolymer. Science 280, 2101–2104 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Pelrine, R., Kornbluh, R., Pei, Q. & Joseph, J. Highspeed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Lehmann, W. et al. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410, 447–450 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Baughman, R. H. et al. Carbon nanotube actuators. Science 284, 1340–1344 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Osada, Y., Okuzaki, H. & Hori, H. A polymer gel with electrically driven motility. Nature 355, 242–244 (1992)

    Article  ADS  CAS  Google Scholar 

  9. Cheng, Z.-Y. et al. Electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymers. Sens. Actuat. A 90, 138–147 (2001)

    Article  CAS  Google Scholar 

  10. Xu, H. et al. Ferroelectric and electromechanical properties of poly(vinylidene-fluoride–trifluoroethylene–cholorotrifluoroethylene) terpolymer. Appl. Phys. Lett. 78, 2360–2362 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Huber, J. E., Fleck, N. A. & Ashby, M. F. The selection of mechanical actuators based on performance indices. Proc. R. Soc. Lond. A 453, 2185–2205 (1997)

    Article  ADS  Google Scholar 

  12. Dario, P., Carrozza, M., Benvenuto, A. & Menciassi, A. Micro-systems in biomedical applications. J. Micromech. Microeng. 10, 235–244 (2000)

    Article  ADS  CAS  Google Scholar 

  13. McCrum, N., Read, B. E. & Williams, G. Anelastic and Dielectric Effects in Polymeric Solids (Dover, New York, 1967)

    Google Scholar 

  14. Moulson, A. & Herbert, J. Electroceramics (Chapman & Hall, London, 1995)

    Google Scholar 

  15. Cross, L. E. Ferroelectric ceramics: materials and application issues. Ceram. Trans. 68, 15–55 (1996)

    CAS  Google Scholar 

  16. Safari, A., Sa-gong, G., Giniewicz, J. & Newnham, R. Composite piezoelectric sensors. Proc. 21st Univ. Conf. Ceram. Sci. 20, 445–455 (1986)

    CAS  Google Scholar 

  17. Bao, Z., Lovinger, A. & Dodabalapur, A. Highly ordered vacuum-deposited thin films of metallophthalocyanines and their application in field-effect transistors. Adv. Mater. 9, 42–45 (1997)

    Article  CAS  Google Scholar 

  18. Tominaga, T., Hayashi, K. & Toshima, N. Accelerated hole transfer by double-layered metallophthalocyanine thin film for effective electroluminescence. Appl. Phys. Lett. 70, 762–763 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Nalwa, H. S., Dalton, L. & Vasudevan, P. Dielectric properties of copper-phthalocyanine polymer. Eur. Polym. J. 21, 943–947 (1985)

    Article  CAS  Google Scholar 

  20. Phougat, N., Vasudevan, P. & Nalwa, H. Handbook of Low and High Dielectric Constant of Materials and Their Applications Ch. 8 (ed. Nalwa, H.)) (Academic, London, 1999)

    Google Scholar 

  21. Vijayakumar, P. & Pohl, H. A. Giant polarization in stable polymeric dielectrics. J. Polym. Sci. Poly. Phys. 22, 1439–1451 (1984)

    Article  ADS  CAS  Google Scholar 

  22. Gould, P. D. Structure and electrical conduction properties of phthalocyanine thin films. Coord. Chem. Rev. 156, 237–274 (1996)

    Article  CAS  Google Scholar 

  23. Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media (Pergamon, Oxford, 1970)

    Google Scholar 

  24. Newnham, R., Sundar, V., Yimmirun, R., Su, J. & Zhang, Q. M. Electrostriction in dielectric materials. Ceram. Trans. 88, 15–39 (1998)

    CAS  Google Scholar 

  25. Damjanovic, D. Logarithmic frequency dependence of the piezoelectric effect due to pinning of ferroelectric-ferroelastic domain walls. Phys. Rev. B 55, R649–R652 (1997)

    Article  ADS  CAS  Google Scholar 

  26. Su, J., Zhang, Q. M. & Ting, R. Y. Space-charge-enhanced electromechanical response in thin-film polyurethane elastomers. Appl. Phys. Lett. 71, 386–388 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Hayashi, K., Kawato, S., Fujii, Y., Horiuchi, T. & Matsushige, K. Effect of applied electric field on the molecular orientation of epitaxially grown organic films. Appl. Phys. Lett. 70, 1384–1386 (1997)

    Article  ADS  CAS  Google Scholar 

  28. Ai-Aliak, H., Illingsworth, J., Brinkman, A., Russell, G. J. & Woods, J. The effects of donor dopant concentration on the grain boundary layer characteristics in n-doped BaTiO3 ceramics. J. Appl. Phys. 64, 6477–6482 (1998)

    Article  ADS  Google Scholar 

  29. Achar, B. N., Fohlen, G. G. & Parker, J. A. Phthalocyanine polymers. II Synthesis and characterization of some metal phthalocyanine sheet oligomers. J. Polym. Sci. Polym. Chem. 20, 1785–1790 (1982)

    Article  CAS  Google Scholar 

  30. Su, J., Moses, P. & Zhang, Q. M. A piezoelectric bimorph based dilatometer for field induced strain measurement in soft and thin free standing polymer films. Rev. Sci. Instrum. 69, 2480–2484 (1998)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health, the Office of Naval Research, and Defense Advanced Research Projects Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. M. Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Li, H., Poh, M. et al. An all-organic composite actuator material with a high dielectric constant. Nature 419, 284–287 (2002). https://doi.org/10.1038/nature01021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01021

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing