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A national perspective on prenatal testing for
mitochondrial disease
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Joanna Poulton2,4, Garry K Brown2,5, Doug M Turnbull1,2, Robert W Taylor1,2 and Robert McFarland*,1,2

Mitochondrial diseases affect 41 in 7500 live births and may be due to mutations in either mitochondrial DNA (mtDNA) or

nuclear DNA (nDNA). Genetic counselling for families with mitochondrial diseases, especially those due to mtDNA mutations,

provides unique and difficult challenges particularly in relation to disease transmission and prevention. We have experienced an

increasing demand for prenatal diagnostic testing from families affected by mitochondrial disease since we first offered this

service in 2007. We review the diagnostic records of the 62 prenatal samples (17 mtDNA and 45 nDNA) analysed since 2007,

the reasons for testing, mutation investigated and the clinical outcome. Our findings indicate that prenatal testing for

mitochondrial disease is reliable and informative for the nuclear and selected mtDNA mutations we have tested. Where

available, the results of mtDNA heteroplasmy analyses from other family members are helpful in interpreting the prenatal

mtDNA test result. This is particularly important when the mutation is rare or the mtDNA heteroplasmy is observed at

intermediate levels. At least 11 cases of mitochondrial disease were prevented following prenatal testing, 3 of which were

mtDNA disease. On the basis of our results, we believe that prenatal testing for mitochondrial disease is an important option

for couples where appropriate genetic analyses and pre/post-test counselling can be provided.
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BACKGROUND

Mitochondrial diseases are clinically and genetically heterogeneous
conditions affecting 41 in 7500 live births1 and causing significant
morbidity and mortality.2,3 Genetic counselling for families with
mitochondrial disease can provide some unique and difficult
challenges, particularly in relation to disease transmission and
prevention. A clear understanding of the inheritance patterns in
families with mitochondrial disease, the reproductive and prenatal
testing options available, their application to mitochondrial disease,
and the risks involved is crucial if accurate and appropriate advice is
to be imparted to prospective parents.
Mitochondria are small multifunctional intracellular organelles

present in all eukaryotic cells and primarily responsible for generating
adenosine triphosphate by oxidative phosphorylation. Their efficient
functioning is determined by two genomes; the nuclear genome and
also the maternally inherited 16.6-kb mitochondrial genome.4,5

Disease may occur as a result of mutations in either of these
genomes. Defects in nuclear DNA (nDNA) can cause problems
with mitochondrial DNA (mtDNA) maintenance and repair, defects
in translation or structural defects of respiratory chain complexes.5,6

mtDNA is present in multiple copies within cells and in oocytes the
copy number can exceed 1� 105 per cell.7 A consequence of this high
intracellular copy number is the phenomenon of heteroplasmy, where
two or more species of mtDNA co-exist. This situation arises when a
mtDNA mutation occurs within only a proportion of the mtDNA
present. Importantly though, disease will only occur when a tissue-
specific threshold has been exceeded (usually 460%). This threshold

is not the same for all mtDNA mutations and the level of
heteroplasmy may change slowly with time.4,5,8,9

Patients may develop their first symptoms in adulthood and it is
not unusual for the mtDNA mutation to be transmitted to children
before their mother becomes symptomatic. In addition, asympto-
matic mothers with low levels of mtDNA mutation may have
symptomatic children with very high levels because of a genetic
phenomenon known as the ‘mtDNA genetic bottleneck’. A main
component of this bottleneck occurs during formation and initial
divisions of primordial germ cells when mtDNA copy numbers are
reduced to o200 per cell. This decrease in copy number, together
with the random segregation of mtDNA molecules to daughter cells,
can result in a markedly skewed distribution of mutation when
mature oocytes are formed.8,10,11

Approximately 30 000 women per year are offered invasive prenatal
testing in the United Kingdom.12 Included in this number is a small,
but growing, group of women who are offered prenatal testing for
mitochondrial disease. There is no cure for mitochondrial disease and
effective treatments are lacking. Reproductive options for families
affected by mitochondrial disease are important, particularly those
who have already lost a child to the disease or for those women
known to harbour mtDNA mutations. Prenatal testing for
mitochondrial disease is only possible, however, with known
causative mutations, where there is sufficient evidence from
segregation and disease linkage studies, biochemical and functional
assays to confirm the pathogenicity of these mutations. The primary
aim of prenatal diagnosis for mitochondrial disease is to provide an
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accurate assessment of the risk of the foetus developing mitochondrial
disease either in utero or in childhood.13–16

Where mitochondrial disease is inherited in an autosomal recessive
manner, as is most often the case in childhood-onset mitochondrial
disease, and the genetic changes identified are novel, then carrier
status should be confirmed in each parent with additional evidence
provided from functional studies supporting pathogenicity. When a
mtDNA mutation is responsible, then heteroplasmy levels in blood
and urine should be determined in the mother and, where possible, in
maternal relatives, especially previously affected children. For a
minority of mtDNA mutations, there is a clear correlation between
the level of heteroplasmy and disease severity, but this does differ
between families and assessment of foetal risk should be made in the
context of how other family members have been affected.16

Since establishing the nationally commissioned mitochondrial
diagnostic service in 2007, we have experienced an increasing demand
for prenatal diagnostic testing from families affected by mitochondrial
disease. We have retrospectively reviewed the analyses performed over
the period April 2007 to January 2013 to inform the debate and plan
future testing strategies.

