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In plant innate immunity, the surface-exposed leucine-rich

repeat receptor kinases EFR and FLS2 mediate recognition of

the bacterial pathogen-associated molecular patterns EF-Tu

and flagellin, respectively. We identified the Arabidopsis

stromal-derived factor-2 (SDF2) as being required for EFR

function, and to a lesser extent FLS2 function. SDF2 resides

in an endoplasmic reticulum (ER) protein complex with the

Hsp40 ERdj3B and the Hsp70 BiP, which are components of

the ER-quality control (ER-QC). Loss of SDF2 results in ER

retention and degradation of EFR. The differential require-

ment for ER-QC components by EFR and FLS2 could be

linked to N-glycosylation mediated by STT3a, a catalytic

subunit of the oligosaccharyltransferase complex involved

in co-translational N-glycosylation. Our results show that

the plasma membrane EFR requires the ER complex SDF2–

ERdj3B–BiP for its proper accumulation, and provide a

demonstration of a physiological requirement for ER-QC in

transmembrane receptor function in plants. They also pro-

vide an unexpected differential requirement for ER-QC and

N-glycosylation components by two closely related receptors.
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Introduction

Plants initially sense microbes through perception of

pathogen (or microbe)-associated molecular patterns

(PAMPs/MAMPs) by pattern-recognition receptors (PRRs)

located on the cell surface leading to PAMP-triggered immu-

nity (PTI) (Jones and Dangl, 2006; Zipfel, 2008). Arabidopsis

thaliana detects a variety of PAMPs including fungal chitin,

and bacterial flagellin and EF-Tu, or their peptide surrogates

flg22 and elf18, respectively (Gomez-Gomez and Boller, 2000;

Zipfel et al, 2006). Although recognition of fungal chitin and

of an unknown bacterial PAMP depend on CERK1, a LysM

domain receptor kinase (LysM-RK) (Miya et al, 2007; Wan

et al, 2008; Gimenez-Ibanez et al, 2009), the related leucine-

rich repeat receptor kinases (LRR-RKs) FLS2 and EFR are the

PRRs for flagellin and EF-Tu, respectively. The LRR-RK BAK1

is rapidly recruited by FLS2 in a ligand-dependent manner to

initiate downstream signalling (Chinchilla et al, 2007; Heese

et al, 2007). Flagellin and EF-Tu recognition leads to MAP

kinase activation, defence gene induction, production of

reactive oxygen species in an oxidative burst, callose deposi-

tion, synthesis of the defence hormone salicylic acid (SA) and

seedling growth inhibition (SGI) (Schwessinger and Zipfel,

2008). PAMP treatment leads to enhanced resistance to

adapted pathogens (Zipfel et al, 2004, 2006; Ferrari et al,

2007), whereas defects in PAMP recognition lead to enhanced

susceptibility to adapted and non-adapted pathogens (Zipfel

et al, 2004, 2006; de Torres et al, 2006; Hann and Rathjen,

2007), showing a contribution of PTI to both basal and non-

host resistance. Pathogenic virulence effectors evolved to

directly target PRRs and their associated proteins to cause

disease (Göhre et al, 2008; Shan et al, 2008; Xiang et al, 2008;

Gimenez-Ibanez et al, 2009), further showing the importance

of PTI for plant innate immunity.

FLS2 and EFR are transmembrane glycoproteins that need

to transit through the secretory pathway to mature and reach

their final destination at the plasma membrane. After trans-

location into the endoplasmic reticulum (ER), newly synthe-

sised polypeptides interact with different chaperones that will

assist them to fold properly and to avoid aggregation in a

process called ER-quality control (ER-QC) (Anelli and Sitia,

2008). Unfolded proteins are retained in the ER until they are

properly folded, or ultimately destroyed by ER-associated

degradation (ERAD) in the cytosol (Vembar and Brodsky,

2008). Most of our knowledge on ER-QC is based on studies

in yeast and mammals, while plant ER-QC mechanisms are

still not well characterized (Vitale and Boston, 2008). Studies

in mammals and yeast revealed that ER-QC relies on three

main different pathways. The first, is specific to glycoproteins

and depends on the folding sensor UDP-glucose:glycoprotein

glucosyltransferase (UGGT) plus the lectins calnexin (CNX)

and calreticulin (CRT) (Williams, 2006). The second relies on

retention of misfolded proteins by the luminal-binding pro-

tein BiP, a member of the Hsp70 family of chaperones. In this

system, the ER-localised co-chaperone Hsp40 protein ERdj3
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first directly binds to the misfolded substrate. ERdj3 then

recruits BiP and activates BiP ATPase activity present in its

N-terminus, leading to interaction of the C-terminal region of

BiP with the substrate and the release of ERdj3b (Jin et al,

2008, 2009). The BiP retention system acts independently of,

or subsequent to, the CNX/CRT cycle (Buck et al, 2007). The

third system involves the formation of disulfide bonds

between free thiol groups in non-native proteins by protein

disulfide isomerases and thiol oxidoreductases (Reddy et al,

1996; Anelli et al, 2003, 2007).

Despite the major contribution of PTI to plant innate

immunity, our knowledge of the molecular events underlying

PRR biogenesis, PAMP perception by PRRs, and downstream

signalling is limited. We report here on an ER protein com-

plex comprising stromal-derived factor-2 (SDF2), ERdj3B and

BiP required for the proper biogenesis of the PRR EFR, and

reveal an unexpected differential requirement of EFR and

FLS2 for ER-QC and glycosylation components.

