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The computational identification of oncogenic lesions is still a key open problem in cancer biology.
Although several methods have been proposed, they fail to model how such events are mediated by
the network of molecular interactions in the cell. In this paper, we introduce a systems biology
approach, based on the analysis of molecular interactions that become dysregulated in specific
tumor phenotypes. Such a strategy provides important insights into tumorigenesis, effectively
extending and complementing existing methods. Furthermore, we show that the same approach is
highly effective in identifying the targets of molecular perturbations in a human cellular context, a
task virtually unaddressed by existing computational methods. To identify interactions that are
dysregulated in three distinct non-Hodgkin’s lymphomas and in samples perturbed with CD40
ligand, we use the B-cell interactome (BCI), a genome-wide compendium of human B-cell molecular
interactions, in combination with a large set of microarray expression profiles. The method
consistently ranked the known gene in the top 20 (0.3%), outperforming conventional approaches
in 3 of 4 cases.
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Introduction

Cancer is a complex and highly heterogeneous disease that is
mediated by a myriad of distinct cellular pathways, according
to tissue of origin, specific set of chromosomal aberrations/
mutations, and environmental conditions. In leukemia, for
instance, there are several documented oncogenic lesions that
work cooperatively to drive the cell to tumorigenesis
(Mullighan et al, 2007). As a result, cancer phenotypes can
exhibit a great range of genetic variability. With analytical
methods still in their relative infancy, it is thus not surprising
that we are only in the very preliminary stages of assembling a
complete repertoire of germ-line and somatic oncogenic
lesions for each cancer phenotype.

Such knowledge, albeit still partial, has already proven
useful as a guide for therapeutic intervention (Downward,

2006) and is expected to become a key driver in the
development of new personalized, diagnostic, and therapeutic
strategies. Therefore, the computational inference of onco-
genic events, as well as their specific impact on pathway
dysregulation, has become the subject of intense focus in
molecular biology.

High-throughput technologies are now producing vast
amounts of biological data representing the availability of
specific molecular species in a cellular population. These
include, among many others, gene expression and genotypic
profiles (Schena et al, 1995), DNA-binding profiles from
chromatin immunoprecipitation (Ren et al, 2000), genomic
sequences, and protein abundance from mass spectrometry
(Perez and Nolan, 2002). These data have been used
extensively to characterize the differences between cancer
cells and their normal counterpart. Gene expression profiling,
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in particular, has been successful in classifying tumors or
patient prognosis based on specific molecular signatures.
These have been applied to several phenotypes, including
leukemia (Golub et al, 1999) and breast cancer (van ’t Veer
et al, 2002). In a similar context, expression profiling has also
been used to characterize the molecular signatures arising
from specific pharmacological interventions in the cell (Lamb
et al, 2006).

Recently, using these data, a number of computational
methods have been proposed for the identification of
oncogenes, tumor-suppressor genes, and even entire pathways
that are dysregulated in cancer. A highly recurrent gene fusion
event, for instance, was identified in prostate cancer from
expression profiles using an ‘outlier’ analysis approach
(Tomlins et al, 2005). Additionally, genome-wide SNP profiling
and array-based comparative genomic hybridization were
applied to the identification of germ-line and somatic lesions in
several cancers, including leukemia (Mullighan et al, 2007)
and breast cancer (Yao et al, 2006). Integrative approaches
were also proposed: copy-number and expression profile data,
for instance, were successfully used in the identification of
specific chromosomal amplifications in breast cancer (Adler
et al, 2006). Other context-dependent methods have been
proposed such as those that use reference signatures of specific
activated pathways to characterize tumors and establish drug
sensitivity (Bild et al, 2006).

These methods, while partially successful, still focus
primarily on characteristics of individual genes or gene
products. It is not possible, therefore, to infer any details on
how a protein’s behavior has changed, nor the specific
mechanisms that led to the pathologic transition.

