Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Developing a potentially immunologically inert tetracycline-regulatable viral vector for gene therapy in the peripheral nerve

Abstract

Viral vector-mediated gene transfer of neurotrophic factors is an emerging and promising strategy to promote the regeneration of injured peripheral nerves. Unfortunately, the chronic exposure to neurotrophic factors results in local trapping of regenerating axons or other unwanted side effects. Therefore, tight control of therapeutic gene expression is required. The tetracycline/doxycycline-inducible system is considered to be one of the most promising systems for regulating heterologous gene expression. However, an immune response directed against the transactivator protein rtTA hampers further translational studies. Immunogenic proteins fused with the Gly-Ala repeat of the Epstein–Barr virus Nuclear Antigen-1 protein have been shown to successfully evade the immune system. In this article, we used this strategy to demonstrate that a chimeric transactivator, created by fusing the Gly-Ala repeat with rtTA and embedded in a lentiviral vector (i) retained its transactivator function in vitro, in muscle explants, and in vivo following injection into the rat peripheral nerve, (ii) exhibited a reduced leaky expression, and (iii) had an immune-evasive advantage over rtTA as shown in a novel bioassay for human antigen presentation. The current findings are an important step toward creating a clinically applicable potentially immune-evasive tetracycline-regulatable viral vector system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Mason MRJ, Tannemaat MR, Malessy MJA, Verhaagen J . Gene therapy for the peripheral nervous system: a strategy to repair the injured nerve? Curr Gene Ther 2011; 11: 75–89.

    Article  CAS  PubMed  Google Scholar 

  2. Hoyng SA, Tannemaat MR, De Winter F, Verhaagen J, Malessy MJA . Nerve surgery and gene therapy: a neurobiological and clinical perspective. J Hand Surg Eur Vol 2011; 36: 735–746.

    Article  CAS  PubMed  Google Scholar 

  3. Li L, Wu W, Lin LF, Lei M, Oppenheim RW, Houenou LJ . Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor. Proc Natl Acad Sci U S A 1995; 92: 9771–9775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Henderson CE, Phillips HS, Pollock RA, Davies AM, Lemeulle C, Armanini M et al. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 1994; 266: 1062–1064.

    Article  CAS  PubMed  Google Scholar 

  5. Blits B, Carlstedt TP, Ruitenberg MJ, de Winter F, Hermens WTJMC, Dijkhuizen PA et al. Rescue and sprouting of motoneurons following ventral root avulsion and reimplantation combined with intraspinal adeno-associated viral vector-mediated expression of glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor. Exp Neurol 2004; 189: 303–316.

    Article  CAS  PubMed  Google Scholar 

  6. Eggers R, Hendriks WTJ, Tannemaat MR, van Heerikhuize JJ, Pool CW, Carlstedt TP et al. Neuroregenerative effects of lentiviral vector-mediated GDNF expression in reimplanted ventral roots. Mol Cell Neurosci 2008; 39: 105–117.

    Article  CAS  PubMed  Google Scholar 

  7. Tannemaat MR, Eggers R, Hendriks WT, De Ruiter GCW, Van Heerikhuize JJ, Pool CW et al. Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve. Eur J Neurosci 2008; 28: 1467–1479.

    Article  PubMed  Google Scholar 

  8. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992; 89: 5547–5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gossen M, Freundlieb S, Bender G, Müller G, Hillen W, Bujard H . Transcriptional activation by tetracyclines in mammalian cells. Science 1995; 268: 1766–1769.

    Article  CAS  PubMed  Google Scholar 

  10. Rivera VM, Clackson T, Natesan S, Pollock R, Amara JF, Keenan T et al. A humanized system for pharmacologic control of gene expression. Nat Med 1996; 2: 1028–1032.

    Article  CAS  PubMed  Google Scholar 

  11. Vegeto E, Allan GF, Schrader WT, Tsai MJ, McDonnell DP, O’Malley BW . The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell 1992; 69: 703–713.

    Article  CAS  PubMed  Google Scholar 

  12. Roscilli G, Rinaudo CD, Cimino M, Sporeno E, Lamartina S, Ciliberto G et al. Long-term and tight control of gene expression in mouse skeletal muscle by a new hybrid human transcription factor. Mol Ther 2002; 6: 653–663.