Results and discussion

Identification of sdf2 mutants in a forward-genetic

screen for Arabidopsis elf18-insensitive mutants

To identify new regulators of EFR function in Arabidopsis, we

used the property of elf18 to cause SGI (Zipfel et al, 2006)

(Figure 1A) and screened B35 000 T-DNA activation-tagging

transgenic lines and B137 500 ethyl methane sulphonate

(EMS)-mutagenised M2 seeds (all in Col-0 background). We

identified 160 elf18-insensitive (elfin) mutants. Sequencing

the EFR locus in these mutants identified 57 efr mutants

corresponding to 37 different alleles (data not shown).

We isolated three allelic elfin mutants at a new locus by

screening the activation-tagging transgenic population.

Genetic analyses indicated that the mutation is recessive,

suggesting that the phenotype is conferred by a loss-

of-function mutation. All three mutants carried the same

T-DNA insertion at the At2g25110 locus encoding the

Arabidopsis orthologue of the murine stromal cell-derived

factor-2 gene, AtSDF2, and were therefore named sdf2-1

(Figure 1B–D; Supplementary Figure 1). In addition, an inde-

pendent homozygous T-DNA insertion line (SALK_141321),

sdf2-2, and two further sdf2 alleles identified in the EMS

elfin collection by DNA sequencing (sdf2-3 and sdf2-4) were

similarly impaired in elf18-triggered SGI (Figure 1B–D;

Supplementary Figure 1). No developmental or growth defects

were observed in the sdf2 mutants under our growth conditions

(data not shown). Finally, transgenic sdf2-2 seedlings expres-

sing the SDF2–3xHA fusion protein under the control of the

SDF2 promoter regained elf18 sensitivity (Figure 1D;

Supplementary Figure 1), showing that mutation in SDF2 is

responsible for the observed elfin phenotype.

AtSDF2 is a single copy gene in Arabidopsis and clear

orthologs exist in all eukaryotes, except fungi (Supple-

mentary Figure 2). Although SDF2 is highly conserved in

eukaryotes, no mutant phenotype has been reported in any

organism so far. AtSDF2 is a small protein of 218 amino acids

(24 kDa) consisting of a 23 amino-acid (aa) predicted

N-terminal signal peptide (SP) and three repeats of the MIR

domain (Figure 1C) found in mannosyltransferases, the
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Figure 1 Identification of sdf2 mutants. (A) Growth phenotype of elfin (elf18-insensitive) seedlings. Five-day-old Arabidopsis seedlings were
covered with liquid MS medium containing 1% sucrose (MS 1%) supplemented with 50 nM elf18 peptide. Seedling growth inhibition was
scored qualitatively 1 week after treatment. The red arrowhead indicates an elfin mutant. (B) Schematic representation of the SDF2 gene
(At2g25110) with positions of the T-DNA insertions and point mutations. Exons are depicted as black boxes. (C) SDF2 protein organisation. Top,
schematic representation of SDF2 with the predicted signal peptide (SP) and MIR domains represented as black boxes. Bottom, SDF2 protein
sequence. SP, dashed underlines; MIR domains, underlined. The positions of the sdf2 EMS alleles are indicated in bold. (D) Seedling growth
inhibition triggered by elf18 in wild type (Col-0) and sdf2 alleles. Five-day-old Arabidopsis seedlings were transferred to liquid MS 1% without
(white bars) or with 100 nM elf18 (black bars). Seedling fresh weight was quantified 1 week after treatment. Sdf2C corresponds to sdf2-2/
SDF2p::SDF2-3xHA. Results are average±s.e. (n¼ 6). Similar results were observed in at least three independent experiments.
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inositol-3-phosphate receptor (IP3R) and the ryanodine

receptor (RyR) (Ponting, 2000). Although many eukaryotic

proteins contain MIR domains, SDF2 is the only MIR

domain-containing protein in plants.

Loss of SDF2 strongly affects EFR function

As SDF2 is required for elf18-triggered SGI, we tested whether

it is involved in other PTI responses. We first tested whether

sdf2-2 was also impaired in the flg22-triggered SGI. Flg22

sensitivity over a range of concentrations was slightly re-

duced in sdf2-2 seedlings as compared with wild type in this

assay, but to a lesser extent than with elf18 (Figure 2A). Elf18

and flg22 typically induce an oxidative burst and MAP kinase

activation within minutes of treatment in wild-type plants

(Figure 2B and C). Although the oxidative burst induced by

elf18 was strongly diminished in sdf2-2 leaves, it was less

reduced after flg22 treatment (Figure 2B). In contrast, the

oxidative burst triggered by the fungal PAMP chitin, which

depends on the LysM-RK CERK1 (Miya et al, 2007; Wan et al,

2008), was not impaired at all in sdf2-2 mutants (Figure 2B),

indicating that SDF2 is not required for chitin responses.

Activation of MAP kinases 4 and 6 (MPK4 and MPK6) was

almost completely abolished after elf18 treatment, whereas

weakly decreased in response to flg22 in sdf2-2 seedlings,

when compared with wild type (Figure 1C).

