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Immune checkpoint inhibitors in sarcomas: in quest of
predictive biomarkers
Robin Veenstra, Marie Kostine, Anne-Marie Cleton-Jansen, Noel FCC de Miranda and Judith VMG Bovée

Sarcomas are a rare group of tumors of mesenchymal origin. Metastatic sarcomas are often difficult to treat and
unresponsive to standard radio- and chemotherapy, resulting in a poor survival rate for patients. Novel treatments with
immune checkpoint inhibitors have been proven to prolong survival of patients with a variety of cancers, including
metastatic melanoma, lung, and renal cell carcinoma. Since immune checkpoint inhibitors could provide a novel
treatment option for patients with sarcomas, clinical trials investigating their efficacy in these group of tumors are
ongoing. However, the discrimination of patients that are the most likely to respond to these treatments is still an obstacle
in the design of clinical trials. In this review, we provide a brief overview of the mechanisms of action of immune
checkpoint inhibitors and discuss the proposed biomarkers of therapy response, such as lymphocytic infiltration,
intratumoral PD-L1 expression, and mutational load in sarcomas.
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Sarcomas are a heterogeneous group of rare neoplasms,
originating from somatic mesenchymal tissues, with more
than 50 distinct histologic subtypes. Although accounting for
o1% of all adult solid malignant cancers, sarcomas form
more than 20% of all pediatric solid malignant cancers.1 In
spite of chemotherapy and radiotherapy, the median survival
for metastatic sarcoma is ~ 12 months.2 Novel treatment
options for these patients are therefore of utmost importance.

One class of such potential new therapeutics is the immune
checkpoint inhibitors. In 2010, the treatment of advanced
melanoma patients with antibodies that block cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4) marked the
beginning of the successful employment of this new class of
immunotherapeutics.3 Added to dacarbazine, ipilimumab has
doubled the 5-year survival rates in patients with advanced
melanoma compared with patients treated with dacarbazine
alone.4 A few years later, antibodies directed against
programmed death 1 (PD-1) or PD-ligand 1 (PD-L1)
demonstrated clinical efficacy in melanoma patients and in
other cancer types.5–10 Moreover, therapies targeting the
PD-1/PD-L1 axis produced less immune-related side effects
compared to treatment with anti-CTLA-4 antibodies.11

These promising immunotherapies may offer new treat-
ment options for sarcoma patients and clinical trials are being
performed to explore their potential. Because of the
heterogeneity of sarcomas, researchers and clinicians tried

to identify which subtypes would be suitable for immu-
notherapeutic strategies. Considering the genetic background
of sarcomas, it was postulated that high-grade sarcomas with
complex genomes would be the best candidates for treatment
with immune checkpoint inhibitors.12

Recently, biomarkers predictive of response to immune
checkpoint inhibitors have been proposed and investigated
and could therefore guide selection of sarcoma patients for
clinical trials13,14. In this review, we describe the mechanisms
of action of immune checkpoint inhibitors and discuss and
summarize the literature on the presence of biomarkers in
sarcomas that may predict treatment response. In light of
these, we discuss the potential application of immune
checkpoint inhibitors in the treatment of sarcomas.

MODE OF ACTION OF IMMUNE CHECKPOINT INHIBITORS
Anti-CTLA-4 Antibodies
Our knowledge on how the immune system combats cancer
cells has increased ever since Burnet15 and Thomas proposed
the concept of cancer immune surveillance in the 1950s. To
induce an immune response, professional antigen-presenting
cells (APCs), most importantly dendritic cells (DCs), take up
tumor-associated antigens and migrate via lymphatic vessels
to the regional lymph nodes.16 In the lymph nodes, the DCs
can activate naive T cells by presenting tumor antigens in
complex with human leukocyte antigen (HLA) class I and II
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molecules to the T-cell receptor of naive CD8+ and CD4+