In this paper, we introduce the interactome dysregulation
enrichment analysis (IDEA) algorithm, which uses a
genome-wide molecular interaction map as a systematic
framework for the identification of genes playing a role
in oncogenesis. Furthermore, we show that the same
approach is also effective in identifying both targets and
effectors of specific biochemical perturbations, a problem
also known as the ‘drug mechanism-of-action’ (MOA).
Interestingly, while highly related, there are no available
computational algorithms to address the MOA problem in a
human cellular context; although interesting solutions have
been proposed in bacteria (Gardner et al, 2003) and yeast
(di Bernardo et al, 2005). We suggest that studying dysregula-
tion patterns at a cellular network level, rather than in a ‘gene-
centric’ manner, can provide a highly efficient method for
addressing both problems. Furthermore, the use of cellular
networks provides a much-needed molecular interaction
context to further characterize any gene predictions emerging
from the analysis.

The use of an interaction network for gene–disease
association is not novel per se. A few recent studies have
leveraged the growing repertoire of interaction data for this
purpose. In one example (Lage et al, 2007), protein–protein
interaction networks were combined with Online Mendelian
Inheritance in Man (OMIM) (Hamosh et al, 2000) annotation
data to identify complexes implicated in disease progression.
In another study specific to prostate cancer (Ergun et al, 2007),
a regulatory network was inferred from microarray data
and used as a filter to infer genetic mediators of disease

progression. The approach was successful in identifying the
androgen-receptor-signaling pathway, whose role in prostate
cancer is already well documented. Both methods however,
like others in this category, still adopt a gene-centric approach,
using the underlying network essentially as a filter to identify
clusters of significant genes. Furthermore, only individual
interaction layers, such as the transcriptional layer or the
protein complex layer, were modeled by these methods.
Finally, no explicit biochemical validation is provided to
support their prediction accuracy.

In this paper, we use an existing genome-wide cellular
network, the B-cell interactome (BCI), originally assembled by
our laboratory (Lefebvre et al, 2007) and further enhanced by
including post-translational modulation events (C Lefebvre
et al, in preparation). The BCI is a mixed-interaction network,
representing several key molecular interaction types in a
human B cell, including transcriptional, signaling, and
complex formation. The proposed analysis works in two
steps. We first use a large compendium of microarray
expression profiles from normal, tumor-related, and experi-
mentally manipulated B cells to identify BCI interactions
showing either a gain of correlation (GoC) or a loss of
correlation (LoC) pattern in the phenotype of interest. These
interactions are either lost (LoC) or gained (GoC) in the
specific phenotype compared with the background, based on
an information-theoretic test. We then rank genes according to
the statistical significance of the LoC/GoC enrichment among
the interactions in which they directly participate (see Box 1
for method overview).

The study introduces four key innovations as follows: (1) by
adopting a genome-wide, mixed-interaction network, instead
of the individual interaction layers of previous studies, we
cover a far greater range of processes within the cell; (2) rather
than analyzing the differential properties of individual genes
(e.g., expression profile or genotypic data), we identify
molecular interactions that are significantly dysregulated in a
particular phenotype of interest. We hypothesize that genes
implicated in cancer initiation and progression (as well as
those targeted by specific biochemical perturbations) will
show dysregulated interactions with their molecular partners.
Biologically, this is quite plausible, since biochemical pertur-
bations as well as a wide variety of oncogenic events (gene
fusion or translocation, post-translational protein modifica-
tion, structural mutation) will manifest through gains or losses
of regulatory, signaling, and protein–complex interaction
capability; (3) we validate on three distinct tumor models
(follicular (FL), Burkitt’s (BL), and mantle cell lymphoma
(MCL)), whose oncogenic lesions are both known and
completely different. In each case, we show that the known
gene is identified in the 20 most significant by the analysis; (4)
finally, we biochemically validate the approach by perturbing
B-cell lines (using the CD40 ligand/antibody) and by showing
that the method is successful in identifying the perturbation
targets (CD40 pathway genes).

A key advantage of such a network-centric approach is
that it can identify relatively small, yet tightly connected
areas of the network (modules) that are dysregulated,
providing a window over the mechanistic and possibly
synergistic processes underlying oncogenesis and biochemical
perturbation.