Loss of SDF2 leads to enhanced disease susceptibility

to bacteria and fungi

Next, we tested whether SDF2 is required for innate immu-

nity. First, we compared the ability of elf18 and flg22 to

induce resistance to the virulent bacterial strain Pseudomonas

syringae pv. tomato DC3000 (Pto DC3000). Elf18- and flg22-

induced resistances were both reduced in sdf2-2 leaves

compared with wild type (Supplementary Figure 3). Spray-

inoculated fls2c mutant plants are more susceptible to Pto

DC3000 than wild type, whereas efr-1 plants are not

(Figure 3A). Sdf2-2 plants were however hyper-susceptible

to Pto DC3000, comparably to fls2c plants (Figure 3A). PTI

defects can be subtle, but can be detected more sensitively

with weakly virulent bacterial strains lacking effector mole-

cules. The bacterial effectors AvrPto and AvrPtoB directly

target FLS2, EFR and BAK1 to suppress PTI (Göhre et al,

2008; Shan et al, 2008; Xiang et al, 2008), whereas the

phytotoxin coronatine (COR) suppresses PAMP-induced sto-

matal closure, allowing bacterial entry into the leaf apoplast

(Melotto et al, 2006). When spray-inoculated, both Pto

DC3000 COR� and Pto DC3000 DavrPto/DavrPtoB strains

caused reduced disease symptoms and multiplied less than

Pto DC3000 on wild-type plants (B1 and 2 log units, respec-

tively) (Figure 3B and C). However, Arabidopsis efr-1, fls2c

and fls2c efr-1 mutants displayed more severe disease symp-

toms and allowed more bacterial growth when spray-infected

with these strains (Figure 3B and C), especially in the case of

Pto DC3000 DavrPto/DavrPtoB that grew almost as much as

Pto DC3000 in these lines (Figure 3C). We sometimes

observed that efr-1 and fls2c efr-1 were more susceptible to

Pto DC3000 strains compared with wild type and fls2c,

respectively (data not shown), suggesting that FLS2 and

EFR can act additively in perception of this bacterium. We

found that, although sdf2-2 plants were not substantially
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Figure 2 Sdf2 mutant is compromised in PTI responses triggered by elf18 and, to a certain extend, flg22. (A) Seedling growth inhibition
triggered by elf18 or flg22 in wild-type Col-0 (white bars) and sdf2-2 (black bars) seedlings. Five-day-old Arabidopsis seedlings were transferred
to liquid MS 1% supplemented with the indicated concentrations of peptides. Seedling fresh weight was quantified 1 week after treatment.
Results are average±s.e. (n¼ 6). (B) Oxidative burst triggered by 100 nM elf18, 100 nM flg22 or 100 mg/ml chitin in wild-type Col-0 (blue) and
sdf2-2 (red) leaf discs measured in relative light units (RLU). Results are average±s.e. (n¼ 12). (C) Activation of the MAP kinases MPK4 and
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affected in their flg22 responses (Figure 2), they were hyper-

susceptible to both Pto DC3000 COR� and Pto DC3000

DavrPto/DavrPtoB to a similar level as fls2c efr-1 (Figure 3B

and C). Fls2 and efr mutants do not display enhanced

susceptibility to Pto DC3000 when infiltrated into the leaves

(Zipfel et al, 2004, 2006). Unexpectedly, we observed that

sdf2-2 was however more susceptible to Pto DC3000 after this

infection procedure (Figure 3D). FLS2, but not EFR, is

involved in the non-host resistance to the non-adapted bac-

terial strain Pseudomonas syringae pv. tabaci 6605 (Li et al,

2005) (Figure 3E). Surprisingly, we found that the sdf2-2

mutation allowed growth of this strain to similar levels as

on fls2c and fls2c efr-1 plants (Figure 3E). Therefore, our

results clearly show that sdf2 mutants are more susceptible to

bacterial infection than efr mutants.

We tested whether the enhanced disease susceptibility of

sdf2-2 could result from a defect in SA signalling, as SA

positively regulates resistance to Pseudomonas, and as the

SDF2 gene was identified earlier as a potential direct target of

the SA signalling regulator NPR1 (Wang et al, 2005). SDF2

was however not required for secretion of the PR1 protein (a

marker of NPR1-mediated responses) and bacterial resistance

induced by the SA analogue benzothiadiazole (BTH)

(Supplementary Figure 4). Thus, the hyper-susceptibility of

sdf2-2 plants to bacteria is not due to a defect in SA-mediated

resistance. SDF2 was also not required for the immunity

triggered by recognition of the bacterial effectors AvrRpt2

and AvrRps4 (Supplementary Figure 5). Although sdf2-2 was

not affected in chitin sensitivity, we tested its susceptibility to

fungal pathogens. Notably, sdf2-2 was more susceptible

to the virulent necrotrophic fungi Alternaria brassicicola

and Plectosphaerella cucumerina (Figure 4). Thus, SDF2 is

required for EFR, and to a lesser extent for FLS2, function. In

addition, the enhanced disease susceptibility phenotype of

sdf2-2 to bacteria and fungi suggests that SDF2 may have an

important function in regulating other, yet unknown, PRRs

3

4

5

6

7

8

9

P
to

 D
C

30
00

lo
g

(c
fu

/c
m

2 )

C
ol

-0
fls

2c
ef

r-
1

fls
2c

 e
fr

-1
sd

f2
-2

C
ol

-0
fls

2c
ef

r-
1

fls
2c

 e
fr

-1
sd

f2
-2

C
ol

-0
fls

2c
ef

r-
1

fls
2 

ce
fr

-1
sd

f2
-2

C
ol

-0
fls

2c
ef

r-
1

fls
2c

 e
fr

-1
sd

f2
-2

C
ol

-0
fls

2c
ef

r-
1

fls
2c

 e
fr

-1
sd

f2
-2

3

4

5

6

7

8

9

P
to

 D
C

30
00

 C
O

R
-

lo
g

(c
fu

/c
m

2 )

3

4

5

6

7

8

9

P
to

 D
C

30
00

Δa
vr

P
to

/Δ
av

rP
to

B
lo

g
(c

fu
/c

m
2 )