T cells, respectively. This priming of the T cells requires
additional co-stimulatory signals by binding of CD28 on the
naive T cell to CD80 and CD86 on the APC (Figure 1a).17 The
immune checkpoint molecule CTLA-4, however, can com-
pete with CD28 for binding to CD80 and CD86, and produce
inhibitory signals to the activated T cells, acting as a real break
and leading to T-cell anergy and apoptosis.18 Interestingly,
regulatory T cells (Treg cells) also need CTLA-4 for their
immunosuppressive function, suggesting that anti-CTLA-4
treatment might also interfere with the immunosuppressive
function of Treg cells.19 The importance of CTLA-4 in
maintaining a balanced immune response has been demon-
strated with CTLA-4 knockout mice that develop severe
autoimmune lymphoproliferative disease.20,21 By releasing
such an immunosuppressive brake, treatment with anti-
CTLA-4 antibodies result in an enhanced activation of naive
T cells. Although APCs can activate both CD4+ and CD8+

T cells, treatment with anti-CTLA-4 antibodies is believed to
mainly regulate the activity of CD4+ T cells, which can

develop in Th1 CD4+ cells after activation and provide
important cytokines, such as IL-2, for the activation of CD8+

T cells. These T cells can then migrate to the tumor tissues
and recognize tumor antigens presented in complex with
HLA class I at the surface of tumor cells, followed by
elimination of the latter.22

Anti-PD-1 and Anti-PD-L1 Antibodies
While the anti-CTLA-4 blockade strategy leads to a general
enhancement of T-cell priming, antibodies directed against
PD-1 and PD-L1 act on T cells that have already been
activated, but circulate in the lymph nodes or reside in the
tumor microenvironment itself. PD-1 is a surface protein
expressed on activated T and B cells while PD-L1 is mostly
expressed on APCs, such as macrophages and DCs, and
tumor-infiltrating lymphocytes (TILs), but can also be
expressed on tumor cells.23 In normal physiology, the
PD-1/PD-L1 axis represents an important immune check-
point to prevent immune-mediated tissue damage (Figure 2),
and PD-1 knockout mice have shown increased susceptibility

Figure 1 Schematic overview of the mechanism of action of anti-CTLA-4 antibodies. APCs take up tumor antigens in the periphery and migrate to the
lymph nodes. In the lymph nodes, the APCs present tumor antigens in complex with HLA class I molecules to naive T cells, which then become primed.
Complete activation of the naive T cell occurs when a co-stimulatory signal is provided by binding of CD80 or CD86 on the APC to CD28 on the naive T
cell (a). However, naive T cells can also express CTLA-4 that, by interacting with CD80 and CD86, transduces an inhibitory signal that leads to T-cell
anergy (b). Treatment with CTLA-4-blocking antibodies promotes activation of naive T cells, which can then migrate to tumor tissues and directly kill
tumor cells (CD8+ T cells) or provide an inflammatory environment (TH1 CD4+ cells) (c).
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to the development of autoimmune disorders.24 As PD-1 is
expressed on exhausted T cells, anti-PD-1 therapy can
reinforce the immune responses of this subset of T cells.25

However, PD-1 is also expressed during earlier stages of T-cell
activation, where it has an important role in the induction of
tolerance against self-antigens and the generation of active
cytotoxic T lymphocytes.26 Of note, PD-1 knockout mice
exhibit autoimmunity with a markedly augmented CD8
proliferation.24 Administration of anti-PD-1 or anti-PD-L1
antibodies aims to release this immunological break and
enhance the cytotoxic T-cell response, leading to tumor
control or elimination.

Various cancer types like non-small-cell lung carcinoma
and melanoma exploit this immunosuppressive interaction
and show expression of PD-L1.23,27,28 For example, the
expression of PD-L1 on tumor cells can be the result of
genetic alterations.29 More often, PD-L1 expression on tumor
cells, APCs, and other myeloid cells is induced by IFN-γ and
other inflammatory cytokines present in the tumor
microenvironment.30 In addition to the PD-1-mediated
immunosuppression, many of the tumor-infiltrating myeloid

cells, such as myeloid-derived suppressor cells and tumor-
associated macrophages (TAMs), show pro-tumorigenic
activity. Some sarcomas secrete factors such as colony-
stimulating factor-1 (CSF-1) and others to attract and
stimulate TAMs, creating an immunosuppressive
microenvironment.31,32 Recent data suggest that TAMs might
facilitate tumor resistance against anti-PD-1 and anti-PD-L1
therapy.33,34 To explore the combination of inhibition of
TAMs and enhancement of T-cell-mediated immune
responses, an ongoing clinical trial is exploring the combined
inhibition of the CSF-1 receptor and PD-1 pathway in GIST
and other solid tumors (ClinicalTrials.gov Identifier:
NCT02452424).