Predicting oncogenes and perturbation targets in B-cell lymphoma
KM Mani et al

2 Molecular Systems Biology 2008 & 2008 EMBO and Nature Publishing Group



Results

The enhanced version of the BCI (http://amdec-bioinfo.
cu-genome.org/html/BCellInteractome.html) includes 64 649
unique pairwise interactions (160730 non-unique interactions
between probes). This network represents an ‘average’ set of
molecular interactions, supported by the majority of B-cell

samples from several stages of normal development—naı̈ve
(N), memory (M) and germinal center (GC)—as well as from
several tumor phenotypes. Interactions that are present only in
a small phenotypic subset are not represented. For each
phenotype, Table I shows the number of dysregulated
interactions detected by IDEA divided by LoC and GoC
category. Figure 1 shows a comprehensive view of all the
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An overview of the proposed network-based analysis to characterize oncogenic mechanisms and pharmacological interventions. (A) In step 1, a comprehensive
network of interactions is generated for B cells using a Bayesian evidence integration approach, including predictions of post-translational modifications. In this
diagram, transcription factors are shown in red, non-transcription factors in gray, and modulators are shown in blue. Directed arrows indicate protein–DNA (P-D)
interactions, and undirected indicate protein–protein (P-P) interactions or modulation events. Evidences, or clues, include curated databases, literate mining,
orthologous interactions from model organisms, and reverse engineering algorithms. (B) In step 2, each interaction is analyzed to determine which show aberrant
behavior in a specific phenotype (P); that is, interactions that show correlation in all samples except P (TF1 and T1), or interactions that are not correlated in any
samples except P (TF1 and T2). These dysregulated interactions are classified as LoC or GoC, respectively, for every edge in the BCI. (C) In step 3, these
dysregulated interactions are pooled together and a statistical enrichment is calculated which identifies genes having an unusually high number of these
interactions in its neighborhood, either through direct or modulated links.

Box 1 Interactome Dysregulation Enrichment Analysis (IDEA)
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dysregulated interactions in each represented phenotype,
using a ‘barcode’ like representation. Two findings are
intriguing from this global analysis. First, a large percentage
of the network interactions are not dysregulated in any of the
phenotypes (80.5%), implying that many of the interactions
represent a cellular network ‘backbone’ that behaves consis-
tently across phenotypes. Second, as shown, cancer barcodes
for different phenotypes appear highly distinctive. See
Materials and methods section for a clear definition of LoC
and GoC interactions.

The method’s performance was benchmarked using three
extensively characterized B-cell tumor phenotypes and a set of
biochemical perturbation assays. In all four assays, the method
correctly identified the known gene in the top 20 candidates
out of approximately 7900 probes on the chip, after filtering
non-informative genes based on the coefficient of variation.
These tests are discussed below.

FL benchmark

FL is one of the most common B-cell non-Hodgkin’s
lymphomas (NHLs), the key genetic lesion (found in B90%
of FL samples) is the t(14;18) rearrangement. This transloca-
tion causes the constitutive expression of the antiapoptotic
BCL2 oncogene (Bende et al, 2007). FL shows a relatively small
network dysregulation signature, with only 192 LoC/GoC
interactions. BCL2, which supports eight of those interactions,
is ranked first by our enrichment analysis method. By
comparison, differential expression analysis between FL
samples and GC samples (the normal FL counterpart) ranks
BCL2 in the fifty-ninth position. Furthermore, the analysis
identified the SMAD1 gene, ranked sixth. This gene, although
not detectable by differential expression analysis in our data
set, has been shown to have an aberrant pathway activation in
FL and other NHL phenotypes, mediated by tumor-transform-
ing growth factor-b (Munoz et al, 2004).

Figure 1 Cancer barcode: In this figure we show the complete set of affected BCI interactions for each analyzed phenotype. The rows represent these BCI interactions
sorted in ascending order (from top to bottom) by their MI computed over the complete set of BCGEP samples. Each column is one analyzed phenotype. These
phenotypes shown include CLL-mut and CLL-unmut subsets, BL, DLCL, FL, MCL, and PEL. A ‘p’ preceding a phenotype name indicates those samples were purified.
Interactions are color coded in blue for LoC and red for GoC. Clearly visible from this figure is that these phenotypes all appear to have very distinct areas of the network,
which define their pathologic activity.

