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Towards a new science of secondary metabolism

Arryn Craney, Salman Ahmed and Justin Nodwell

Secondary metabolites are a reliable and very important source of medicinal compounds. While these molecules have been
mined extensively, genome sequencing has suggested that there is a great deal of chemical diversity and bioactivity that
remains to be discovered and characterized. A central challenge to the field is that many of the novel or poorly understood
molecules are expressed at low levels in the laboratory—such molecules are often described as the ‘cryptic’ secondary
metabolites. In this review, we will discuss evidence that research in this field has provided us with sufficient knowledge

and tools to express and purify any secondary metabolite of interest. We will describe ‘unselective’ strategies that bring about
global changes in secondary metabolite output as well as ‘selective’ strategies where a specific biosynthetic gene cluster of

interest is manipulated to enhance the yield of a single product.
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INTRODUCTION

Secondary metabolites are biologically active small molecules that are
not required for viability but which provide a competitive advantage
to the producing organism. The bacterial secondary metabolites are a
source of many of the antibiotics, chemotherapeutic drugs, immune
suppressants and other medicines.!™ Of bacteria, the actinomycetes
and, in particular, the streptomycetes produce the greatest number of
chemically diverse secondary metabolites.*” Other major sources
include soil Bacilli,> Myxococci®!? and Pseudomonads.!! Two major
structural classes of secondary metabolites are the polyketides®
and the nonribosomal peptides,'? both of which are produced by
multienzyme biochemical pathways encoded in discrete genomic
clusters.

A classical approach to the discovery of secondary metabolites
having medical utility has involved screening culture supernatants for
the modulation of growth of a target organism, extracting and
fractionating the supernatants with organic solvents and then
characterizing purified molecules using NMR, X-ray crystallography
and MS. Antimicrobial activity against Staphylococcus aureus has been
a commonly sought-after biological activity. Using this approach,
those strains that produced antimicrobial compounds were typically
found to generate, at most, one or two molecules of interest.
However, the sequencing of streptomycete genomes suggests a much
greater secondary metabolic potential than had been expected; it turns
out that streptomycete genomes generally have the genetic capacity to
produce as many as 30 distinct secondary metabolites per strain,
including polyketides, nonribosomal peptides and other classes of
compounds.'? It is not known how many of these pathways generate

products;

regulation; secondary metabolism; strain improvement;

novel compounds or compounds of medicinal utility; however,
these ‘cryptic’ pathways have generated considerable interest as they
represent an enormous reservoir of new chemical matter and may
include important drug leads.

Many secondary metabolites are expressed at low levels during
laboratory growth. The factors that limit production are unknown;
however, they are likely to include low expression of the biosynthetic
genes or limited precursor availability during standard laboratory
culture. The biological signals and regulatory networks that control
the secondary metabolic genes are slowly coming into focus as a result
of targeted research in this area.!*' So too are the metabolic
networks that provide the precursors necessary for the biosynthesis
of individual molecules. This knowledge has provided new strategies
for tapping into this metabolite reservoir. Vital to elucidating these
strategies have been the workhouse actinomycetes (Table 1). Investi-
gations into these organisms has led to an understanding of the
biochemical processes of secondary metabolite biosynthesis, as well as
a growing appreciation for the extensive regulatory network that
controls the expression of the metabolic genes. Information gained
from studying these model systems is potentially transferable to many
bacterial secondary metabolite producers.

Streptomyces coelicolor is a powerful model for secondary
metabolism as it produces two pigmented secondary metabolites:
actinorhodin (blue)? and the prodiginines (red) (Figure 1).2! These
compounds have facilitated genetic analysis of biosynthetic mutants,
leading to the discovery of important regulators as well as many
biosynthetic genes.'® The S. coelicolor genome sequence has been
available for more than a decade and is well-annotated.?> There are

Department of Biochemistry and Biomedical Sciences, McMaster University, Michael Degroote Institute for Infectious Diseases Research, Hamilton, Ontario, Canada
Correspondence: Professor J Nodwell, Department of Biochemistry and Biomedical Sciences, McMaster University, Michael Degroote Institute for Infectious Diseases Research

1280 Main Street West, Hamilton, Ontario, Canada L8N 3Z75.
E-mail: nodwelli@mcmaster.ca

Received 30 October 2012; revised 12 January 2013; accepted 12 February 2013; published online 24 April 2013


http://dx.doi.org/10.1038/ja.2013.25
mailto:nodwellj@mcmaster.ca
http://www.nature.com/ja