BIOMARKERS FOR IMMUNOTHERAPY IN SARCOMAS
There is a clear rationale for the use of immune checkpoint
inhibitors in sarcomas. Many sarcomas harbor chromosomal
translocations resulting in expressed fusion proteins, which
can provoke an immunological response. Of note, fusion
proteins of synovial sarcoma, clear cell sarcoma, and
desmoplasmic small round cell tumor have been

Figure 2 Schematic overview of the mechanism of action of anti-PD-1 and anti-PD-L1 antibodies. Tumor cells can upregulate PD-L1 expression by
genetic alterations or chromosomal translocation. INF-γ and other cytokines in the tumor microenvironment can also upregulate the expression of PD-L1
on tumor cells and myeloid cells, such as APCs. PD-L1 on these cells binds to PD-1 on active T cells, inhibiting the T-cell receptor-mediated proliferation
of the T cells, leading to reduced killing of the tumor cells. CD8+ T cells can interact with tumor cells and APCs through MHC class I molecules, whereas
CD4+ T cells interact with APCs through MHC class II molecules. (a) Administration of anti-PD-L1 and anti-PD-1 antibodies prevents immune inhibition
by the PD-L1 on the tumor cells or myeloid cells and subsequently enhances tumor killing (b).
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demonstrated to bind HLA class I molecules.35 In one study,
an in vitro cytotoxic T-cell response against alveolar
rhabdomyosarcoma cells was induced using DCs pulsed with
a PAX-FKHR fusion protein breakpoint epitope.36 Some
sarcomas, such as synovial sarcomas and myxoid liposarco-
mas, also overexpress cancer/testis antigens like NY-ESO-1,
which can also trigger CD8+ T-cell-mediated lysis of tumor
cells.37,38 Treatment with anti-CTLA-4, anti-PD-1, or anti-
PD-L1 antibodies could enhance CD8+ T-cell-mediated
tumor lysis by skipping the crucial immune checkpoints
during T-cell priming, activation, and T-cell-mediated
eradication of the tumor. Multiple clinical trials are now
investigating the potential of immune checkpoint inhibitors
as a treatment for sarcoma patients. The first clinical results
from the SARC028 study, where patients with advanced
sarcomas were treated with the anti-PD-1 antibody pem-
brolizumab, showed response in patients with undifferen-
tiated pleomorphic sarcoma, dedifferentiated liposarcoma,
synovial sarcoma, osteosarcoma, and dedifferentiated
chondrosarcoma.39 In a cohort of patients with metastatic
sarcoma, Paoluzzi et al40 observed partial responses in a
dedifferentiated chondrosarcoma, epithelioid sarcoma, and
osteosarcoma after treatment with nivolumab. However, in
one pilot study including six synovial sarcoma patients,
treatment with anti-CTLA-4 antibody did not result in an
immunological antitumor response and the disease pro-
gressed rapidly in all patients.41 Therefore, biomarker
identification will be fundamental to improve the selection
of sarcomas that will respond to therapy with immune
checkpoint inhibitors.