Table I Distribution of phenotypes and LoC and GoC signatures

Phenotype No. of samples LoC GoC

B-CLL 34 1813 10 815
B-CLL-mut 18 121 3417
B-CLL-unmut 16 92 1430
BL 26 383 701
pDLCL 15 596 17
pFL 6 183 9
HCL 16 3399 824
pMCL 8 488 16
PEL 9 1839 1204

Abbreviations: BL, Burkitt’s lymphoma; CLL-mut, chronic lymphocytic leuke-
mia from mutated; CLL-unmut, chronic lymphocytic leukemia from unmutated;
DLCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; GoC, gain of
correlation; LoC, loss of correlation; MCL, mantle cell lymphoma; PEL, primary
effusion lymphoma.
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BL benchmark

BL is endemic among children in equatorial Africa and occurs
sporadically in other geographic areas, where it also affects
adults (Bellan et al, 2003). In these malignancies, a key
oncogenic lesion is the translocation of the proto-oncogene
MYC from chromosome 8 to either the immunoglobulin heavy-
chain region on chromosome 14, or one of the light-chain
regions on chromosome 2 or chromosome 22. MYC has been
shown to have a global regulatory role in BL (Li et al, 2003).
MYC is also one of the most connected hubs in the BCI, having
4079 probe-based interactions. Sixty of these interactions were
dysregulated, giving this gene the fifteenth most significant
enrichment score. By differential expression analysis between
BL and GC cells (BL’s normal counterpart), MYC has a rank of
thirty-two (see Table II). While this result is encouraging per se,
our method was also successful in identifying other key
effectors of MYC in BL. In particular, MTA1, an established
target of MYC, was ranked third, even though it is not even
ranked in the top 1000 genes by differential expression. MTA1
was recently identified as a primary downstream effector
of MYC function. Specifically, its silencing blocks the ability
of MYC to produce a pathologic transformation (Zhang
et al, 2005).

MCL benchmark

MCL is an aggressive type of NHL that generally occurs in
middle-aged and elderly people. Cyclin D1/BCL1 (CCND1) is a
cell-cycle protein that is overexpressed in MCL as a result of the
translocation t(11;14) involving the immunoglobulin heavy-
chain gene on chromosome 14 and a region on chromosome 11
harboring CCND1. (Miranda et al, 2000). In the BCI, cyclin D1
is connected to six dysregulated interactions, ranking it
eighteenth in our list. By differential expression analysis with
non-GC samples (MCL’s normal counterpart) CCND1 has a
rank of six (see Table II). In addition, our analysis ranked
HDAC1 third among all candidates. Histone deacetylases
inhibitors have recently been suggested as potentially useful
in the therapy of MCL (Heider et al, 2006), so this finding is
another piece of supporting evidence that our method
identifies the correct patterns. HDAC1 is also highly differen-
tially expressed, and ranked fourteenth. These results indicate
that in some cases conventional analysis do indeed capture the
correct gene(s). However, as shown, our method seems to
consistently identify these key genes as well as effectors,
which may be undetectable by differential expression.

In these three cases, it is important to note that we expect the
translocated gene to be differentially expressed. It is significant
therefore, that against a benchmark where differential expres-
sion should be very useful, our method still outperforms it in
two out of three cases, and consistently ranks these genes at
the very top throughout.

Interestingly, when the scores for these phenotypes are
shown distinctly for LoC and GoC interactions (see Table II),
MYC appears heavily weighted toward GoC, BCL2 toward LoC,
and CCND1 shows a mixed mode of both. These results may
indicate that the progression of these lymphomas is marked by
distinct types of changes in the network.

Biochemical validation

Although the above examples provide some evidence that our
method can correctly identify key regulators and effectors in
three separate tumors, a more robust form of validation can be
provided by a biochemical perturbation of a specific pathway.
We proceeded to analyze a set of samples from Ramos (BL) cell
lines stimulated with CD40 ligand or antibody against a non-
stimulated set. To quantitatively measure the performance of
the method, we considered an established signature of 41
genes in the CD40 pathway and used the gene set enrichment
analysis (GSEA) (Subramanian et al, 2005) to compare our
method to differential expression analysis.