3

4

5

6

7

8
P

to
 D

C
30

00
L

o
g

(c
fu

/c
m

2 )

P
ta

 6
60

5
L

o
g

(c
fu

/c
m

2 )

3

4

5

6

7

8

* **
* ** * * **

*

* **

Figure 3 Sdf2 mutant is more susceptible to bacterial pathogens. (A–C) Pre-invasive bacterial susceptibility assay. Five-week-old Col-0, fls2c,
efr-1, fls2c efr-1 and sdf2-2 plants were sprayed with Pseudomonas syringae pv. tomato (Pto) DC3000 (A), Pto DC3000 COR� (B) or Pto DC3000
DavrPto/DavrPtoB (C) (OD600 of 0.02, supplemented with 0.04% Silwett L-77) and covered for the remaining of the experiment. Bacterial
counts were assessed at 3 dpi. Results are average±s.e. (n¼ 8). (D, E) Post-invasive bacterial susceptibility assay. Leaves of 5-week-old plants
were infiltrated with Pto DC3000 (OD600¼ 0.0002) (D) or Pseudomonas syringae pv. tabaci (Pta) 6005 (OD600¼ 0.002) (E). Bacterial
populations were determined at 3 dpi. Results are average±s.e. (n¼ 4). For all above experiments, similar results were observed in at least
three independent experiments and asterisks indicate Po0.05 by t-test.

Col-0
5

7

4
3

6
*

efr-1

sdf2-2

A
v.

 le
si

o
n

 d
ia

m
et

er
 (

m
m

)

1

3
2

Col-0 efr-1
0

1

2

3

4

D
is

ea
se

 r
at

in
g *

ab bc
c

0

sdf2-2

Figure 4 Sdf2 mutant is more susceptible to fungal pathogens.
(A) Susceptibility to A. brassicicola. Left, macroscopic symptoms
and disease rating at 5 dpi. Right, lesion diameter at 5 dpi. Similar
results were observed in four independent experiments and aster-
isks indicate Po0.05 by one-way ANOVA with Bonferroni post hoc
test. (B) Susceptibility to P. cucumerina. Left, macroscopic symp-
toms 14 dpi. Right, average disease rating (DR±s.d.) of the
indicated genotypes at 14 dpi. DR varies between 0 (no symptoms)
and 5 (dead plants). Letters indicate Pp0.05 by ANOVA with
Bonferroni post hoc test. Data are from one of two independent
experiments that gave similar results.

EFR is controlled by an ER protein complex
V Nekrasov et al

&2009 European Molecular Biology Organization The EMBO Journal VOL 28 | NO 21 | 2009 3431



involved in bacterial and fungal recognition, or conceivably

other components of plant defence.

SDF2 localises to the ER in a complex with ERdj3B

and BiP

Plant SDF2 proteins contain a predicted SP, but no ER or Golgi

retention signals, whereas SDF2 proteins from other eukar-

yotes carry a C-terminal K/HDEL motif (Supplementary

Figure 2) classically associated with the retention of soluble

proteins in the ER. To localise AtSDF2 within the plant cell,

we transiently co-expressed AtSDF2–eYFP fusion protein

under the control of its native promoter with the ER marker

ER-CK (35S::CFP-HDEL) (Nelson et al, 2007) in Nicotiana

benthamiana. Confocal microscopy revealed overlapping ER

localisation for both expressed proteins (Figure 5A). The

same ER localisation pattern was observed in sdf2-2 plants

transgenic for AtSDF2p::SDF2-eYFP (Figure 5B), suggesting

that SDF2 localises to the ER.

As SDF2 does not possess an ER retention signal, its ER

localisation could be due to its interaction with ER resident

proteins. To test this hypothesis, we searched for SDF2

interactors in planta. Immunoprecipitation of proteins asso-

ciated with SDF2–3xHA and subsequent mass spectrometry

analysis revealed the soluble luminal protein ERdj3B

(At3g62600) as the major SDF2 interactor (Supplementary

Figure 6). ERdj3B, an ER-localised member of the HSP40

co-chaperone family, is one of the two Arabidopsis orthologs

of the mammalian ERdj3 and yeast Scj1p proteins (Yamamoto

et al, 2008). The SDF2–ERdj3B interaction was confirmed in

planta with a specific anti-ERdj3B antibody (Figure 5C).

Although ERdj3B directly interacted with SDF2 in the yeast

two-hybrid (Y2H) system, its Arabidopsis paralog ERdj3A did

not (Figure 5D; Supplementary Figures 7 and 8). In mam-

mals, SDF2L exists in complex with ERdj3 and the luminal-

binding protein BiP, an ER-localised member of the HSP70

family of chaperones (Meunier et al, 2002; Bies et al, 2004;

Jin et al, 2008). Similarly, we found that the SDF2 immuno-

complex also contains BiP in Arabidopsis (Figure 5C). There

are three BiP isoforms in Arabidopsis (BiP1–3) (Noh et al,

2003). In Y2H assays, BiP1–3 interacted with ERdj3B, as

well as with ERdj3A, but not with SDF2 (Figure 5D;

Supplementary Figure 7). These results indicate that, in

Arabidopsis, SDF2 exists in a complex with ERdj3B and

BiP1–3, in which ERdj3B may act as a bridge between SDF2

and BiP. Notably, SDF2 was not found in complex with

other ER resident proteins under the conditions tested

(Supplementary Figures 8 and 9), showing that the associa-

tion of SDF2 with ERdj3B and BiP was specific. As both SDF2

and ERdj3B lack an ER retention signal, their ER localisation

might be due to interaction with BiPs. Three erdj3b alleles

were independently identified by map-based cloning and

sequencing of elfin mutants (Figure 6A; Supplementary
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Figure 10). Analysis of a T-DNA null allele later confirmed

that erdj3b-1 plants were strongly affected in the elf18-trig-

gered SGI, oxidative burst and MAP kinase activation, resem-

bling sdf2-2 plants (Figures 6B and C and 2C). Erdj3b-1 was

also weakly impaired in flg22 responses (Figures 6B and C

and 2C) but not in chitin responses (Supplementary Figure

11). These results reveal that ERdj3B is also required for EFR

and to a lesser extent FLS2 function.