Global changes in secondary metabolite output
A Craney et al

o

388

excellent tools for chromosomal manipulation,?® reporter systems?427

as well as a growing understanding of the bacterium’s stress response
mechanisms?®3% and sporulation pathway.!$3173> At present
S. coelicolor has the most well-understood secondary metabolome of
any streptomycete (Figure 1 and Table 2).!3182236 Of the 29 predicted
secondary metabolites, the structures of 17 are known and there is a
growing understanding of their biochemical and biological roles. We
will focus on how this organism has served the field. There have
been several excellent reviews of this topic generally that deal with
related aspects of secondary metabolism. Given the availability of this
information, we have not sought to be comprehensive in this review
but have instead summarized general concepts arising from work in
S. coelicolor with a particular emphasis on applying this knowledge to

Table 1 Model actinomycete secondary metabolite producers

Secondary metabolite

Species studied Reference
Amycolatopsis orientalis (A\TCC 19795) Vancomycin 111
Streptomyces avermitilis (ATCC 31267) Avermectins 112
Streptomyces clavuligerus (ATCC 27064) Clavulanic acid 13
Streptomyces coelicolor (A3(2)) Actinorhodin 114
Prodiginines 21
Streptomyces griseus (IFO 13350) Streptomycin 115
A-factor 51
Streptomyces venezuelae (ISP5230) Chloramphenicol 116
Jadomycin B 50
Saccharopolyspora erythraea (NRRL23338)  Erythromycin A 17
118

Salinispora tropica (CNB-440) Salinosporamides
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the discovery and characterization of cryptic secondary metabolites in
other streptomycetes. We describe ‘unselective’ strategies that bring
about global changes in secondary metabolite output and ‘selective’
strategies where a specific biosynthetic gene cluster of interest is
manipulated to enhance the yield of a compound and illustrate how
these differing approaches can be integrated into an overall strategy.

BIOSYNTHESIS OF PIGMENTED ANTIBIOTICS IN

S. COELICOLOR

Actinorhodin is an aromatic polyketide synthesized by enzymes
encoded in a 22-kb gene cluster (Figure 2a).>” Aromatic polyketides
are an important class of medically relevant secondary metabolites:
the anticancer agent daunorubicin and the tetracycline antibiotics
belong to this class.*® Their production occurs using a type II, or
iterative, polyketide synthase. The hallmark of iterative polyketide
synthesis is the initial synthesis of the carbon backbone by the
minimal polyketide synthase (actl-orfl/2/3 in the case of
actinorhodin), followed by tailoring to create the final product (see
Figure 2b for details). Actinorhodin production draws heavily on
primary metabolism as the carbon backbone is produced entirely
from fatty acid precursors, acetyl-CoA and malonyl-CoA (Figure 2b).
The actinorhodin biosynthetic cluster also encodes a pathway-specific
activator (actll-orf4) that activates the biosynthetic genes. This
activator gene is in turn subject to the action of global regulators
that can either activate or repress its expression and which pre-
sumably serve to integrate environmental and metabolic cues.

The red, cell wall-associated, pigment produced by S. coelicolor is a
mixture of prodiginines—undecylprodiginine and the cyclized deri-
vative streptorubin B being the major products.® Prodiginines are a
widespread and structurally related group of tripyrrole antibiotics
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tes are depicted in relation to their chromosomal location, emphasizing the fact

that the majority of biosynthetic genes are located outside the highly conserved core region. The left arm (corresponding to the first 1.3 Mb of the
chromosome) is highlighted in green and the right arm (last 2.3 Mb of the chromosome) is highlighted in red. The core chromosome region (4.9 Mb) is in
black. Secondary metabolites without structures are shown in white (see Table 1 for details), while those with structures are in black.
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Secondary metabolite Location Type Identification method Reference
Identified structures
Isorenieratene SC00185-0191 Terpenoid Blue light induction 63
Coelichelin SC00489-0499 NRP Genome mining 62
THN/flaviolin SC01206-1208 PK—type IlI Genome mining 119
5-Hydroxyectoine SC01864-1867 Cyclic amino acid Salt or high temp 64
Desferrioxamine SC02782-2785 Tris-hydroxymate Genome mining 61
CDA SC03210-3249 NRP Antimicrobial activity 120
Actinorhodin SC05071-5092 PK—type Il Blue pigment 20
Albaflavenone SC05222-5223 Terpenoid Odor/genome mining 121
Prodiginine SC05877-5898 Tripyrrole Red pigment 21
Geosmin SC06073 Terpenoid Odor/genome mining 122
SCB1 SC06266 y-Butyrolactone Genome mining 123
Coelimycin P1 SC06273-6288 PK—type | Yellow pigment/genome mining 36,124,125
Hopene SC06759-6771 PK—type IlI Genome mining 126
Germicidin SC07221 PK—type 11| Genome mining 127
2-Methylisoborneol SC07700-7701 Terpenoid Odor/genome mining 128
Methylenomycin SCP1.228c-246 Cyclopentanoid Antimicrobial activity 129
Methylfurans SCP1.228c-246 Methylfurans Genome mining 130
Developmental secondary metabolites
SapB SC06681-6685 Lantibiotic MS/phenotype 131
Predicted structures (untested)
Eicosapentaenoic acid SC00124-0129 Fatty acid Genome prediction 13
Melanin SC02700-2701 Melanin Genome prediction 13
Bacteriocin SC00753-0756 Bacteriocin Genome prediction 13
Coelibactin SC07681-7691 NRP Genome prediction 22
Unable to predict structures
Lantibiotic SC00267-0270 Lantibiotic Genome prediction 13
Lantibiotic SC06927-6932 Lantibiotic Genome prediction 13
PKS SC01265-1273 PK—type Il Genome prediction 13
PKS SC06826-6827 PK—type II Genome prediction 13
PKS SC07669-7671 PK—type IlI Genome prediction 13
Siderophore SC05799-5801 — Genome prediction 13
Dipeptide SC06429-6438 — Genome prediction 13
Gray spore pigment SC05314-5320 PK—type Il Gray pigment 132