Our method ranked 379 probes as having a non-zero score.
Using GSEA, this ranked list produced a nominal enrichment
P-value of 0 (Po1e�3 given 1000 permutations), with 13 of the
CD40 pathway genes appearing in the list, many of them
clustered at the very top. Remarkably, of the top 10 genes five
are in the CD40 pathway set, including CD40 itself, which is
ranked ninth. The other four CD40 pathway genes include
NFKB1 (second), NFKBIA (third), NFKBIE (fifth), and NFKB2
(tenth), all known to be key effectors of CD40 signaling. Since
our method produces a score of zero for all genes that do not
participate in any dysregulated interactions, it is not possible
to analyze enrichment beyond these 379 probes. When
compared with differential expression using the same cutoff
of 379 probes, GSEA produces a nominal P-value of 0.12,
showing no statistically significant enrichment of the CD40
pathway gene list. CD40 itself is ranked twenty-fourth.
Furthermore, in our analysis, we find eight CD40 pathway
genes in the top 25 (P-value¼0 by Fisher’s exact test, below
machine precision), compared with only 4 of 25 by differential
expression analysis (P-value o2e�5). Although both ap-
proaches show significant enrichment, the new method
captures twice as many relevant genes within the top 25,
while finding the actual perturbation target within the top 10.
This further supports the use of our method for the
identification of targets of compounds of unknown activity.
When looking at these results, the extreme enrichment of the
CD40 pathway members, both in the top 10 and 25 genes is
likely to make the difference between identifying and missing
the perturbation MOA. Note that, similar to the other bench-
marks, CD40 itself is upregulated upon binding the CD40
ligand. Thus, as expected, differential expression analysis
appears partially effective. However, as shown for MTA1,
SMAD1, and other effectors (see Figure 2), IDEA does not

Table II Comparative ranks of GoC, LoC, and combined enrichments for B-cell
lymphoma phenotypes as well as CD40-stimulated Ramos cells

Phenotype Gene LoC GoC Combined t-Test

BL MYC 308 7 15 32
FL BCL2 1 NA 1 59
MCL CCND1 28 21 18 6
Ramos/CD40 CD40 NA 7 9 24

Abbreviations: CCND1, cyclin D1/BCL1; FL, follicular lymphoma; GoC, gain of
correlation; LoC, loss of correlation; MCL, mantle cell lymphoma; NA, not
available.
Last column indicates ranking by differential expression analysis.
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require the gene to be differentially regulated in order to be
identified as a likely candidate.

Visualization and interpretation

One benefit of a network-based approach candidate is that
gene lists can be viewed in a network context. When we map
the top scoring genes from the phenotypes listed above across
the network, they tend to tightly cluster in specific areas.
Figure 2 shows a visualization of the top 25 genes predicted in
BL, which form a connected module. Of interest is the fact that
MYC is a key regulator of this module (with 21 of 25 genes
being its target, including MTA1). These ‘cancer module’
diagrams provide more context than a ranked list of genes, and
as shown, can effectively complement existing methods such
as differential expression.

IDEA is useful for generating testable hypotheses in a
number of different contexts. In the first case, ranked genes
can be viewed in a network module to identify key regulators.
As discussed in Figure 2, this approach would identify MYC,
which upon visualization clearly controls the vast majority of
top ranked genes. These candidate driver genes could be
experimentally validated using siRNA knockdowns or other
perturbation assays. Second, these lists can be analyzed for
enrichment in specific pathways. We compared the ranked
output to a set of Kyoto Encyclopedia of Genes and Genomes,
or KEGG (Kanehisa et al, 2006), pathway annotations. For BL,
this method identified focal adhesion (P¼0) and the ECM–

receptor interaction pathway (P¼0), which contain similar
sets of genes, which are more commonly associated with solid
tumors. Also identified were the B-cell receptor-signaling
pathway (P¼0.006) and the Jak-Stat-signaling pathway
(P¼0.057), which has been associated with several different
cancer phenotypes. Lastly, genes that score high across
multiple phenotypes could be identified pertaining to common
mechanisms. When the scores across all phenotypes are
averaged, the top scoring genes contain several key oncogenic
regulators. Included in the top of this list are MYC, the tumor
repressor PRDM2, JAK3, the transcriptional repressor DRAP1,
and the estrogen receptor ESR1. Ranked second was the
transcription factor POU6F1, which is known to have a role
in several eukaryotic development processes, but has not
been previously associated with lymphoma, and may warrant
further investigation.