The unfolded protein response (UPR) is activated by con-

ditions that overload the ER-QC (Vembar and Brodsky, 2008;

Vitale and Boston, 2008). Interestingly, we found that both

sdf2-2 and erdj3b-1 were more sensitive to the drug tunica-

mycin, an inhibitor of N-glycosylation that triggers the UPR

(Supplementary Figure 13), providing additional evidence for

SDF2 and ERdj3B being involved in ER-QC. We also analysed

functions for BiP1–3 in elf18 responses. Single bip1, bip2 or

bip3 mutants all showed wild-type levels of elf18 responses

(Supplementary Figure 12). Although the single bip2 mutant

was shown earlier to be fully impaired in SA-induced resis-

tance (Wang et al, 2005), BiP1 and BiP2 are highly similar

and might be functionally redundant, whereas BiP3 is more

distantly related (Noh et al, 2003). We therefore generated a

bip1-1 bip2-1 double mutant, which showed a wild-type

response to elf18 as well (Supplementary Figure 12).

Silencing of all three Arabidopsis BiP genes recently proved

to be lethal (Hong et al, 2008) thus preventing us from testing

the possible requirement of all three BiPs in elf18 responses.

SDF2 is required for EFR biogenesis

On the basis of its association with ERdj3B and BiP, we

hypothesised that SDF2 is also part of the ER-QC. We there-

fore tested whether SDF2 could regulate EFR directly. As EFR

gene expression was not affected in sdf2-2 (Supplementary

Figure 14A), we next determined EFR protein levels in vivo.

We generated efr-1, sdf2-2 and efr-1 sdf2-2 lines transgenic for

the EFRp::EFR-eGFP-HA construct to enable detection of phy-

siological levels of EFR protein. Expression of the tagged EFR

complemented the efr-1 mutation (data not shown) and we

detected a single band running at B175 kDa, the expected

size for the glycosylated form of EFR-eGFP-HA in several

independent primary transformants (Supplementary Figure

14B). However, the EFR protein level in total extracts was

strongly reduced in the efr-1 sdf2-2 and sdf2-2 backgrounds

(Supplementary Figure 14B; Figure 7A and B), showing a

requirement of SDF2 for EFR protein accumulation. The

enzyme endoglycosidase H (Endo H) cleaves off ER-specific

glycans, whereas complex glycans that are matured during

their transit through the Golgi apparatus are resistant to Endo

H cleavage. Therefore, Endo H treatment allows the differ-

entiation of plasma membrane localised glycoproteins from

their ER localised counterparts. Using Endo H assays, we

found that, although transgenic sdf2-2 plants express some

levels of EFR protein, it is completely cleaved by Endo H

(Figure 7C), revealing that the expressed EFR protein is

retained in the ER. In contrast, most of the EFR protein
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expressed in the efr-1 background is resistant to Endo H,

revealing its localisation at the plasma membrane.

Consistently, cross-linking and binding studies with radiola-

belled elf18 peptide indicated that sdf2-2 has fewer binding

sites than wild type (Supplementary Figure 15A), corroborat-

ing the reduced elf18 sensitivity of the sdf2-2 mutant (Figures

1 and 2). Although FLS2 accumulated to similar levels in

sdf2-2 and WT total extracts (Figure 7D), half of FLS2 seems

to be retained in the ER in sdf2-2 (Figure 7E). This is

consistent with the decreased flg22 sensitivity and binding

of sdf2-2 (Figure 2A and B; Supplementary Figures 3 and 15).

Interestingly, treatment with kifunensine, an inhibitor of

ER mannosidase I that prevents ER exit and consequently

ERAD (Tokunaga et al, 2000), increased EFR protein levels in

sdf2-2 (Figure 7F), whereas the 26S proteasome inhibitor

MG132 had no effect (Supplementary Figure 16). Despite

increased levels after kifunensine treatment, Endo H assays

revealed that EFR is still retained in the ER in the sdf2-2

background (Figure 7F). These results revealed that EFR is

actively degraded in sdf2-2 and that this degradation occurs

outside of the ER. Future work will be required to determine

whether EFR is degraded in the cytosol as most ERAD

substrates or in the vacuole as recently shown for a subset

of plant ERAD substrates (Foresti et al, 2008).

EFR function specifically depends on SST3A-mediated

N-glycosylation

An intriguing question is why FLS2 function is affected less

than EFR by mutations in ER-QC components, whereas

CERK1 function is not affected at all. This is particularly

surprising as EFR and FLS2 are structurally similar and

belong to the subfamily XII of LRR-RKs. One possible ex-

planation for the apparent specificity could be due to a

receptor level threshold required for responsiveness. EFR

protein levels might be much lower than FLS2 protein levels.