Abbreviations: NRP, nonribosomal peptide; PK, polyketide.

currently being explored for use as chemotherapeutics. Their
biosynthesis in S. coelicolor is directed by a 30-kb gene cluster
(Figure 3a). Two pathway-specific transcriptional activators RedZ
and RedD are required for the activation of prodiginine gene
expression: RedZ is a direct activator of RedD, which then acts on
the Dbiosynthetic genes. The biosynthetic pathway itself is
complicated—a bifurcated process requiring the production of two
specialized precursors, 4-methoxy-2,2'-bipyrrole-5-carboxaldehyde
(MBC) and 2-undecylpyrrole (see Figure 3b for details). The enzymes
required for prodiginine synthesis are encoded within the biosynthetic
cluster; however, proline, serine, glycine, acetyl-CoA and malonyl-
CoA must be drawn from primary metabolism and the creation of the
lipid moiety requires enzymes from fatty acid biosynthesis as well
(Figure 3b).40

A REGULATORY NETWORK GOVERNING SECONDARY
METABOLISM

Secondary metabolism is subject to diverse regulatory inputs. Most of
these pathways have been discovered through the analysis of
mutations that alter yields of actinorhodin, and/or prodiginines.

There does not appear to be a universal regulatory network for
secondary metabolism.!®$1%4!  There are, however, many shared
regulatory mechanisms, some of which are widely conserved and
the general principles are similar in all streptomycetes. For example, it
is very common for the expression of secondary metabolite pathway
genes to be controlled by a pathway-specific regulator (Table 3),
typically encoded in the cognate biosynthetic gene clusters, and these
regulators are in turn under the control of the more globally acting
pleiotropic regulators (Table 4).

Pathway-specific regulators

Many biosynthetic clusters encode one or more pathway-specific
activators (Table 3). The Streptomyces antibiotic regulatory proteins or
SARPs, characterized by a winged helix—turn-helix motif at their N
terminus,*>* are a common type of pathway-specific regulator.
For example, Actll-4, the pathway-specific activator of actinorhodin
biosynthesis, binds two of the three intergenic regions (actVI-orfA/
actVI-orfl and actIll/actl-orfl) found within the biosynthetic cluster
(Figure 4). These ActlI-4 binding sites overlap the —35 regions of the
promoters facilitating recognition by RNA polymerase.t*
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Figure 2 Actinorhodin biosynthesis. (a) Organization of the actinorhodin biosynthetic cluster. Regulatory genes are highlighted in green and putative
resistance genes in red. The minimal PKS (Actl) is orange. Tailoring genes are colored depending on their role in forming actinorhodin. Genes that have not
been characterized are filled with white. (b) 1x Acetyl-CoA and 7x malonyl-CoA are condensed to form the carbon skeleton by Actl. This carbon backbone
is cyclized to form a three ring intermediate (s)-DNPA (by Actlll, ActVII, ActlV, ActVI-1 and ActVI-3) followed by modification to DHK (ActVI-2, ActVI-4 and
ActVA-6). Dimerization of 2 DHK molecules results in the formation of actinorhodin (by ActVA-5 and ActVB). The involvement of ActVA2-4 has yet to be
characterized.
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Figure 3 Prodiginine biosynthesis. (a) Organization of the prodiginine biosynthetic cluster. Regulatory genes are in green, genes for MBC synthesis are in
red and genes for 2-undecylpyrrole are in orange. Genes for condensation of MBC and 2-undecylpyrrole and subsequent cyclization are in gray and brown,
respectively. Genes with unknown function have white centers. (b) Prodiginine synthesis requires the production of a dipyrrole, MBC, and a monopyrrole, 2
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Table 3 Pathway-specific regulators in Streptomyces coelicolor

Regulator Type Metabolite Reference
Actll-4 SARP Actinorhodin 133
CdaR SARP CDA 134
CpkO/KasO RR Coelimycin P1 54
ScbA GBL synthase Coelimycin P1 54
SchR TFR Coelimycin P1 54
EcrA1/A2 SK(his)/RR Prodiginine 135
RedD SARP Prodiginine 136
RedZ RR Prodiginine 137
MmyR TFR Methylenomycin 45
MmfR TFR Methylenomycin 45
MmfB Xre-like Methylenomycin 45

Abbreviations: GBL, y-butyrolactone; RR, response regulator; SARP, Streptomyces antibiotic
regulatory proteins; SK(his), histidine kinase; TFR, tetR-like protein.