Tumor-Infiltrating Lymphocytes
The number and type of TILs could serve as a predictive
biomarker for treatment with immune checkpoint inhibitors.
In a cohort of patients with metastatic melanomas, patients
responding to anti-PD-1 treatment were shown to have a
higher number of CD8+ TILs before treatment.42 This finding
clearly indicates that an ongoing antitumor immune response
present before treatment is important for the clinical outcome

of treatment with anti-PD-1 therapy. Furthermore, in many
cancers the presence of TILs often serves as a prognostic
factor for patient survival. In patients with colon cancer,
higher T-cell infiltration in the tumor was shown to be a
predictive biomarker for disease-free survival.43 A high count
of TILs also associated with better overall survival in
melanoma patients.44 Furthermore, presence of tumor-
infiltrating Treg cells correlated with a worse prognosis in
patients with ovarian cancer and renal cell carcinoma.45,46

These findings confirm the active role for infiltrating immune
cells in controlling cancer progression. Moreover, depletion
of T cells in an osteosarcoma mouse model and in the Swarm
rat chondrosarcoma model resulted in a markedly reduced
survival rate and an accelerated growth rate, respectively,
revealing a function for CD8+ T cells in this experimental
setting in slowing sarcoma progression.47,48 Although a high
number of infiltrating CD8+ T cells does not seem to be a
clear prognostic marker for survival in patients with soft-
tissue sarcoma, high expression of PD-1 on TILs and
expression of PD-L1 correlate with worse survival rates in
these patients, suggesting that expression of PD-1 and PD-L1
in soft-tissue sarcomas could inhibit T-cell-mediated control
of cancer progression.49,50

Mapping of the T-cell infiltrate in the tumor microenvir-
onment and its association with patient survival has been
investigated in some specific sarcoma subtypes (Table 1). A
high number of tumor-infiltrating CD8+ T cells correlated
with improved overall survival in Ewing sarcoma.51 In
osteosarcoma, PD-L1 expression on tumor cells associated
with higher numbers of TILs and poorer survival rate,
indicating that the PD-1/PD-L1 axis is an important immune
evasion strategy of sarcomas.52 PD-L1 expression has also
been observed in almost 50% of dedifferentiated chondro-
sarcomas and correlated with a higher number of TILs and
positive HLA class I expression in tumor cells, providing a
rationale for using anti-PD-1 and anti-PD-L1 treatment in
this sarcoma subtype.53 A high number of intratumoral
lymphocytes was also observed in EBV-associated leiomyo-
sarcomas and inflammatory myofibroblastic tumors.54,55

Table 1 Examples of association between TILs and survival in some sarcoma types

Sarcoma type Type of immune infiltrate Effect on survival Reference

Angiosarcoma CD8+ T cells Improved 96

Gastrointestinal stromal tumors CD3+ T cells, NK cells Improved 97

Ewing sarcoma CD8+ T cells Improved 51

Dedifferentiated liposarcoma Tertiary lymphoid structures Poor 98

Malignant peripheral nerve sheath tumor CD8+ T cells No effect 99

Dedifferentiated chondrosarcoma CD3+ T cells No effect 53

Osteosarcoma CD8+/FOXP3+ T cells Improved 100

CD3+ T cells No effect 101
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Pollack et al56 used gene expression profiling to measure
the amount of T-cell infiltration and found a higher degree of
T-cell infiltration in undifferentiated pleomorphic sarcomas
and leiomyosarcomas, and a low degree in synovial sarcomas.
Interestingly, they also showed that the degree of T-cell
infiltration and clonality significantly correlated with PD-1
and PD-L1 expression in all investigated sarcoma subtypes,
suggesting that sarcomas with a high number of TILs might
be more suitable for anti-PD-1 and anti-PD-L1 therapy than
sarcomas with a low degree of T-cell infiltration.

Expression of PD-1 and PD-L1
Expression of PD-1 and PD-L1 in the tumor microenviron-
ment might be an important predictive biomarker for anti-
PD-1 therapies. In one of the first clinical trials with anti-
PD-1 antibodies, tumor samples were immunohistochemi-
cally stained for PD-L1 before treatment. Thirty-six percent of
the patients with PD-L1-positive tumors had an objective
response while none of the patients with PD-L1-negative
tumors responded to therapy.6 However, in a large cohort of
patients with advanced melanoma, patients with a PD-L1-
positive tumor showed an objective response rate of 57.5% to
treatment with an anti-PD-1 antibody, whereas patients with
a PD-L1-negative tumor showed an objective response rate of
41.3%.57 These findings suggest that PD-L1 expression might
not always be a clear-cut biomarker for the response to anti-
PD-1 therapy.