Therefore, mutations in ER-QC components would reduce

EFR protein amounts to a level that severely impacts elf18

responses, whereas FLS2 protein amounts would still be

sufficient to ensure flg22 responses. However, expression of

EFR under the control of the FLS2 promoter in efr-1 and efr-1

sdf2-2 did not revert the reduced EFR accumulation because

of the sdf2 mutation (Figure 7A). Therefore, the requirement

of SDF2 for EFR is not due to a decreased protein expression

compared with FLS2, and might rather be due to intrinsic

properties of EFR.

Notably, we have identified in our elfin population alleles

of STT3A (Staurosporin and temperature sensitive-3A), cod-

ing for a component of the ER oligosaccharyltransferase

(OST) complex involved in N-glycosylation of nascent
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proteins (Koiwa et al, 2003). Unexpectedly, the characterisa-

tion of stt3a mutants revealed that STT3a-mediated N-glyco-

sylation is indispensable for EFR, but dispensable for FLS2

function (Figure 8; Supplementary Figure 17). Although plant

extracts of stt3a mutants still contain glycosylated proteins,

the pattern of N-glycosylation is different (Koiwa et al, 2003),

suggesting that only a subset of proteins are STT3a sub-

strates. In mammals, STT3a is important for co-translational

N-glycosylation of nascent proteins, whereas STT3b rather

has a function in post-translational N-glycosylation

(Ruiz-Canada et al, 2009). Arabidopsis stt3b mutants were

not affected in elf18- or flg22-triggered SGI (data not shown),

showing that STT3A is the key glycosylation determinant for

EFR. Although both EFR and FLS2 carry numerous putative

glycosylation sites, they may have different glycosylation

states (e.g. position, number of glycosylated sites, glycan

structures) that could impact their interaction with and

dependence on the ER-QC machinery.

A subset of ER-QC components is specifically required

for the biogenesis of transmembrane PRRs

In addition to reporting a function for SDF2 and ERdj3B in

plant innate immunity, we and others have found that the

Arabidopsis CRT3 and UGGT are also required for EFR

function, as loss of either CRT3 or UGGT leads to complete

loss of EFR accumulation (Li et al, 2009; Saijo et al, 2009).

Altogether, this shows that EFR relies on both the CNX/CRT3

and SDF2/ERdj3B/BiP systems for its proper function. BiP

and CRT exist in an abundant large complex in tobacco

(Denecke et al, 1995; Crofts et al, 1998). CRT3, SDF2,

ERdj3B, BIP and potentially UGGT may therefore exist in

the same complex to regulate proper EFR folding. Such large

chaperone complexes have been reported in mammals

(Meunier et al, 2002), but we have failed so far to detect

CRT3 or UGGT in the SDF2 immunocomplex. Further work is

therefore required to investigate the existence of such large

complex.

Our infection data strongly suggest that SDF2 may also

regulate other unknown PRRs involved in bacterial and

fungal recognition, or conceivably other defence compo-

nents, whose identity will be interesting to investigate in

future experiments. The specificity of the reported mutations,

however, show that SDF2 and ERdj3B are specifically in-

volved in plant innate immunity and clearly argues against a

general defect in protein secretion. It would be interesting to

test whether they are also having a function in other

stress responses, for example, abiotic stresses, and to identify

which other members of the Hsp70 and Hsp40 families for

example ensure folding of proteins involved in other plant

physiological functions.

This work provides the first demonstration of a require-

ment for the ER-QC in generating functional transmembrane

receptors in plants. Recent studies reported a function for the

ER-QC in retaining mutant variants of the brassinosteroid

receptor BRI1, a LRR-RK, within the ER (Jin et al, 2007;

Hong et al, 2008). However, in these studies, the function of

wild-type BRI1 was not affected by mutations in ER-QC

components. This is in clear contrast with our findings

that mutations in a subset of ER-QC components affect

wild-type EFR.

Although most cytoplasmic nucleotide-binding domain

and LRR-containing (NLR) immune receptors involved in

effector recognition rely on the HSP90–SGT1 chaperone

complex (Shirasu, 2009), we propose that a subset of sur-

face-exposed PRRs, including EFR require one or several ER

complexes comprising SDF2, ERdj3B, BiP and potentially

CRT3 and UGGT for their accumulation and subcellular

localisation. We speculate that as EFR is only found in the

Brassicaceae, whereas FLS2 has been identified in several

dicots and monocots (Takai et al, 2008; Zipfel, 2008), EFR

may have evolved more recently than FLS2, and thus its

amino-acid sequence is less capable of folding properly in the

absence of ER-QC components. It is conceivable that evolu-

tion of new recognition specificities may result in proteins

that detect novel ligands but that have not been selected for

0

20

40

60

80

100

120

0 1 10 100 1000 0 1 10 100 1000

F
re

sh
 w

ei
g

h
t

(%
 o

f 
co

n
tr

o
l)

elf18 (nM) flg22 (nM)

TAGATG

500 bp

55631

stt3a-3
ΔC2038

stt3a-2
SALK_058814

Figure 8 Stt3a affects EF-Tu but not flagellin responsiveness. (A) Schematic representation of the STT3A gene with positions of the single
nucleotide deletion and the T-DNA insertion. Exons are depicted as black boxes. stt3a-3 and stt3a-2 (Koiwa et al, 2003) are indicated.
(B) Seedling growth inhibition triggered by elf18 or flg22 in wild-type Col-0 (white bars) and stt3a-2 (black bars) seedlings. Five-day-old
Arabidopsis seedlings were transferred into liquid MS 1% supplemented with the indicated concentrations of peptides. Seedling fresh weight
was quantified 1 week after treatment. Results are average±s.e. (n¼ 6).