Some biosynthetic clusters encode pathway-specific repressors.
For example, production of the S. coelicolor metabolite methyleno-
mycin is regulated by an activator (MmyB) and two repressors
(MmyR and MmfR) that repress the mmyB promoter. Repression
by MmyR and MmfR is relieved by autoregulatory methylfuran
signaling molecules, leading to methylenomycin production.®>

Global regulators

The pleiotropic regulators influence more than one secondary
metabolite. S. coelicolor’s pigments have been used as indicators for
the identification and characterization of over 55 pleiotropically
acting loci, most of which encode regulatory proteins (Figure 4 and
Table 4). These regulators include many signal-transduction systems,
suggesting that they sense and respond to the cellular environment
(Table 4 and Figure 4).

One signal-transduction pathway that illustrates the complexity of
sensory inputs to secondary metabolism has, at its core, the serine/
threonine kinase AfsK. AfsK phosphorylates the DNA binding protein
AfsR,*® an activity that is modulated by binding of the protein
KbpA,*” although little is known about how this interaction is itself
controlled or what purpose it serves. Phosphorylation of AfsR
enhances its interaction with the promoter of the afsS gene
activating its expression. AfsS, which exhibits sequence similarity to
domain 3, the RNA polymerase binding moiety of the o-factor
proteins, then serves to enhance the expression of the actinorhodin
and prodiginine biosynthetic genes,*®*° although again the
mechanistic details of its action are obscure.

A metabolic input that controls afsS expression is phosphate
limitation,!” which is sensed by the sensor kinase PhoR leading it
to phosphorylate the response regulator PhoP. PhoP ~P has a large
number of targets, most of which are concerned with phosphate
uptake and management; however, the afsS gene is a member of the
Pho regulon, and the expression of AfsS is increased in phosphate-
limiting conditions leading to increased production of actinorhodin
and the prodiginines.!” The biological advantage of linking secondary
metabolism to phosphate availability is unknown.

Another activating signal for the AfsK pathway is S-adenosyl-L-
methionine (SAM),'»!> an important metabolite and the methyl
group donor in all organisms. Among many other roles, SAM
provides a methyl group to the MBC biosynthetic pathway, a
critical component in prodiginine synthesis.*’ This therefore links
the activation of the AfsK kinase activity to the availability of this
primary metabolite.

Global changes in secondary metabolite output
A Craney et al

In addition, recent work has revealed a role for AfsK in responding
to cell wall stress: in response to bacitracin-induced cell wall damage,
AfsK phosphorylates a cytoskeletal protein to modulate cell wall
biosynthesis. A link between cell wall damage and AfsK-mediated
activation of secondary metabolism has yet to be demonstrated, but
may represent another avenue to improve production of secondary
metabolites. It is known that yields of some metabolites, for example,
jadomycin B production by S. venezulae,”® can be enhanced by heat
shock—perhaps this is influenced by damage to the cell wall via this
arm of the AfsK pathway?

v-Butyrolactones: Pathway-specific and global regulators
The vy-butyrolactone (GBL) signaling molecules are produced by
many streptomycetes and usually impinge directly on secondary
metabolism. Their effects can be pathway specific or global. For
example, in S. griseus, sporulation and secondary metabolism is
controlled by the production of a single GBL, A-factor, making it a
global rrs:gulator.51 In S. avermitilis, its GBL, avenolide, elicits
production of the avermectins but is not believed to influence other
metabolites: it therefore serves as a pathway-specific regulator.>?
The GBL of S. lavendulae IM-2 is also a global regulator but has
more complex effects on secondary metabolism, in that it reduces
p-cycloserine production and increases nucleoside antibiotics and a
blue pigment.>

In some cases, the mode of regulation by GBLs is less clear. For
example, the molecule SCB1 of S. coelicolor, synthesized by ScbA, is a
pathway-specific regulator of coelimycin P1, the polyketide product of
the cpk gene cluster.>* However, deletion of ScbA causes a strong
stimulation of both prodiginine and actinorhodin through an
unknown mechanism. It is unclear whether this makes ScbA a
global regulator® or whether the loss of activation of coelimycin P1
simply favors yields from a competing pathway (ScbA is listed in both
Table 3 and Table 4).