We applied this approach to the analysis of chronic
lymphocytic leukemia (CLL), a complex tumor phenotype,
for which oncogenic lesions have not been identified. The top-
ranked genes include PRDM2, MYC, and MLL, which are
known to be translocated in different subtypes of leukemia,
and SMAD3, which is active in several NHL phenotypes. The
top 25 genes also form a tightly connected cluster, with almost
half the connections being modulated interactions. Pathway
enrichment identified the cell-cycle (P¼0), B-cell receptor
(P¼0.0007), TGFb (P¼0.038), and P53-signaling pathways
(P¼0.05). These pathways are commonly associated with
B-cell lymphomas and this is not surprising, but the presence

Figure 2 BL module: A network visualization of the top 25 scoring genes in BL. Transcription factors are shown as circles, whereas other proteins are shown as
squares. Protein–protein interactions are also shown in beige, protein–DNA interactions are black with an arrowhead, and transcription factor-modulated interactions are
shown in blue with a circular endpoint. Red/green indicates overexpression or underexpression (Po1e�8), respectively in BL versus GC cells. There are some notable
characteristics of this figure. First, all 25 genes form a connected module, which would not occur by chance. Second, MYC appears to be a central regulator of this
module, as a full 21 out of the 25 members are MYC targets. MYC also appears regulated by MYC-associated zinc-finger protein (MAZ), which is also not
differentially expressed. Third, there are interesting sets of genes that emerge, such as SMAD1, which is known to be associated with some NHL, and members of the
NFAT family, including NFATC3, NFATC4, and NFAT5 (these proteins are members of the Wnt-signaling pathway). There also appears to be a protein complex of
COL1A2, COL6A1 COL6A2, and FN1, which are all upregulated (and members of the cell signaling and ECM–receptor interaction pathway). These module
diagrams can serve as a useful platform for further hypothesis generation and biochemical investigation.
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of MYC, MLL, and PRDM2, all strong oncogenic effectors, may
be worthy of inquiry in CLL, as they have not previously been
associated with this malignant phenotype. MYC shows a high
level of connectivity in the module diagram, connecting to 18
out of the 24 other genes. It is also predicted to be a regulator
and modulator of PRDM2. As translocations of MYC and MLL
are exceedingly rare in CLL (Reddy et al, 2006), it is unclear
what role they have in this specific cancer.

Discussion

We have proposed IDEA, a systems biology approach to the
identification of mechanisms associated with the presentation
of a specific tumor phenotype or biochemical perturbation. We
have shown that this approach identifies known oncogenic
lesions and downstream effectors for 3 malignant B-cell
phenotypes. We have also shown its applicability to artificially
perturbed cellular systems using Ramos cell line samples
where the CD40 pathway was specifically stimulated.

IDEA gains coverage by generating a network from multiple
sources. In our approach, we chose to use a hybrid interactome
containing protein–protein, protein–DNA and post-transla-
tional interactions inferred by the MINDy algorithm. This
decision allows the method to capture several different
mechanisms of action associated with oncogenic lesions and
biochemical perturbations. As indicated from the results, two
of the known lesions correctly identified were not transcription
factors (BCL1/cyclin D1 and BCL2), indicating that we can
capture oncogenic candidates that fall outside of typical
regulatory network models (and more so that the method is
not inherently biased to only find transcriptional regulators).
Furthermore, post-translational interactions have not been
integrated into other network-based analyses. Although this
more inclusive approach may add noise to the analysis, the
conservative threshold we apply, along with the fact that
incorrect edges would be distributed randomly through the
network, leads us to have strong confidence in the tolerance of
this approach to false positive and false negative interactions.

A key difference from other network-based methods is that
we identify dysregulated network edges (interactions) instead
of dysregulated nodes (genes) to assemble disease-related
signatures. By focusing on the behavior of gene pairs, as
opposed to their individual expression or genetic character-
istic, this analysis is capable of identifying patterns other
methods may not.