EFR is controlled by an ER protein complex
V Nekrasov et al

&2009 European Molecular Biology Organization The EMBO Journal VOL 28 | NO 21 | 2009 3435



high protein stability, and thus require extra ‘‘buffering’’

(Queitsch et al, 2002).

Materials and methods

Plant materials and growth
A. thaliana ecotype Columbia (Col-0) was the background for all
mutants and transgenic lines used in this study. The Arabidopsis
plants used in this study were grown as one plant per pot at 20–211C
with an 10 h photoperiod, or on plates containing MS salts medium
(Duchefa), 1% sucrose, and 1% agar with a 16 h photoperiod.

The T-DNA insertion lines SALK_141321 (sdf2-2), SALK_113364
(erdj3b-1), SALK_063999 (bip1-1), SALK_093564 (bip1-2),
SALK_47956 (bip2-1 gift from X Dong), bip3-2, GABI_075D06, and
SALK_024133 (bip3-1) were obtained from the Nottingham Arabi-
dopsis Stock Centre (Nottingham, UK). The fls2c efr-1 double
mutant was generated by crossing fls2c (Zipfel et al, 2004) with efr-1
(Zipfel et al, 2006). Primers used to genotype the T-DNA lines are
listed in Supplementary Table I.

Elfin forward-genetic screen
To isolate elf-18 insensitive (elfin) plants, we screened B35 000
T-DNA activation-tagging transgenic lines (Molinier et al, 2004) (gift
from J Molinier) and B137 500 EMS-mutagenised M2 seeds
(Tedman-Jones et al, 2008) (all in Col-0 background). Five-day-
old seedlings germinated on MS 1% agar plates were submerged
with liquid MS 1% supplemented with 50 nM elf18. At 8 to 10 days
after treatment, SGI was visually scored and putative elfin mutant
plant was transferred to the soil. Progenies of B300 putative elfin
mutants were retested in the next generation by a quantitative SGI
assay, as described in Zipfel et al (2006). At the end, 160 elfin
mutants were confirmed, including 57 that carry mutations in EFR.

The genomic DNA flanking the T-DNA insertion in the sdf2-1
mutant was cloned using thermal asymmetric interlaced-PCR
(TAIL-PCR), based on Liu et al (1995).

To identify the erdj3b-3 mutation, elfin plants in the Columbia-0
(Col-0) background were crossed to wild-type plants of the
Landsberg erecta (Ler-0) ecotype. Genomic DNA from elfin
seedlings in the segregating F2 population was extracted and used
for subsequent PCR analysis. The mutation was mapped to
chromosome III between the markers NGA6 and NGA112 using a
set of known simple sequence length polymorphism markers (data
not shown). Fine mapping delimited the mutation to a 51-kb
interval between the cleaved amplified polymorphic sequence
markers CHIII-23122 and CHI-23173. Sequencing the whole region
in the mutant identified a single-nucleotide mutation in ERdj3B
(At3g62600).

Generation of transgenic plants
SDF2p::SDF2-eYFP construct was generated by PCR amplification of
the SDF2 genomic fragment, including the promoter and the coding
region, with 50-CACCAAAATTAATTTCCATGATGTAAAATTA-30 and
50-CTTGCTGCTCTCATTAAGGG-30 primers and resulting PCR pro-
duct was cloned into the pENTRY-D/TOPO vector using the pENTR
Directional TOPO Cloning Kit (Invitrogen). The resulting clone was
sequenced and the insert transferred into the GATEWAY-compatible
vector pGWB40 (Nakagawa et al, 2007) using GATEWAY LR
CLONASE II enzyme (Invitrogen). The final construct was electro-
porated into Agrobacterium tumefaciens strain GV3101.

SDF2p::SDF2-3xHA construct was generated by PCR amplifica-
tion of the SDF2 genomic fragment, including the promoter and the
coding region, with 50-TACAATTGAAAATTAATTTCCATGATGTAAA
ATTA-30 and 50-GGATCCGAGACGCTTGCTGCTCTCATTAAGGG-30

primers. The resulting PCR product was cloned into the pGEMTeasy
vector by the T/A ligation. The clone was sequenced. The insert
was then released by digesting with MfeI and BsmBI and ligated into
the epiGreenB5 binary vector digested with EcoRI and BamHI. As a
result, the Pro35S::GUS cassette in epiGreenB5 was replaced with
SDF2p::SDF2 producing the SDF2p::SDF2-3xHA fusion.

EFRp::EFR-eGFP-HA construct has been generated as following:
the genomic fragment comprising the EFR promoter plus the coding
region was PCR-amplified from Col-0 genomic DNA using 50-ATC
CCGGGATCTAGACGATTAAGTAATTGAG-30 and 50-ATGGATCCCATA
GTATGCATGTCCGTATTTA-30 primers, and cloned into the pGEM-
Teasy vector by the T/A ligation. The resulting clone was

sequenced. The EFRp::EFR insert was further subcloned into the
epiGreenB(eGFP-HA) vector: pGEMTeasy:EFRp::EFR clone was
digested with EcoRIþ SacI and SacIþBamHI in two separate
reactions and the two released fragments of the insert were ligated
into the epiGreenB(eGFP-HA) vector, digested with EcoRI and
BamHI, using the three-way ligation method.