STRATEGIES TO IMPROVE SECONDARY METABOLITE
PRODUCTION AND DETECTION

Classical screening of cell culture supernatants containing many
metabolites for activities of interest is appealing because it is simple
and inexpensive. The problem with the established methods is that
they result in the frequent rediscovery of common metabolites; such
as, streptomycin, streptothricin, tetracycline and actinomycin.”®
However, growing evidence suggests that we can take advantage of
regulatory mechanisms to alter the spectrum of secondary metabolites
produced by a strain and thereby rejuvenate this straightforward
approach.

The strategies that have been taken to tap into the cryptic
secondary metabolites can be described as ‘selective) in that a single
metabolite is targeted, or ‘unselective), in that secondary metabolism is
generally perturbed to enhance yields of multiple metabolites
(Figure 5).

UNSELECTIVE STRATEGIES

Manipulation of media and stress responses

The classical method for activating secondary metabolites involves the
manipulation of culture conditions or biological stress responses. The
outcomes of this approach are unpredictable in that different
streptomycetes respond in different ways to each manipulation.
Production of pure daptomycin, the clinically relevant form of the
antimicrobial ‘calcium-dependent’ lipopeptide antibiotics produced
by S. roseosporus, requires feeding with decanoic acid.”’ Efficient
production of jadomycin B by S. venezulae requires induction by

391
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Table 4 Regulators involved in Streptomyces coelicolor secondary metabolism

Regulator Type Notes Reference
Multicomponent systems
abeR regulon
AbeABCD (u-abeA) 1 abeABCD (a-abeA) T ACT 138
Four gene operon with antisense RNA (a-abeA)
AbeR SARP tabeR TACT
AabeR |ACT
absA regulon
AbsAl SK(his) Phosphorylates AbsA2 139
AabsAl tACT/RED 140
tabsA1|ACT/RED 141
AbsA2 RR AbsA2 ~ P global repressor 93
Directly binds to pathway-specific promoter
AabsA2 1 ACT/RED 141
afsK regulon
AsfK SK(ser) Phosphorylation stimulated by SAM 14,15
Phosphorylates AfsR 46
AasfK |ACT 46
AfsL SK(ser) Phosphorylates AfsR 142
PkaG SKi(ser) Phosphorylates AfsR 142
AfsR RR(SARP-like) Integrates signals from AsfK/AfsL/PkaG 142
AasfR |ACT 143
KpbA Represses AfskK phosphorylation 47
AkpbA tACT
AfsS/AfsR2 o-Like AasfS |ACT 48
Integrates signals from AfsR ~P and PhoR ~P
Pho regulon
PhoR SK(his) Phosphorylated in low phosphate 17
Phosphorylates PhoP
PhoP RR PhoP ~R binds promoters of pho regulon 17
afsS is part of the pho regulon
TACT/RED in |P;
afsQ regulon
AfsQ2 SK(his) tafsQ1/Q2 1ACT/RED/CDA in S. lividans 144
AfsQl RR Glutamate as carbon source required to see mutant phenotypes
AafsQ1/Q2 | ACT/RED/CDA
oQ o-Factor Antagonizes AfsQ1-Q2
AbaR1/R2 SK(his)/RR AabaR1R2 tACT 145
AbaC1/C2/C3 SK(his)/SK(his)/RR AabaC1C2C3 |ACT
DmdR1/Adm DmdR Antiparallel overlapping genes 146
Senses Fe?*
AdmdR1/adm | ACT/RED
Aadm tACT/RED
DraK/R SK(his)/RR AdrakIR | ACT/TRED/CPK 147
Directly with pathway-specific promoter ACT/CPK
Indirect effect on RED
RapA1/A2 RR/SK(his) ArapAl/A2 | ACT/CPK=RED 148
One-component systems
AtrA TFR AatrA | ACT 149
AbsC MarR-like AabsC+ low Zn no ACT/RED 150
CprA TFR AcprA | ACT/RED 151
TcprA 1ACT/RED
CprB TFR AcprB 1ACT=RED 151
DasR GntR DasR represses pathway-specific promoters 152
GlcNac relieves DasR repression
NdgR IcIR-like AndgR 1ACT 153
Binds intergenic region of ScbA/R
RrdA TFR ArrdA TRED |ACT 154
trrdA |RED TACT
SigT ECF o-factor AsigT+low N |ACT 155
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Regulator Type Notes Reference
BldD regulated
BIdD DNA binding AbldD | ACT 156,157
CdgA c-di-GMP 1 cdgA |ACT 156
CdgB c-di-GMP TcdgB |ACT 158
NsdA TPR-like AnsdA 1 ACT/CDA/MMY 159
NsdB TPR-like AnsdB 1ACT/CDA 160
SsgR/SsgA SALP AssgA|ACT 161
ssgR positively regulated ssgA 162
Translation
AdpA/bldA tRNA-leu Developmentally regulated 163
Prevents translation of genes with TTA codons until expressed
redD, actll-4 and cdaR contain TTA
AbsB RNAselll AabsB | ACT/RED 164-166
Degrades double-stranded mRNA
Stringent response
ppGpp synthesis TACT/RED
AfsB/HrdB o-Factor Mutations interfere with ppGpp synthesis resulting in lowering 167
pigment production
EshA ppGpp AeshA reduce ppGpp production 168
RelA ppGpp Nitrogen limited ppGpp production 67,73
RelC/RplK ppGpp Mutations reduce ppGpp production 169
RshA ppGpp Phosphate limited ppGpp production 170
Miscellaneous
CmdABCDEF AcmdABCDEF tACT 171
HmgA Homogentisate 1,2-dioxygenase AhgmA TACT 172
SarA Unknown AsarA | ACT 173
ScbA GBL AscbA 1ACT/RED 55174

