Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplastic syndrome

Molecular and phenotypic characterization of CD133 and SSEA4 enriched very small embryonic-like stem cells in human cord blood

Abstract

Very small embryonic-like stem cells (VSELs) are immature primitive cells residing in adult and fetal tissues. This study describes enrichment strategy and molecular and phenotypic characterization of human cord blood VSELs. Flow cytometry analysis revealed that a majority of VSELs (LIN/CD45/CD34+) were present in the red blood cell (RBC) pellet after Ficoll-Hypaque centrifugation in contrast to the hematopoietic stem cells (LIN/CD45+/CD34+) in the interphase layer. Thus, after lyses of RBCs, VSELs were enriched using CD133 and SSEA4 antibodies. These enriched cells were small in size (4–6 μm), spherical, exhibited telomerase activity and expressed pluripotent stem cell (OCT4A, OCT4, SSEA4, NANOG, SOX2, REX1), primordial germ cell (STELLA, FRAGILIS) as well as primitive hematopoietic (CD133, CD34) markers at protein and transcript levels. Heterogeneity was noted among VSELs based on subtle differences in expression of various markers studied. DNA analysis and cell cycle studies revealed that a majority of enriched VSELs were diploid, non-apoptotic and in G0/G1 phase, reflecting their quiescent state. VSELs also survived 5-fluorouracil treatment in vitro and treated cells entered into cell cycle. This study provides further support for the existence of pluripotent, diploid and relatively quiescent VSELs in cord blood and suggests further exploration of the subpopulations among them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Virchow R . Archive fuerpathologische (Editorial). Anat Physiol Klin Med 1855; 8: 23–54.

    Google Scholar 

  2. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al. A population of very small embryonic-like (VSEL) CXCR4 (+) SSEA-1(+) Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857–869.

    Article  CAS  Google Scholar 

  3. Ratajczak MZ, Marycz K, Poniewierska-Baran A, Fiedorowicz K, Zbucka-Kretowska M, Moniuszko M . Very small embryonic-like stem cells as a novel developmental concept and the hierarchy of the stem cell compartment. Adv Med Sci 2014; 59: 273–280.

    Article  Google Scholar 

  4. Kucia M, Wysoczynski M, Wu W, Zuba-Surma EK, Ratajczak J, Ratajczak MZ . Evidence that very small embryonic like (VSEL) stem cells are mobilized into peripheral blood. Stem Cells 2008; 26: 2083–2092.

    Article  CAS  Google Scholar 

  5. Zuba-Surma EK, Kucia M, Dawn B, Guo Y, Ratajczak MZ, Bolli R . Bone marrow derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. J Mol Cell Cardiol 2008; 44: 865–873.

    Article  CAS  Google Scholar 

  6. Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M et al. Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 2009; 40: 1237–1244.

    Article  CAS  Google Scholar 

  7. Drukała J, Paczkowska E, Kucia M, Młyńska E, Krajewski A, Machaliński B et al. Stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients after skin burn injury. Stem Cell Rev 2012; 8: 184–194.

    Article  Google Scholar 

  8. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 2007; 21: 297–303.

    Article  CAS  Google Scholar 

  9. Shin DM, Zuba-Surma EK, Wu W, Ratajczak J, Wysoczynski M, Ratajczak MZ et al. Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4 (+) very small embryonic-like stem cells. Leukemia 2009; 23: 2042–2051.

    Article  CAS  Google Scholar 

  10. Ratajczak J, Wysoczynski M, Zuba-Surma E, Wan W, Kucia M, Yoder MC et al. Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells. Exp Hematol 2011; 39: 225–237.

    Article  CAS  Google Scholar 

  11. Ratajczak J, Zuba-Surma E, Klich I, Liu R, Wysoczynski M, Greco N et al. Hematopoietic differentiation of umbilical cord blood-derived very small embryonic/epiblast-like stem cells. Leukemia 2011; 25: 1278–1285.

    Article  CAS  Google Scholar 

  12. Taichman RS, Wang Z, Shiozawa Y, Jung Y, Song J, Balduino A et al. Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells Dev 2010; 19: 1557–1570.

    Article  CAS  Google Scholar 

  13. Parte S, Bhartiya D, Telang J, Daithankar V, Salvi V, Zaveri K et al. Detection, characterization and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev 2011; 20: 1451–1464.

    Article  CAS  Google Scholar 

  14. Kassmer SH, Bruscia EM, Zhang PX, Krause DS . Non-hematopoietic cells are the primary source of bone marrow-derived lung epithelial cells. Stem Cells 2012; 30: 491–499.

    Article  CAS  Google Scholar 

  15. Kassmer SH, Jin H, Zhang PX, Bruscia EM, Heydari K, Lee JH et al. Very small embryonic-like stem cells from the murine bone marrow differentiate into epithelial cells of the lung. Stem Cells 2013; 31: 2759–2766.

    Article  CAS  Google Scholar 

  16. Havens AM, Sun H, Shiozawa Y, Jung Y, Wang J, Mishra A et al. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells Dev 2014; 23: 689–701.