    Article  CAS  PubMed  Google Scholar 

  13. Karns LR, Kisielewski A, Gulding KM, Seraj JM, Theodorescu D . Manipulation of gene expression by an ecdysone-inducible gene switch in tumor xenografts. BMC Biotechnol 2001; 1: 11.

    Article  CAS  PubMed  Google Scholar 

  14. Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F . In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61: 527–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W . Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 2000; 97: 7963–7968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Georgievska B, Jakobsson J, Persson E, Ericson C, Kirik D, Lundberg C . Regulated delivery of glial cell line-derived neurotrophic factor into rat striatum, using a tetracycline-dependent lentiviral vector. Hum Gene Therapy 2004; 15: 934–944.

    Article  CAS  Google Scholar 

  17. Chtarto A, Yang X, Bockstael O, Melas C, Blum D, Lehtonen E et al. Controlled delivery of glial cell line-derived neurotrophic factor by a single tetracycline-inducible AAV vector. Exp Neurol 2007; 204: 387–399.

    Article  CAS  PubMed  Google Scholar 

  18. Yang X, Mertens B, Lehtonen E, Vercammen L, Bockstael O, Chtarto A et al. Reversible neurochemical changes mediated by delayed intrastriatal glial cell line-derived neurotrophic factor gene delivery in a partial Parkinson’s disease rat model. J Gene Med 2009; 11: 899–912.

    Article  CAS  PubMed  Google Scholar 

  19. Chenuaud P, Larcher T, Rabinowitz JE, Provost N, Joussemet B, Bujard H et al. Optimal design of a single recombinant adeno-associated virus derived from serotypes 1 and 2 to achieve more tightly regulated transgene expression from nonhuman primate muscle. Mol Ther 2004; 9: 410–418.

    Article  CAS  PubMed  Google Scholar 

  20. Latta-Mahieu M, Rolland M, Caillet C, Wang M, Kennel P, Mahfouz I et al. Gene transfer of a chimeric trans-activator is immunogenic and results in short-lived transgene expression. Hum Gene Ther 2002; 13: 1611–1620.

    Article  CAS  PubMed  Google Scholar 

  21. Favre D, Blouin V, Provost N, Spisek R, Porrot F, Bohl D et al. Lack of an immune response against the tetracycline-dependent transactivator correlates with long-term doxycycline-regulated transgene expression in nonhuman primates after intramuscular injection of recombinant adeno-associated virus. J Virol 2002; 76: 11605–11611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zaldumbide a, Hoeben RC . How not to be seen: immune-evasion strategies in gene therapy. Gene Ther 2008; 15: 239–246.

    Article  CAS  PubMed  Google Scholar 

  23. Horst D, Verweij MC, Davison AJ, Ressing ME, Wiertz EJHJ . Viral evasion of T cell immunity: ancient mechanisms offering new applications. Curr Opin Immunol 2011; 23: 96–103.

    Article  CAS  PubMed  Google Scholar 

  24. Zaldumbide A, Weening S, Cramer SJ, MJWE Rabelink, Verhaagen J, Hoeben RC . A potentially immunologically inert derivative of the reverse tetracycline-controlled transactivator. Biotechnol Lett 2010; 32: 749–754.

    Article  CAS  PubMed  Google Scholar 

  25. Ermak G, Cancasci VJ, Davies KJA . Cytotoxic effect of doxycycline and its implications for tet-on gene expression systems. Anal Biochem 2003; 318: 152–154.

    Article  CAS  PubMed  Google Scholar 

  26. Eggers R, de Winter F, Hoyng SA, Roet KCD, Ehlert EM, Malessy M et al. Lentiviral vector-mediated gradients of GDNF in the injured peripheral nerve: effects on nerve coil formation, Schwann cell maturation and myelinisation. PLoS One 2013; 8: e71076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanno A, Yamanaka Y, Hirano H, Umezawa Y, Ozawa T . Cyclic luciferase for real-time sensing of caspase-3 activities in living mammals. Angew ChemInt Ed Engl 2007; 46: 7595–7599.