PD-L1 can be overexpressed in cancer cells as result of
genetic alterations. In diffuse large B-cell lymphomas, the
PD-L1 gene was shown to be translocated and placed under
the regulation of a different promotor, notably the immu-
noglobulin heavy-chain locus, leading to upregulation of
PD-L1 expression.29 Loss of PTEN in colorectal cancer was
also shown to result in increased expression of PD-L1.58

Interestingly, some soft-tissue sarcomas, such as liposarcomas
and leiomyosarcomas, harbor genetic mutations in PTEN and
loss of PTEN has recently be shown to associate with

resistance to anti-PD-1 therapy in metastatic uterine
leiomyosarcoma.59–64

As already discussed above, the expression of PD-L1 is a
frequently observed immune evasion strategy of certain
sarcomas. So far, several studies have assessed PD-L1
expression in different sarcoma subtypes using immunohis-
tochemistry (Table 2). In a large analysis of over 2000
sarcomas, ~ 50% of all sarcomas displayed expression of PD-
L1 with immunohistochemistry. Notably, PD-L1 expression
was observed in leiomyosarcomas, chondrosarcomas, lipo-
sarcomas, and undifferentiated pleomorphic sarcoma using
immunohistochemistry with an anti-PD-L1 antibody.65

Frequent expression of PD-1 and PD-L1 was also observed
in synovial sarcoma and angiosarcoma.50 In a cohort of 38
osteosarcoma tumor specimens PD-L1 expression was
detected with RT-PCR in 32 cases of which 9 had a relative
high PD-L1 mRNA expression level.66 In HHV8-associated
Kaposi sarcoma, PD-L1 expression has also been demon-
strated in a large subset of cases.67,68 Another study could
detect PD-L1 expression in the dedifferentiated chondrosar-
coma subtype, but not in the conventional, clear cell or
mesenchymal chondrosarcoma subtype.53

Although these studies provide a rough estimate of the
percentage of PD-L1-expressing sarcomas, they also highlight
some discrepancies.50,65,69 This lack of reproducibility can be
partially explained by the small number of cases and variable
cutoff points for PD-L1-positivity. Moreover, the difference
could also be explained by different types of antibodies used
for the immunohistochemistry of PD-L1. Therefore, assess-
ment of PD-L1 expression in sarcomas with immunohisto-
chemistry is not, so far, a reliable predictive biomarker to
preselect patients for treatment with immune checkpoint
inhibitors and efforts should be made to standardize this
procedure.

Mutational Load
Next-generation sequencing technologies have made it
possible to comprehensively detect somatic mutations in
individual tumors and to reveal mutational signature profiles.
These techniques therefore provide a novel powerful tool to
unravel the underlying genetic pathogenesis of sarcomas. The
mutational burden of a tumor can be predictive for the
outcome of treatment with immune checkpoint inhibitors.
Snyder et al.70 showed that treatment with ipilimumab, an
anti-CTLA-4 antibody, was significantly more effective in
patients with melanomas carrying more than 100 mutations
per coding genome when compared to patients with o100
mutations in their tumors. For non-small-cell lung cancer,
patients with a high nonsynonymous mutation burden were
also more likely to show improved clinical benefit when
treated with an anti-PD-1 antibody than patients with a low
nonsynonymous mutation burden.71 These findings support
that a higher mutational load probably translates into an
increased probability that neoantigens are recognized by the
immune system. In line with these findings, the association

Table 2 Reported PD-L1 expression in some sarcoma subtypes

Sarcoma subtype Positive cases (%) Reference

Angiosarcoma 50–80 50,65

Chondrosarcoma 41–75 53,65

Ewing sarcoma 29–67 50,65,69

Leiomyosarcoma 32–70 50,65

Malignant peripheral nerve sheath tumor 17–67 50,65,99

Osteosarcoma 28–57 65,101

Rhabdomyosarcoma 38–63 65,69

Synovial sarcoma 25–75 50,65,69

Dedifferentiated liposarcoma 67–82 50,65

Gastrointestinal stromal tumor 29 102
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between response to ipilimumab treatment, overall muta-
tional, and neoantigen load has been shown in melanoma
patients.72,73