Abbreviations: ACT, actinorhodin; GBL, y-butyrolactone; RED, prodiginine; SALP, ssgA-like protein; SAM, S-adenosyl-L-methionine; SARP, Streptomyces antibiotic regulatory proteins; SK(ser),

serine/threonine sensor kinase.

ethanol shock or growth at high temperature (42°C) and can be
improved further by combining these two growth conditions.>®>
This is exemplified by the OSMAC (one strain, many compounds)
approach, which involves selectively changing easily accessible growth
parameters to probe the secondary metabolic potential of a strain.
Initial proof-of-principle work identified 20 metabolites from a single
strain by changing growth conditions.”

Many secondary metabolites offer selective advantages to the
producers and are only produced during these specific conditions.
Siderophores are secondary metabolites that sequester iron and are
expressed in low iron conditions.®*°% The carotenoids of S. coelicolor
are expressed in the presence of blue light consistent with their
protective role against photodamage.®® Production of ectoine and 5-
hydroxyectoine protect against dehydration and thus are expressed
under high salt or high temperature conditions in S. coelicolor.®* Thus,
starvation for certain elements and stresses can therefore be expected
to elicit some of these compounds.

Random mutagenesis using chemical mutagens or UV light has
been employed to generate strains optimized for industrial produc-
tion. The producer is subject to rounds of mutagenesis involving
either UV or chemical mutagens, with surviving clones screened
for improved activity. For example, yields of clavulanic acid from
S. clavuligerus®> and rapamycin from S. hygroscopicus®® were both
improved through random mutagenesis. Again, the effects of

mutagenesis and multiple rounds of screening are unpredictable.
Although this approach can be applied to enhancing yields of
compounds produced at low levels, it is not a suitable screening
platform as it cannot be easily adapted to high throughput.

Ribosomal engineering
One strikingly successful perturbation of secondary metabolite
production has been developed through the observation that resis-
tance to antibiotics enhances yields of some cryptic secondary
metabolites. In particular, resistance to antibiotics that target the
ribosome (for example, streptomycin, paromycin and gentamicin)
frequently involving ribosomal protein $12%7 or rifampicin via RNA
polymerase B-subunit mutations prove effective.®® The effects of these
mutations can be combined for increased effects on secondary
metabolism and have been demonstrated by developing stepwise
resistance for up to eight ribosomal antibiotics in S. coelicolor, with a
concomitant increase in the production of actinorhodin.®®

The mechanism of this fascinating effect is not entirely clear’® but
involves the upregulation of pathway-specific regulators; such as,
actl-orf4.”172 One possible explanation that has been advanced is that
the alteration of ribosome function mimics the stringent response,
upregulating the production of ppGpp, which is known to increase
the production of some secondary metabolites.”> Regardless of
how ribosome engineering actually works at the molecular level,
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binding to the promoter region of act/l-4 are under ‘interacting with Streptomyces antibiotic regulatory proteins (SARP) promoter’, those regulators affecting
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AbeR and CmdABCDEF are not depicted because of their complexity.

this approach to strain improvement is advantageous in that there is
no requirement for genetic engineering. Libraries of resistant mutants
have been successfully screened, resulting in the discovery of novel
piperidamycins.”*

Small-molecule probes

The first synthetic molecule reported to influence secondary meta-
bolism was an inhibitor of phosphopantetheinyl transferase.”>
Phosphopantetheinyl transferases activate the acyl carrier protein of
fatty acid biosynthesis and secondary metabolism by ‘priming’ the
carrier protein. Priming occurs by the addition of a phospho-
pantetheinyl group and provides the reactive sulthydryl group that
tethers the new metabolites and is essential for these processes to
occur. Specifically, it was found that a phosphopantetheinyl
transferase inhibitor developed against Bacillus subtilis enhanced
actinorhodin production when added to S. coelicolor. The
mechanism for this increase is unclear as S. coelicolor encodes many
phosphopantetheinyl transferases;”> however, it was proposed that the
inhibition of fatty acid biosynthesis could improve precursor
availability or that it could activate a stress response and that one
or both of these pathways enhance actinorhodin production.”> There
is at present no experimental evidence of either mechanism.