    Article  CAS  Google Scholar 

  28. Young LS, Rickinson AB . Epstein-Barr virus: 40 years on. Nat Rev Cancer 2004; 4: 757–768.

    Article  CAS  PubMed  Google Scholar 

  29. Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG . Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 1997; 94: 12616–12621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blake N, Lee S, Redchenko I, Thomas W, Steven N, Leese A et al. Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 1997; 7: 791–802.

    Article  CAS  PubMed  Google Scholar 

  31. Ossevoort M, Zaldumbide A, Cramer SJ, van der Voort EIH, Toes REM, Hoeben RC . Characterization of an immuno “stealth” derivative of the herpes simplex virus thymidine-kinase gene. Cancer Gene Ther 2006; 13: 584–591.

    Article  CAS  PubMed  Google Scholar 

  32. Hendriks WTJ, Eggers R, Verhaagen J, Boer GJ . Gene transfer to the spinal cord neural scar with lentiviral vectors: predominant transgene expression in astrocytes but not in meningeal cells. J Neurosci Res 2007; 85: 3041–3052.

    Article  CAS  PubMed  Google Scholar 

  33. Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 1995; 375: 685–688.

    Article  CAS  PubMed  Google Scholar 

  34. Apcher S, Daskalogianni C, Lejeune F, Manoury B, Imhoos G, Heslop L et al. Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. Proc Natl Acad Sci USA 2011; 108: 11572–11577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Apcher S, Komarova A, Daskalogianni C, Yin Y, Malbert-Colas L, Fåhraeus R . mRNA translation regulation by the Gly-Ala repeat of Epstein-Barr virus nuclear antigen 1. J Virol 2009; 83: 1289–1298.

    Article  CAS  PubMed  Google Scholar 

  36. Apcher S, Daskalogianni C, Manoury B, FĂĄhraeus R . Epstein Barr virus-encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLoS Pathog 2010; 6: e1001151.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lu F, Wikramasinghe P, Norseen J, Tsai K, Wang P, Showe L et al. Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1). Virol J 2010; 7: 262.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dresang LR, Vereide DT, Sugden B . Identifying sites bound by Epstein-Barr virus nuclear antigen 1 (EBNA1) in the human genome: defining a position-weighted matrix to predict sites bound by EBNA1 in viral genomes. J Virol 2009; 83: 2930–2940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou X, Vink M, Klaver B, Berkhout B, Das a T . Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene Ther 2006; 13: 1382–1390.

    Article  CAS  PubMed  Google Scholar 

  40. Das AT, Zhou X, Vink M, Klaver B, Verhoef K, Marzio G et al. Viral evolution as a tool to improve the tetracycline-regulated gene expression system. J Biol Chem 2004; 279: 18776–18782.

    Article  CAS  PubMed  Google Scholar 

  41. Ariza J, Bosilkovski M, Cascio A, Colmenero JD, Corbel MJ, Falagas ME et al. Perspectives for the treatment of brucellosis in the 21st century: the Ioannina recommendations. PLoS Med 2007; 4: e317.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hendriks WTJ, Eggers R, Carlstedt TP, Zaldumbide A, Tannemaat MR, Fallaux FJ et al. Lentiviral vector-mediated reporter gene expression in avulsed spinal ventral root is short-term, but is prolonged using an immune “stealth” transgene. Restor Neurol Neurosci 2007; 25: 585–599.

    PubMed  Google Scholar 

  43. Baron U, Bujard H . Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol 2000; 327: 401–421.

    Article  CAS  PubMed  Google Scholar 

  44. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kasper C Roet for expert technical assistance in setting up the bioluminescence assay. This study was partly funded by a grant from the International Spinal Research Trust (TRI004). S Gnavi received a visiting and research grant from the Compagnia di San Paolo (MOVAG project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Hoyng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyng, S., Gnavi, S., de Winter, F. et al. Developing a potentially immunologically inert tetracycline-regulatable viral vector for gene therapy in the peripheral nerve. Gene Ther 21, 549–557 (2014). https://doi.org/10.1038/gt.2014.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.22

Search

Quick links