Although the application of next-generation sequencing in
sarcomas is a developing research field, recent studies suggest
that some sarcomas are driven by an intermediate mutational
load (Table 3). For example, a high median frequency of
somatic mutations of ~ 14 mutations per megabase pair
(Mbp) has been reported for melanoma and a low median
frequency of 0.37 mutations per Mbp as reported for acute
myeloid leukemia. Compared with these reported mutation
rates, the mean mutation rate of 1.15 mutations per Mbp
found in a cohort of 20 high-grade intramedullary osteo-
sarcomas is an intermediate rate, which is—although difficult
to compare, as often different pipelines for analysis have been
utilized—roughly similar to the median mutational rate of
breast cancer shown by Alexandrov and colleagues.74–77

Furthermore, this cohort of osteosarcomas showed a range
in the mutational rate between 0.49 and 3.99 mutations per
Mbp, suggesting that some individual cases could benefit
more from treatment with immune checkpoint inhibitors due
to their higher-than-average mutational rate.77 Ewing sar-
coma has a reported mutation rate of 0.15 mutations per Mbp
of coding sequence in one study and a mutation rate of 0.62
per Mbp in another study, both indicating that the mutational
rate of this translocation-driven tumor can be categorized
with other cancer types with a low mutational rate.75,78,79

Exome sequencing of uterine leiomyosarcomas revealed a
mean of 373 somatic mutations per sample, whereas the
mutation burden in chondrosarcoma has been shown to
range from 1 to 115 somatic mutations.80,81 In another study,
exome sequencing of rhabdomyosarcoma cases revealed a
mean number of mutations of 24.0 mutations per sample in a
primary tumor, while metastatic tumors showed 43.3
mutations per sample and relapsed tumors 42.0 mutations

per sample, although these differences were not statistically
significant.82 Epithelioid sarcomas have a coding somatic
point mutation rate similar to that of ovarian carcinoma,
indicating a relevant mutation rate in this sarcoma type,
which could be beneficial for treatment with immune
checkpoint inhibitors.83,84 In 12 liposarcoma specimens of
different subtypes, a total of 377 potential somatic mutations
were detected of which 91% was validated with Sanger
sequencing.85 Although some next-generation sequencing

Table 3 Examples of mutational load in different sarcoma types reported by sequencing studies

Sarcoma type Reported mutations Mutations/Mbp Determined mutation rate Reference

Ewing sarcoma 6 0.15 Average in protein-coding sequences 78

Osteosarcoma 5–103 1.15 Mean mutation rate, whole genome 77

Solitary fibrous tumors 12–41 0.66 Median mutation rate, whole exome 103

Angiosarcoma — 0.7–2.2 Whole genome 104

Uterine leiomyosarcoma 240–779 — Exome 80

Malignant peripheral nerve sheath tumor 14–208 — Whole genome 105

Chondrosarcoma 1–115 — Exome 81

Rhabdomyosarcoma 24 — Whole exome 82

Well-differentiated liposarcoma 16–71 — Whole exome 85

Dedifferentiated liposarcoma 24–56 — Whole exome 85

Myxoid liposarcoma 15–33 — Whole exome 85

Figure 3 Mutational load and potential for immune checkpoint inhibitors
in sarcomas. Some sarcomas such as Ewing sarcoma are mainly driven by
specific translocations and do not display a high mutational profile, while
other sarcomas such as osteosarcoma show a higher mutation burden
and a more pleomorphic histology. A higher mutational load increases
the change of neoantigen formation and enhances the immunogenicity
of the tumor.
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studies have reported the mutation burden of certain
sarcomas, it is still very difficult to directly compare the
mutational load of different sarcomas based on these studies.
However, as the field of next-generation sequencing is rapidly
developing, the mutational load of more sarcomas can soon
be unraveled and compared with other cancers, which will be
a crucial step in further exploring the potential of treatment
with immune checkpoint inhibitors in sarcomas (Figure 3).