    Article  Google Scholar 

  17. Ratajczak MZ, Shin DM, Liu R, Marlicz W, Tarnowski M, Ratajczak J et al. Epiblast/germ line hypothesis of cancer development revisited: lesson from the presence of Oct-4+ cells in adult tissues. Stem Cell Rev 2010; 6: 307–316.

    Article  Google Scholar 

  18. Bhartiya D, Singh J . FSH-FSHR3 - Stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging and cancer. Reproduction 2015; 149: R35–R48.

    Article  Google Scholar 

  19. Bhartiya D, Patel H . Very small embryonic-like stem cells are involved in pancreatic regeneration and their dysfunction with age may lead to diabetes and cancer. Stem Cells Res Ther, in press.

  20. Zuba-Surma EK, Klich I, Greco N, Laughlin MJ, Ratajczak J, Ratajczak MZ . Optimization of isolation and further characterization of umbilical-cord-blood-derived very small embryonic/epiblast-like stem cells (VSELs). Eur J Haematol 2010; 84: 34–46.

    Article  CAS  Google Scholar 

  21. Bhartiya D, Shaikh A, Nagvenkar P, Kasiviswanathan S, Pethe P, Pawani H et al. Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy. Stem Cells Dev 2012; 21: 1–6.

    Article  CAS  Google Scholar 

  22. Danova-Alt R, Heider A, Egger D, Cross M, Alt R . Very small embryonic-like stem cells purified from umbilical cord blood lack stem cell characteristics. PLoS One 2012; 7: e34899.

    Article  CAS  Google Scholar 

  23. Alvarez-Gonzalez C, Duggleby R, Vagaska B, Querol S, Gomez SG, Ferretti P et al. Cord blood Lin(-)CD45(-) embryonic-like stem cells are a heterogeneous population that lack self-renewal capacity. PLoS One 2013; 8: e67968.

    Article  CAS  Google Scholar 

  24. Paczkowska E, Kawa M, Klos P, Staniszewska M, Sienko J, Dabkowska E . Aldehyde dehydrogenase (ALDH) - a promising new candidate for use in preclinical and clinical selection of pluripotent very small embryonic-like stem cells (VSEL SCs) of high long-term repopulating hematopoietic potential. Ann Transplant 2011; 16: 59–71.

    Article  CAS  Google Scholar 

  25. Miyanishi M, Mori Y, Seita J, Chen JY, Karten S, Chan CKF et al. Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Stem Cell Reports 2013; 1: 198–208.

    Article  CAS  Google Scholar 

  26. Szade K, Bukowska-Strakova K, Nowak WN, Szade A, Kachamakova-Trojanowska N, Zukowska M et al. Murine bone marrow LinSca1+CD45 very small embryonic-like (VSEL) cells are heterogeneous population lacking Oct-4A expression. PLoS One 2013; 8: e63329.

    Article  CAS  Google Scholar 

  27. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–1147.

    Article  CAS  Google Scholar 

  28. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  Google Scholar 

  29. Anand S, Bhartiya D, Sriraman K, Patel H, Manjramkar DD . Very small embryonic-like stem cells survive and restore spermatogenesis after busulphan treatment in mouse testis. J Stem Cell Res Ther 2014; 4: 216.

    Google Scholar 

  30. Sriraman K, Bhartiya D, Anand S, Bhutda S . Mouse ovarian very small embryonic-like stem cells resist chemotherapy and retain ability to initiate oocyte-specific differentiation. Reprod Sci 2015; e-pub ahead of print 16 March 2015; doi:10.1177/1933719115576727.

    Article  CAS  Google Scholar 

  31. Rice AM, Case J, Vowels MR . Cytokine-mediated expansion does not deplete cord blood cells with stem cell characteristics. Hematol Cell Ther 1997; 39: 125–131.

    Article  CAS  Google Scholar 

  32. Rice A, Barbot C, Lacombe F, Dubosc-Marchenay N, Marit G, Hau F et al. 5-fluorouracil permits access to a primitive subpopulation of peripheral blood stem cells. Stem Cells 1993; 11: 326–335.

    Article  CAS  Google Scholar 

  33. Shin DM, Liu R, Klich I, Wu W, Ratajczak J, Kucia M et al. Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia 2010; 24: 1450–1461.

    Article  CAS  Google Scholar 

  34. Wang X, Dai J . Isoforms of OCT-4 contribute to the confusing diversity in stem cell biology. Stem Cells 2010; 28: 885–893.

    Article  CAS  Google Scholar 

  35. Liedtke S, Enczmann J, Waclawczyk S, Wernet P, Kogler G . Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell 2007; 1: 364–366.

    Article  CAS  Google Scholar 

  36. Lee J, Kim HK, Rho JY, Han YM, Kim J . The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem 2006; 281: 33554–33565.

    Article  CAS  Google Scholar 

  37. Zuba-Surma EK, Kucia M, Ratajczak J, Ratajczak MZ . "Small stem cells" in adult tissues: very small embryonic-like stem cells stand up!. Cytometry A 2009; 75: 4–13.

