Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Bioadhesive hyaluronan–chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue

Abstract

Gene transfer is considered to be a promising alternative for the treatment of several chronic diseases that affect the ocular surface. The goal of the present work was to investigate the efficacy and mechanism of action of a novel DNA nanocarrier made of hyaluronan (HA) and chitosan (CS), specifically designed for topical ophthalmic gene therapy. With this goal in mind, we first evaluated the transfection efficiency of the plasmid DNA-loaded nanoparticles in a human corneal epithelium cell model. Second, we investigated the bioadhesion and internalization of the nanoparticles in the rabbit ocular epithelia by confocal laser scanning microscopy. Third, we determined the in vivo efficacy of these nanocarriers in terms of their ability to transfect ocular tissues. The results showed that HA–CS nanoparticles and, in particular, those made of low molecular weight CS (10–12 kDa), led to high levels of expression of secreted alkaline phosphatase in the human corneal epithelium model. In addition, we observed that, following topical administration to rabbits, these nanoparticles entered the corneal and conjunctival epithelial cells and, then, become assimilated by the cells. More importantly, these nanoparticles provided an efficient delivery of the associated plasmid DNA inside the cells, reaching significant transfection levels. Therefore, we conclude that these nanoparticles may represent a new strategy toward the gene therapy of several ocular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Borrás T . Recent developments in ocular gene therapy. Exp Eye Res 2003; 76: 643–652.

    Article  Google Scholar 

  2. Pleyer U, Ritter T . Gene therapy in immune-mediated diseases of the eye. Prog Retin Eye Res 2003; 22: 277–293.

    Article  CAS  Google Scholar 

  3. Patil SD, Rhodes DG, Burgges DJ . DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 2005; 7: 61–77.

    Article  Google Scholar 

  4. Klausner EA, Peer D, Chapman RL, Multack RF, Andurkar SV . Corneal gene therapy. J Control Release 2007; 124: 107–133.

    Article  CAS  Google Scholar 

  5. Bennett J, Maguire AM . Gene therapy for ocular disease. Mol Ther 2000; 1: 501–505.

    Article  CAS  Google Scholar 

  6. Martin KRG, Klein RL, Quigley HA . Gene delivery to the eye using adeno-associated viral vectors. Methods 2002; 28: 267–275.

    Article  CAS  Google Scholar 

  7. Mohan RR, Sharma A, Netto MV, Sinha S, Wilson SE . Gene therapy in the cornea. Prog Retin Eye Res 2005; 24: 537–559.

    Article  CAS  Google Scholar 

  8. Al-khatiba K, Williamsb BRG, Silvermanb RH, Halfordc W, Carra DJJ . Dichotomy between survival and lytic gene expression in RNase L- and PKR-deficient mice transduced with an adenoviral vector expressing murine IFN-b following ocular HSV-1 infection. Exp Eye Res 2005; 80: 167–173.

    Article  Google Scholar 

  9. Lai L-J, Xiao X, Wu JH . Inhibition of corneal neovascularization with endostatin delivered by adeno-associated viral (AVV) vector in a mouse corneal injury model. J Biomed Sci 2007; 14: 313–322.

    Article  CAS  Google Scholar 

  10. Porteus MH, Connelly JP, Pruett SM . A look to future directions in gene therapy research for monogenic diseases. PLoS Genet 2006; 2: 1285–1292.

    Article  CAS  Google Scholar 

  11. Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI . Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS ONE 2006; 20: 1–8.

    Google Scholar 

  12. Fattal E, Bochot A . Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Adv Drug Deliver Rev 2006; 58: 1203–1223.

    Article  CAS  Google Scholar 

  13. Sánchez A, Alonso MJ . Nanoparticular carriers for ocular drug delivery. In: Torchilin VP (ed.). Nanoparticulates as Drug Carriers. Imperial College Press: London, UK, 2006, pp 649–673.

    Chapter  Google Scholar 

  14. Calvo P, Thomas C, Alonso MJ, Vila-Jato JL, Robinson JR . Study of the mechanism of interaction of poly-ɛ-caprolactone nanocapsules with the cornea by confocal laser scanning microscopy. Int J Pharm 1994; 103: 283–291.

    Article  CAS  Google Scholar 

  15. De Campos AM, Diebold Y, Carvalho ELS, Sánchez A, Alonso MJ . Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate and cellular toxicity. Pharm Res 2004; 21: 803–810.

    Article  CAS  Google Scholar 

  16. Losa C, Alonso MJ, Vila-Jato JL, Orallo F, Martínez J, Saavedra JA et al. Reduction of cardiovascular size effects associated with ocular administration of metipranolol by inclusion in polymeric nanocapsules. J Ocul Pharmacol Ther 1992; 8: 191–198.

    Article  CAS  Google Scholar 

  17. Fagerholm P . Endogenous hyaluronan in the anterior segment of the eye. Prog Retin Eye Res 1996; 15: 281–296.

    Article  CAS  Google Scholar 

  18. Aragona P . Hyaluronan in the treatment of ocular surface disorders. In: Garga HG, Hales CA (eds.). Chemistry and Biology of Hyaluronan. Elsevier Ltd.: Oxford, UK, 2004, pp 529–551.

    Chapter  Google Scholar 

  19. Menzel EJ, Farr C . Hyaluronidase and its substrate hyaluronate: biochemistry, biological activities and therapeutic uses. Cancer Lett 1998; 131: 3–11.