DNA Mismatch Repair System
The proteins of the DNA mismatch repair (MMR) system are
crucial in restoring incorporated mismatched bases during
replication. As such, MMR-deficient tumors have been shown
to be genetically instable tumors with a relative higher
mutational load. For example, MMR-deficient colorectal
cancers often show a high mutational rate, microsatellite
instability, and a higher degree of TILs, suggesting an ongoing
immune response against the tumor.86,87 The higher degree of
tumor infiltration by lymphocytes and the higher mutational
load suggest that MMR-deficient tumors could be more
suitable for the treatment with immune checkpoint inhibitors
than MMR-proficient tumors. In a phase 2 clinical trial
published by Le et al,8 41 patients with metastatic carcinoma
were treated with an anti-PD-1 antibody, and in line with
their hypothesis, they found a significantly increased
progression-free survival rate and overall survival in patients
with MMR-deficient colorectal cancer compared to patients
with MMR-proficient colorectal cancer.

The outcome of this clinical trial provides clear evidence
for the use of immune checkpoint inhibitors in MMR-
deficient cancers. Although evidence is often conflicting, in
some cases, certain sarcomas can display defects in the MMR
system.88 Twenty-one percent of the cases in a cohort of
uterine carcinosarcomas were shown to have a defective
MMR system based on a microsatellite instability phenotype
and a small percentage of leiomyosarcomas are also deficient
in MMR.89,90 Ongoing research could shed more light on
MMR deficiency in sarcomas, as its role still remains to be
elucidated.

Biomarkers for Hyperprogression
Very recently, the phenomenon of hyperprogression was
described in cohorts of patients that were treated with anti-
PD-1/PD-L1 and anti-CTLA-4 antibodies.91,92 In some of
these patients, treatment with these immune checkpoint
inhibitors accelerated the growth of their tumors. This
hyperprogression was shown to correlate with amplification
of the MDM2 and MDM4 genes and mutations in the EGFR
gene.92 In a large survey for MDM2 amplification in a variety
of tumor types, MDM2 amplification was found to be most
prevalent in sarcomas.93 Amplification of the 12q13-15
region, including the MDM2 gene is the hallmark of well-
differentiated and dedifferentiated liposarcoma, as well as
parosteal osteosarcoma and is used as diagnostic marker.94 In
addition, other sarcomas also display MDM2 amplification in

a low percentage of the tumors, including conventional
osteosarcomas and malignant peripheral nerve sheath
tumors.95 These studies suggest that for these sarcoma
subtypes treatment with immune checkpoint inhibitors must
be carefully considered.

CONCLUSIONS
Immune checkpoint inhibitors have accelerated the immu-
notherapy revolution in oncology. As metastatic sarcomas
have limited options for treatment, these therapeutics could
be an interesting novel treatment option. While some first
promising results in sarcoma are now being published, several
clinical trials are still ongoing. A selection of sarcomas that are
most suitable for treatment with immune checkpoint
inhibitors can be guided by recently proposed biomarkers
in other cancers. As a correlation between TILs and PD-L1
has been found in certain sarcomas, such as osteosarcoma and
dedifferentiated chondrosarcoma, PD-L1 expression in these
sarcomas can be considered an immunosuppressive tool to
prevent TILs from eliminating tumor cells. This provides a
strong rationale for therapy with anti-PD-1 or anti-PD-L1
antibodies in sarcomas with a high degree of TILs or PD-L1
expression. Furthermore, some sarcomas, such as osteosar-
coma and epithelioid sarcomas, show an intermediate
mutation burden when compared with other cancer types.
In addition, although some sarcomas display a higher
mutational load than others, individual cases with a relatively
higher mutational load can often be identified in a cohort of
patients. As a high mutation burden has been associated with
a higher neoantigen load and a better survival rate after
administration of immune checkpoint inhibitors, patients
with a hypermutated sarcoma could benefit from treatment
with immune checkpoint inhibitors. Larger exome-wide and
genome-wide sequencing studies could provide novel insights
in the mutational landscape of sarcomas and can help guiding
the selection of sarcoma types for treatment with immune
checkpoint inhibitors.
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