Although we observed results consistent with published
data on specific oncogenes, IDEA also identified secondary
effectors that were associated with the phenotypic transition.
SMAD1 was identified in FL, and it is known that this pathway
is affected in FL and other NHLs. Perhaps the best example of
this trend is with BL, where the third-ranked gene was MTA1.
MTA1 is a known target of MYC, but its higher rank reflects the
observation that MYC loses its transforming capability in cells
without MTA1. It is remarkable that both SMAD1 and MTA1
are not detected by differential expression analysis and would
likely be missed by conventional analysis. Thus, our method
not only identifies oncogenic candidates, but also key effectors
of the phenotypic transition, where gene expression alone
would not support their association.

The ability to visualize these disease modules is also a
potential platform for further investigation. It provides
advantages beyond simple gene lists, especially with respect
to producing a systems level representation of the molecular
mechanisms supporting the phenotype. These findings can
lead to testable hypotheses and rational models. As noted,
when combined with specific pathway enrichment statistics,
novel mechanisms may emerge, such as MYC as a regulator of
proteins involved in the ECM–receptor interaction in BL.

One drawback of this methodology is the large background
population that is necessary for comparison. As dependency
metrics like mutual information (MI) require a certain sample
size to establish significance, this may pose a difficulty in
situations where sample sizes are limited. We encountered this
very problem in analyzing our B-cell phenotypes, and chose to
use our entire set as a background instead. Although this tactic
may dilute signals in the data, the positive evidence suggests
that we can still detect highly specific details, even among a
noisy background. As more data becomes available, this
problem will become less apparent.

A second problem deals with the thresholding we apply to
classify interactions as GoC and LoC. By being conservative,
we may improve accuracy, but the undesired effect is that
interactions not meeting this threshold are not used in
enrichment, causing the majority of probes to have a zero
value. This limitation creates shorter ranked lists of genes that
are potentially adding a number of false negatives. We are
currently investigating non-threshold-based enrichment sta-
tistics, which can allow us to score all the probes accurately.

Next steps in developing this methodology include more
fully leveraging the underlying network to infer affected
mechanisms. Currently a gene’s enrichment is only calculated
based on its immediate neighborhood, which is potentially
eliminating secondary effects that propagate from one area of
the network. If propagation through regulatory and signaling
interaction were used, for example, MYC’s position as a key
regulator of highly ranked genes in BL would further increase
its already significant score/rank.

Materials and methods
The procedure is split into three distinct parts, as described in Box 1.
The first part is the generation of the integrated BCI network. The
second part is a phenotype analysis to identify dysregulated interac-
tions. The third part is enrichment analysis and gene scoring.
Benchmarking was performed against three B-cell lymphomas with
known oncogenic lesions, and against CD40-stimulated Ramos cell
line samples. The three steps are summarized below. A much more
detailed description is available in the Supplementary Information.

Network assembly

The BCI is a mixed-interaction network composed of protein–protein
(PP) and protein–DNA (PD) interactions in a human B-cell context
(Lefebvre et al, 2007). The former include both same-complex protein
interactions and transient ones, such as those supporting signaling
pathways. This network has since been enhanced (C Lefebvre et al, in
preparation) to include additional post-translational interactions
predicted by the MINDy algorithm (Wang et al, 2006). These
interactions include those cases where the ability of a transcription
factor (TF) to regulate its target(s) (T) is modulated by a third protein
(M) (e.g., an activating kinase). The BCI is generated using ‘gold-
standard’ evidences from curated databases, by applying a Naı̈ve
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Bayes classifier to integrate a large number of experimental and
computational evidence. Evidence is drawn from several sources,
including literature mining from GeneWays (Rzhetsky et al, 2004),
transcription factor-binding motif enrichment, orthologous interac-
tions from model organisms, and reverse engineering algorithms,
including ARACNe (Basso et al., 2005; Margolin et al, 2006) and
MINDy for regulatory and post-translational interactions, respectively.
A likelihood ratio (LR) for each evidence source was generated using
the positive and negative gold-standard sets. Individual LRs are then
combined into a global LR for each interaction. A threshold
corresponding to a posterior probability PX0.5 was used to qualify
interactions as present or absent. See the Supplementary Information
for full details of the method.