FLS2p::EFR-eGFP-HA construct has been generated as following:
the FLS2 promoter was PCR-amplified from Col-0 genomic DNA
using 50-ATCAATTGcccttttcggacattctaaatat-30 and 50-CATGTCGATTA
TAAAAAGATAAATCTATAGACGAAGTCATATGT-30. The EFR 50-UTR
plus the coding region were PCR-amplified from Col-0 genomic
DNA using 50-Atgacttcgtctatagatttatctttttataatcgacatgaagc-30 and
50-ATGGATCCCATAGTATGCATGTCCGTATTTA-30 primers. A fusion
between FLS2p and EFR was created using the chimeric PCR
method and the resulting PCR fragment was cloned into the
pGEMTeasy vector by the T/A ligation. The resulting clone was
sequenced. The FLS2p::EFR insert was further subcloned into the
epiGreenB(eGFP-HA) vector: pGEMTeasy:FLS2p::EFR clone was
digested with MfeIþBamHI and the released insert was ligated
into the epiGreenB(eGFP-HA) vector, digested with EcoRI and
BamHI.

epiGreenB(eGFP-HA) was constructed as following: a PCR
fragment comprising eGFP followed by a single HA tag (eGFP-
HA) was cloned into the pBin19g vector (Rivas et al, 2004) using
BamHI and XbaI restriction enzymes to replace the single HA tag
with eGFP-HA in this vector. The resulting pBin19(eGFP-HA) vector
was digested with BamHI and HindIII enzymes, and the released
fragment containing eGFP-HA-NOS was cloned into the epiGreenB5
vector using the same restriction enzymes. As a result, the 3xHA tag
in epiGreenB5 was replaced with eGFP-HA producing the epiGreen-
B(eGFP-HA) vector.

Both epiGreenB(eGFP-HA):EFRp::EFR-eGFP-HA and epiGreenB5::
SDF2p::SDF2-3xHA constructs were electroporated into A. tumefa-
ciens strain GV3101 carrying the pSOUP helper plasmid. All
constructs were transformed into relevant Arabidopsis mutant lines
using the floral dipping method (Clough and Bent, 1998). The
transformants were selected on the MS agar medium supplemented
with 10 mg/ml kanamycin in the case of SDF2p::SDF2-eYFP and
spraying soil grown seedlings with BASTA in the case of
SDF2p::SDF2-3xHA and EFRp::EFR-eGFP-HA.

PTI assays
SGI and oxidative burst assays were performed as described earlier
(Zipfel et al, 2006) except that luminescence was measured using a
Varioscan Flash plate reader. MAPK assays were performed as
described (Meskiene et al, 2003) using antibodies against MPK4 and
MPK6 (Sigma).

Infection assays
Bacterial assays were performed as described earlier (Zipfel et al,
2004). Inoculations with A. brassicicola and P. cucumerina were
performed as described earlier (Hernández-Blanco et al, 2007; van
Esse et al, 2008).

For the BTH-induced secretion of PR-1, intercellular wash fluid
was collected as described earlier (Wang et al, 2005) from equal
amounts of leaves treated for 24 h with water or BTH (300mM). For
BTH-induced resistance, water or BTH (300mM; black bars) were
sprayed onto leaves from 5-week-old plants 24 h before infiltrating
Pto DC3000 (OD600¼ 0.0002). Bacterial populations were
determined at 2 dpi.

Transient expression in N. benthamiana
A. tumefaciens strains were grown in L medium supplemented
with appropriate antibiotics overnight. Next morning cultures were
spun down and resuspended in 10 mM MgCl2 to OD600¼ 0.6.
A. tumefaciens strains carrying ER-CK (pBin20:35S::CFP-HDEL) and
pGWB40:SDF2p::SDF2-eYFP were mixed 1:1 and syringe-infiltrated
into 3-week-old N. benthamiana leaves. The confocal analysis was
performed at 2 dpi.

Confocal microscopy
Analysis of intracellular fluorescence was performed by confocal
laser-scanning microscopy on a Leica DM6000B/TCS SP5 confocal
microscope (Leica Microsystems CMS GmbH, Germany) using a
20� objective. Fluorophores were excited using an argon laser
at 458 nm (CFP) or 514 nm (YFP). Images were collected in the
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multi-channel mode and the overlay images were generated using
the Leica analysis software LAS AF1.8.2.

Y2H assays
Y2H assays were performed using MATCHMAKER LexA two-hybrid
system (Clontech). cDNAs encoding proteins tested were PCR
amplified using specific primers. In all cases, the SP was omitted.
The amplified PCR fragments were first cloned into the pGEMTeasy
vector using the T/A ligation, sequenced and then subcloned, using
restriction enzymes specified in the table, into pLexA and pB42AD
vectors pre-digested with EcoRI and XhoI. Protein–protein inter-
actions were tested in the yeast strain EGY48 according to the
manufacturer’s instructions. Oligos used for cloning of SDF2, Erdj3B
and BiP1 cDNAs are described in Supplementary Table III.

Protein co-immunoprecipitations
Protein co-immunoprecipitations were performed as described
earlier (Moffett et al, 2002) using leaves of 5-week-old transgenic
Arabidopsis plants using the anti-HA affinity matrix (Roche).
Immunoprecipitates were analysed by western blot with anti-HA,
anti-ERdj3B (Yamamoto et al, 2008), anti-SHD (Klein et al, 2006),
anti-CRT (Pagny et al, 2000) and anti-BiP (Pedrazzini et al, 1997)
antibodies (gifts from R Boston, S Nishikawa, and A Vitale).

Endo H assay
EFR-eGFP-HA and FLS2 were immunoprecipitated using the anti-
GFP agarose (Caltag Medsystems), and protein G sepharose (Sigma)
plus anti-FLS2 polyclonal antibodies (Chinchilla et al, 2007),

respectively. The treatment with Endo H (New England Biolabs)
was performed for 1 h at 371C according to the manufacturer’s
instructions.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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