    Article  CAS  Google Scholar 

  20. Zhu S-N, Nölle B, Duncker G . Expression of adhesion molecule CD44 in human corneas. Br J Ophthalmol 1997; 81: 80–84.

    Article  CAS  Google Scholar 

  21. Lerner LE, Schwartz DM, Hwang DG, Howes L, Stern R . Hyaluronan and CD44 in the human cornea and conjunctiva. Exp Eye Res 1998; 67: 481–484.

    Article  CAS  Google Scholar 

  22. Alonso MJ, Sánchez A . The potential of chitosan in ocular drug delivery. J Pharm Pharmacol 2003; 55: 1451–1463.

    Article  CAS  Google Scholar 

  23. De Campos A, Sánchez A, Gref R, Calvo P, Alonso MJ . The effect of a PEG vs a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci 2003; 20: 73–81.

    Article  CAS  Google Scholar 

  24. Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ . Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 1997; 63: 125–132.

    Article  CAS  Google Scholar 

  25. De la Fuente M, Seijo B, Alonso MJ . Novel hyaluronan based nanocarriers for transmucosal delivery of macromolecules (accepted, doi:10.1002/mabi.200700190).

  26. Hornof M, Toropainen E, Urtti A . Cell culture models of the ocular barriers. Eur J Pharm Biopharm 2005; 60: 207–225.

    Article  CAS  Google Scholar 

  27. Toropainen E, Hornof M, Kaarniranta K, Johansson P, Urtti A . Corneal epithelium as a platform for secretion of transgene products after transfection with liposomal gene eyedrops. J Gene Med 2007; 9: 208–216.

    Article  CAS  Google Scholar 

  28. Calvo P, Alonso MJ, Vila-Jato JL, Robinson JR . Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J Pharm Pharmacol 1996; 48: 1147–1152.

    Article  CAS  Google Scholar 

  29. Rabinovich-Guilatt L, Couvreur P, Lambert G, Dubenert C . Cationic vectors in ocular drug delivery. J Drug Target 2004; 12: 623–633.

    Article  CAS  Google Scholar 

  30. Toropainen E, Ranta V-P, Talvitie A, Suhonen P, Urtti A . Culture model of human corneal epithelium for prediction of ocular drug absorption. Invest Ophthalmol Vis Sci 2001; 42: 2942–2948.

    CAS  PubMed  Google Scholar 

  31. Köping-Höggård M, Vårum KM, Issa M, Danielsen S, Christensen BE, Stokke BT et al. Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Therapy 2004; 11: 1441–1452.

    Article  Google Scholar 

  32. Richardson SCW, Kolbe HVJ, Duncan R . Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm 1999; 178: 231–243.

    Article  CAS  Google Scholar 

  33. Evanko SP, Wight TN . Intracellular localization of hyaluronan in proliferating cells. J Histochem Cytochem 1999; 47: 1331–1341.

    Article  CAS  Google Scholar 

  34. Duverger E, Pellerin-Mendes C, Mayer R, Roche AC, Monsigny M . Nuclear import of glycoconjugates is distinct from the classical NLS pathway. J Cell Sci 1995; 108: 1325–1332.

    CAS  PubMed  Google Scholar 

  35. Ito T, Iida-Tanaka N, Niidome T, Kawano T, Kubo K, Yoshikawa K et al. Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: protection from non-specific interactions, adhesion to targeted cells and transcriptional activation. J Control Release 2006; 112: 382–388.

    Article  CAS  Google Scholar 

  36. De la Fuente M, Seijo B, Alonso MJ . Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy (in press).

  37. Culty M, Nguyen HA, Underhill CB . The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell Biol 1992; 116: 1055–1062.

    Article  CAS  Google Scholar 

  38. Schwartz DM, Jumper MD, Lui G-M, Dang S, Schuster S, Stern R . Corneal endothelial hyaluronidase: a role in anterior chamber hyaluronic acid catabolism. Cornea 1997; 16: 188–191.

    Article  CAS  Google Scholar 

  39. Csoka AB, Frost GI, Stern R . The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol 2001; 20: 499–508.

    Article  CAS  Google Scholar 

  40. Masuda I, Matsuo T, Yasuda T, Matsuo N . Gene transfer with liposomes to the intraocular tissues by different routes of administration. Invest Ophthalmol Vis Sci 1996; 37: 1914–1920.

    CAS  PubMed  Google Scholar 

  41. Liaw J, Chang SF, Hsiao FC . In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) polymeric micelles. Gene Therapy 2001; 8: 999–1004.

    Article  CAS  Google Scholar 

  42. Janes K, Alonso MJ . Depolymerized chitosan nanoparticles for protein delivery: preparation and characterization. J Appl Polym Sci 2003; 88: 2769–2776.

    Article  CAS  Google Scholar 

  43. De Belder AN, Wik KO . Preparation and properties of fluorescein-labelled hyaluronate. Carbohydr Res 1975; 44: 251–257.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Spanish Ministry of Science and Technology (MAT 2004-04792-C02-02; NAN 2004-09230-C04-04). The first author acknowledges a grant from the Spanish Government (FPU-MEC). We thank Elisa Toropainen and Margit Hornof for their help in the development of the HCE model, and Rafael Romero for his help with the manipulation of animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Fuente, M., Seijo, B. & Alonso, M. Bioadhesive hyaluronan–chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther 15, 668–676 (2008). https://doi.org/10.1038/gt.2008.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.16

Keywords

This article is cited by

Search

Quick links