    Article  Google Scholar 

  38. Ratajczak MZ, Mierzejewska K, Ratajczak J, Kucia M . CD133 expression strongly correlates with the phenotype of very small embryonic-/epiblast-like stem cells. Adv Exp Med Biol 2013; 777: 125–141.

    Article  CAS  Google Scholar 

  39. Lévesque JP, Zannettino AC, Pudney M, Niutta S, Haylock DN, Snapp KR et al. PSGL-1- mediated adhesion of human hematopoietic progenitors to P-selectin results in suppression of hematopoiesis. Immunity 1999; 11: 369–378.

    Article  Google Scholar 

  40. Ratajczak MZ . Phenotypic and functional characterization of hematopoietic stem cells. Curr Opin Hematol 2008; 15: 293–300.

    Article  Google Scholar 

  41. Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 2013; 153: 1228–1238.

    Article  CAS  Google Scholar 

  42. Tabar V, Studer L . Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 2014; 15: 82–92.

    Article  CAS  Google Scholar 

  43. Mierzejewska K, Borkowska S, Suszynska E, Suszynska M, Poniewierska-Baran A, Maj M et al. Hematopoietic stem/progenitor cells express several functional sex hormone receptors-novel evidence for a potential developmental link between hematopoiesis and primordial germ cells. Stem Cells Dev 2015; 24: 927–937.

    Article  CAS  Google Scholar 

  44. Chen ZH, Lv X, Dai H, Liu C, Lou D, Chen R et al. Hepatic regenerative potential of mouse bone marrow very small embryonic-like stem cells. J Cell Physiol 2014; e-pub ahead of print 24 December 2014; doi:10.1002/jcp.24913.

    Article  CAS  Google Scholar 

  45. Bhartiya D, Mundekar A, Mahale V, Patel H . Very small embryonic-like stem cells are involved in regeneration of mouse pancreas post-pancreatectomy. Stem Cell Res Ther 2014; 5: 106.

    Article  Google Scholar 

  46. Lee SJ, Park SH, Kim YI, Hwang S, Kwon PM, Han IS et al. Adult stem cells from the hyaluronic acid-rich node and duct system differentiate into neuronal cells and repair brain injury. Stem Cells Dev 2014; 23: 2831–2840.

    Article  CAS  Google Scholar 

  47. Guerin CL, Loyer X, Vilar J, Cras A, Mirault T et al. Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: evidence of vasculogenic potential. Thromb Haemost 2015; e-pub ahead of print 22 January 2015; doi:10.1160/TH14-09-0748.

    Article  Google Scholar 

  48. Takahashi M, Matsuoka Y, Sumide K, Nakatsuka R, Fujioka T, Kohno H et al. CD133 is a positive marker for a distinct class of primitive human cord blood-derived CD34-negative hematopoietic stem cells. Leukemia 2014; 28: 1308–1315.

    Article  CAS  Google Scholar 

  49. Weissman IL, Shizuru JA . The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 2008; 112: 3543–3553.

    Article  CAS  Google Scholar 

  50. Shin DM, Liu R, Wu W, Waigel SJ, Zacharias W, Ratajczak MZ et al. Global gene expression analysis of very small embryonic-like stem cells reveals that the Ezh2-dependent bivalent domain mechanism contributes to their pluripotent state. Stem Cells Dev 2012; 21: 1639–1652.

    Article  CAS  Google Scholar 

  51. Kassmer SH, Krause DS . Very small embryonic-like cells: biology and function of these potential endogenous pluripotent stem cells in adult tissues. Mol Reprod Dev 2013; 8: 677–690.

    Article  Google Scholar 

  52. Ratajczak MZ, Zuba-Surma E, Wojakowski W, Suszynska M, Mierzejewska K, Liu R et al. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia 2014; 28: 473–484.

    Article  CAS  Google Scholar 

  53. Fuchs E, Segre JA . Stem cells: a new lease on life. Cell 2000; 100: 143–155.

    Article  CAS  Google Scholar 

  54. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A et al. Molecular and cellular characterization of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 2003; 116: 1827–1835.

    Article  CAS  Google Scholar 

  55. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2015.

    Article  CAS  Google Scholar 

  56. Chiu CP, Dragowska W, Kim NW, Vaziri H, Yui J, Thomas TE et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 1996; 14: 239–248.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Mukherjee, Gayatri Shinde, Sushma Khavale, Nivedita Dhavale, Dr Babu Rao, Dr Tamhankar, Harshvardhan Gawade and Dr Khatkhatay for their help. We also thank University Grants Commission, New Delhi, for support toward doctoral program of Ambreen Shaikh. Financial support for the study was provided by Indian Council of Medical Research, Government of India, New Delhi (Accession no. RA/214/01-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Bhartiya.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, A., Nagvenkar, P., Pethe, P. et al. Molecular and phenotypic characterization of CD133 and SSEA4 enriched very small embryonic-like stem cells in human cord blood. Leukemia 29, 1909–1917 (2015). https://doi.org/10.1038/leu.2015.100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.100

This article is cited by

Search

Quick links