Dysregulation analysis

Analysis was performed using a large compendium of over 200
microarray expression profiles in B cells (BCGEP), including primary
tissue as well as cell line samples, available in the NIH Gene
Expression Omnibus (GSE2350). Samples in this set were hybridized
to the Affymetrix HG-U95Av2 GeneChips. After filtering for unin-
formative probes (those having less than a mean of 50 and a coefficient
of variation less than 0.3 in the BCGEP), 7907 remained for analysis.
Hierarchical clustering was performed to identify relatively homo-
geneous phenotype groups suitable for this analysis. The three
benchmarking phenotypes used included BL (26 purified and
unpurified samples), FL (six purified samples), and MCL (eight
purified samples). Other phenotypes represented in this data set
included germinal center (GC), naı̈ve (N), memory (M), CLL from
mutated (CLL-mut) and unmutated (CLL-unmut) subsets, diffuse large
B-cell lymphoma (DLCL), and primary effusion lymphoma (PEL). A
list of the analyzed cancerous phenotypes can be seen in Table II. For
the CD40 perturbation analysis, a set of 24 CD40-stimulated Ramos cell
line samples was used against a background of 43 Ramos samples.

For each phenotype, each BCI interaction was analyzed in sequence
to determine if it could be classified as either a GoC, LoC, or no change
(NC). The test was based on the estimate of the MI between the
expression profiles of the two genes in the interaction. MI is an
information theoretic measure of statistical dependence, which is zero
if and only if two variables are statistically independent. It was
calculated using Gaussian kernel estimation (Margolin et al, 2006).
Specifically, we tested whether the MI increased (LoC) or decreased
(GoC) when the samples corresponding to the specific phenotype were
removed from the entire compendium (used to compute the back-
ground MI). A null distribution was computed to assess the statistical
significance of an MI change as a function of the background MI and of
the number of removed samples. More detailed interpretations of LoC
and GoC events are shown in Box 1. See full details in the
Supplementary Information.

Scoring

Genes were scored by the enrichment of their direct network
neighborhood in GoC/LoC interactions, using a Fisher’ exact test.
Specifically, for both LoC and GoC, two partial P-values were
separately computed, based on the number of dysregulated interac-
tions a gene was directly involved in or it was modulating within its
direct neighborhood. A global P-value was computed as the product of
all four partial P-values. All scoring totals can be seen in the
Supplementary Information, where the score is the negative log of
the global P-value.

Benchmarking

We benchmarked the performance of this approach using three well-
annotated lymphoma phenotypes, where the oncogenic lesion is
reported in the literature. These are BL (MYC), FL (BCL2), and MCL
(BCL1/CCND1). The results of our analysis were compared with
conventional differential expression analysis using a t-test. Each t-test
was computed using log2-transformed data and taking each phenotype

against its normal counterpart (BL/GC, FL/GC, and MCL/NþM),
applying Welch correction for sample sets of different size.

This approach was also run against Ramos cell line samples, where
the CD40-signaling pathway had been biochemically perturbed (either
by co-culturing with CD40 ligand-producing fibroblasts, or using a
CD40-specific antibody). Enrichment was calculated for the top
scoring genes against a reference set of 41 CD40-signaling pathway
genes using GSEA (Subramanian et al, 2005). This reference set was
generated using two CD40 sets available at the Molecular Signatures
Database, or MSigDB, available with GSEA (http://www.broad.mit.e-
du/gsea/msigdb/). These results were also compared with differential
expression analysis (same procedure as above, with CD40-stimulated
against unstimulated). Enrichment of the top 25 genes in both cases
was calculated via a Fisher’s exact test.

Network visualization was also performed to create disease
modules based on the top scoring genes in each phenotype. These
visualizations were produced using the Cytoscape software package
(http://www.cytoscape.org/) (Shannon et al, 2003). Enrichment of
specific cellular pathways was computed using GSEA on the top-
ranked list of probes in each phenotype, and compared with these
visualizations.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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