More recently, a collection of synthetic small molecules that alter
secondary metabolism in S. coelicolor was identified by specifically
looking for enhanced blue pigmentation.”® Of 19 compounds
identified in this screen, four molecules referred to as the ARC2

The Journal of Antibiotics

series were found to be related to the antibiotic triclosan. Similarly,
they appear to act by inhibiting the enoyl reductase Fabl, which plays
a critical role in fatty acid metabolism. It was proposed that the
mechanism of action of the ARC2 series of molecules involves a
buildup of fatty acid precursors that are shunted from fatty acid
biosynthesis to secondary metabolism as a result of the inhibition of
Fabl. Consistent with the overall conservation of the fatty acid
biosynthetic machinery in prokaryotes, the ARC2 series also alters
the secondary metabolic profiles of many actinomycetes. Initial work
demonstrated increased production of desferrioxamine B/E in S.
pristinaespiralis, doxorubicin and baumycin in S. peucetius and an
unknown metabolite (252.175 [M + H] ™) in Kutzneria sp. 744. Other
molecules from this screen had strikingly different properties. For
example, one of these compounds, ARCS, elicited enhanced yields
of a differing though overlapping set of secondary metabolites as
ARC2. The effect of ARC6, however, appears to be restricted to S.
coelicolor, indicating that it acts more as a species-specific synthetic
signaling molecule.”” While this molecule is less likely to serve as a
valuable screening tool, it could be used to probe the genetic and/or
metabolic pathways that control and limit secondary metabolism in S.
coelicolor.

Chemical manipulation of secondary metabolism is an advanta-
geous strategy as it negates the need for genetic manipulation, which
can limit the application of genetic strategies as many streptomycetes
possess systems that restrict introduction of foreign DNA.788* [t is
hoped that this will serve as a valuable screening tool by activating the
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and structural elucidation. Matrix-assisted laser desorption/ionization (MALDI) imaging may also be used to aid in identifying the secondary metabolite.

yields of cryptic molecules that can be purified and characterized
structurally and biochemically.

Metabolic engineering

Metabolic engineering involves genetically modifying the producer
organism to elevate the available levels of certain metabolic pre-
cursors. Acyl-CoA precursors are important for the production of a
number of secondary metabolites; acetyl-CoA, malonyl-CoA and
methylmalonyl-CoA are common building blocks of polyketide
synthesis and must be available for efficient yields of the secondary
metabolic products. This precursor pool can be improved by
manipulating the biochemical pathways that produce or consume
them; fatty acid biosynthesis, fatty acid degradation, branched chain
amino-acid degradation and glucose metabolism are prevalent
examples of these pathways.®> For example, overexpression of
the methylmalonyl-CoA mutase pathway (mutAB) elevates the
availability of methylmalonyl-CoA (by isomerization of succinyl-
CoA from the tricarboxylic acid cycle) and thereby enhances the
production of FK606 in S. clavuligerus.®® Disruption of zwfl or zwf2
from the pentose phosphate pathway improves the production of

acetyl-CoA and malonyl-CoA, resulting in increased production of
actinorhodin in S. coelicolor®” and oxytetracycline in S. ambofaciens.®®

Engineering global regulators

Strains can be genetically engineered to overexpress global regulators
to elicit overall changes in secondary metabolites within the host
organism or when heterologously expressed in other streptomycetes.*?
For example, overexpression of various alleles of AbsA2 results in
the overproduction of actinorhodin, prodiginines and CDA in
S. coelicolor.®® This same allele has the capacity to enhance
secondary metabolites in other streptomycetes, demonstrated by
increased production of streptomycin in S. griseus and blasticidin S
in S. griseochromogenes. In addition, introduction into S. flavopersicus
resulted in the production of pulvomycin, previously unreported
in this strain and undetectable in the absence of the AbsA2
mutant allele.®

SELECTIVE METHODS
The biosynthetic gene clusters can themselves be targeted to enhance
yields of their products. Genes that enhance production can be
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Table 5 Heterologous hosts

Strain Relevant modifications Reference
Streptomyces coelicolor
M1154 Aact/red/cdalcpk 100
rpoBIC1298TIrpsLIA262G]
M512 AredDlactll-4 175
CH999 Aact 176
S. avermitilis
SUKA17 Asav71-1286(ave/pte)/olm 100
Aterpenes (sav2161-2168,
5av2990-3002, sav7456-7491)
S. venezuelae
DHS2001 ApikAl-1V 177
YJ309 DHS2001 + matBC 178
S. albus
11074 AsalGl (restriction system) 179
S. lividans
66/1326 Wild type 180
TK24 1326 derivative st® 180

overexpressed (resistance genes and pathway-specific activators) and
those genes that repress production can be deleted. Secondary
metabolite gene clusters of interest can be moved to alternate hosts
for improved expression (heterologous expression). As the cost of
high-throughput DNA sequencing drops, the strategy of simply
activating novel gene clusters in newly isolated streptomycetes
becomes increasingly appealing and feasible (Figure 5b).

Engineering self-resistance

A growing body of evidence suggests that self-resistance mechanisms,
which are often encoded in secondary metabolic gene clusters, can
influence yields of some secondary metabolites. While the mechan-
isms by which this occurs are not well understood, they may include
limiting toxicity or preventing product inhibition of biosynthesis.
It is also possible that some export proteins or other resistance
determinants participate directly in biosynthesis. For example, upre-
gulation of the resistance genes drrABC, avtAB and actAB has been
applied, respectively, to improve yields of doxorubicin and daunor-
ubicin in S. peucetius,’® avermectin production in S. avermitilis’! and
actinorhodin yields in S. coelicolor.®?

Regulatory engineering

As many biosynthetic clusters encode pathway-specific activators,
overexpression of these activators can elevate yields of a desired
metabolite and induce expression of cryptic clusters. Overexpression
of the pathway-specific activators of the actinorhodin and prodiginine
biosynthetic gene cluster in S. coelicolor enhances yields of the cognate
metabolites.”® Similarly, overexpression of AveR and StrR enhances
yields of avermectin in S. avermitilis®* and streptomycin in S.
griseus,” respectivel. More importantly, overexpression of the
predicted pathway-specific activator, SamR0484, was recently used
to activate the previously cryptic biosynthetic gene cluster for
stambomycin A-D, a family of 51-membered glycosylated macrolides,
in S. ambofaciens.®
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Conversely, some biosynthetic clusters encode pathway-
specific repressors, which when deleted improve production. Thus,
deletion of the pathway-specific repressor cmmRII in S. griseus
resulted in the overproduction of chromomycin®’ and similarly the
deletion of AlpW in S. ambofaciens results in constitutive expression
of alpomycin.”®

Heterologous expression of biosynthetic gene clusters

The availability of cloning methods for managing large DNA
fragments has made it possible to clone entire biosynthetic clusters,
some of which are very large.”” By modifying these clones to include
site-specific integration sites, it is possible to then move them into
heterologous expression strains (Table 5). Streptomyces lividans and
Streptomyces albus J0174 were originally used to this end because of
their low secondary metabolite output and limited restriction barriers.
S. venezulae has also been adapted for heterologous flavonoids
biosynthesis (Table 5).

More recently, chassis strains of S. coelicolor and S. avermitilis have
been developed for the expression of heterologous metabolites with
very exciting results.'%%101 These chassis strains lack their own
biosynthetic clusters and this reduces the metabolic competition for
precursors by heterologous metabolites. These strains also greatly
simplify the detection of heterologous metabolites as the LC/MS
spectra of their culture supernatants are otherwise devoid of
secondary metabolites. The S. avermitilis chassis, SUKA17, was
created by removing ~ 1.4 Mb of DNA, including biosynthetic gene
clusters for the avermectins, filipin, oligomycin and terpenes.
Heterologous expression of streptomycin in the resulting strain was
enhanced fourfold relative to the expression in wild-type S. avermitilis
(Table 5).101

The S. coelicolor chassis lacks 1.73Mb of DNA, including the
biosynthetic gene clusters for actinorhodin, the prodiginines and two
other prominent metabolites. In addition, secondary metabolite-
stimulating mutations in rpoB and rpsL (see ‘Ribosomal engineering’
above) were introduced to further improve yields. The resulting
strain, M 1154, was used for heterologous expression of the biosyn-
thetic genes for chloramphenicol (S. venezuelae) and congocidine
(S. ambofaciens), with yields enhanced by 20- to 40-fold relative to
the parent S. coelicolor strain M145,100

These chassis strains may offer a general solution to the production
of compounds of interest at high levels.

Genome mining
Increasingly, new secondary metabolites are being identified through
mining genomes for novel biosynthetic cluster. In spite of the
extraordinary structural diversity of the secondary metabolites, the
enzymes that produce them are highly conserved, making it possible
to identify and explore novel clusters.®>192193 Non-iterative assembly
as occurs in nonribosomal peptide synthesis and type I polyketide
biosynthesis facilitates the prediction of pathway product structures
with considerable precision.!'®-19 This is more difficult with
the iterative processes; such as, type II and type III polyketides;
however, it may still be possible to use cluster features to predict
products that are likely to be distinct from known compounds.!?” The
genomes of many streptomycetes are now available and have been
mined for their secondary metabolites; S. coelicolor is predicted to
encode 29, S. avermitilis 37 and S. griseus 36 potential secondary
metabolites.'?

The first metabolite identified through genome mining was the
nonribosomal peptide siderophore, coelichelin in S. coelicolor.5?
Genome prediction aided greatly in the structural elucidation of
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coelichelin, as it suggested culture conditions and detection methods.
While a complete structural prediction could not be made from the
genomic information, accurate prediction of substrate specificity was
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