MATERIALS AND METHODS
Data regarding prenatal diagnostic testing were collected from two (Newcastle

and Oxford) of the three centres (Newcastle, Oxford and London) commis-

sioned by the National Health Service to provide a clinical and diagnostic

service for Rare Mitochondrial Diseases of Adults and Children (the service in

London did not undertake any prenatal investigations during this period).

We are not aware of any other genetic testing centres in the United Kingdom

undertaking mtDNA heteroplasmy assessment and although it is possible that

other centres have performed prenatal assessment for nuclear mutations, the

availability of a free nationally commissioned service makes this somewhat

unlikely. Three reviewers examined the diagnostic reports and medical notes

over the 69-month period between April 2007 and January 2013. Discrepancies

and omissions in the clinical information were clarified with the clinical team.

Assessing mutation status during diagnostic chorionic villus biopsy
(CVB) testing
A variety of molecular techniques are used for prenatal testing depending upon

the causative familial mutation. Presence or absence of nuclear gene mutations

is ascertained by direct Sanger sequencing of PCR-amplified products. Prenatal

assessment of heteroplasmy levels of familial mtDNA point mutations was

achieved using mutation-specific pyrosequencing assays.17 These assays have

been established in the Newcastle laboratory for a variety of pathogenic

mutations and have been shown to be sensitive in their detection of 1%

mutation load.18–21 Mutation screening for large-scale single mtDNA deletions

is performed using a combined methodology involving quantitative fluorescent

real-time PCR (QPCR) and long-range PCR.22 The QPCR assay compares the

copy number of the commonly deleted MTND4 gene against the copy number

of the MTND1 gene, which is seldom deleted in patients with large-scale

mtDNA rearrangements.23

RESULTS

Sixty-two prenatal diagnoses were made in the 69-month study
period, of which 59 were CVB samples and 3 were amniocentesis.
Gestation at time of testing ranged from 8 weeks 5 days to 15 weeks
for CVB, with the amniocenteses being performed between 15 weeks
5 days and 17 weeks 3 days. Prenatal testing was requested in the
majority of patients as a consequence of having had a previously
affected child (n¼ 58). Other requests were due to being a known
mtDNA mutation carrier (although clinically asymptomatic; n¼ 3),
or having severely affected siblings (n¼ 1).

mtDNA mutations
Of the prenatal samples assessed, 17 were for mutations
in mtDNA (m.3243A4G (n¼ 4), m.11777C4A (n¼ 2),
m.9176T4C (n¼ 2), m.14453G4A (n¼ 1), m.13513G4A
(n¼ 1), m.8344A4G (n¼ 1), m.8993T4G (n¼ 1), m.8993T4C
(n¼ 1), m.10191T4C (n¼ 1), m.10158T4C (n¼ 1), m.3688G4A
(n¼ 1) and a single, large-scale mtDNA deletion (n¼ 1); Table 1).
In addition to accurately determining the level of mtDNA
mutation in the foetal DNA sample, all mtDNA mutations
were further categorised as having low (o30%), intermediate
(30–70%) or high (470%) mtDNA loads. Of the 17 prenatal
samples, high heteroplasmy levels were detected in CVB samples
from patients 6 and 8 and in both cases termination of pregnancy
was performed. Patient 8 herself harboured relatively high levels of
the m.8993T4G mutation in blood DNA (73% heteroplasmy)
although the threshold for a severe neurological phenotype, such
as Leigh Syndrome, in association with the m.8993T4G mutation
is typically very high.24 In contrast, patient 6 did not have the
mutation detectable in her blood or urine. Intermediate
heteroplasmy levels were identified in six samples (patients 1, 5,
9, 12, 14 and 16), one of which resulted in termination of
pregnancy (patient 1), and the outcome for the remainder is not
known. Five of these mothers themselves had intermediate
heteroplasmy levels of the respective mutation in DNA derived
from their urinary epithelium; one had high heteroplasmy levels
(patient 9), but (as is the case for the m.8993T4G and indeed the
m.9176T4C mutation) the m.8993T4C mutation is associated with
a very high threshold.24–26 Low level mutation load was detected in
the CVB samples from patients 7 and 15, both of whom continued
their pregnancies. Patient 15, who harboured low heteroplasmy levels
in blood and intermediate levels in buccal and urinary epithelium of
m.3688G4A, went on to deliver a clinically unaffected child.
The outcome for the child born to patient 7, in whom we could
not detect the familial m.9176T4C mutation in blood or urine, is not
known. The familial mutation was not detected in seven prenatal
samples, from four mothers in whom we found no evidence of the
familial mutation in blood or urine (patient 2 (m.3243A4G), patient
4 (m.3243A4G), patient 10 (m.14453G4A), patient 17 (single
deletion)), two mothers harbouring low heteroplasmy levels (patient
3 (m.3243A4G) and patient 13 (m.10191T4C)) and one mother
with intermediate levels in blood (patient 11 (m.13513G4A)).
Postnatal screening for the familial mutation was performed for
three cases using blood samples; the results identified no evidence
of the corresponding mutation in each instance and they
remain clinically well (patient 4 (m.3243A4G), patient 10
(m.14453G4A) and patient 11 (m.13513G4A)).

nDNA mutations
The remaining 45 prenatal samples were screened for recessive nDNA
mutations (POLG (n¼ 19), SURF1 (n¼ 14), NDUFS2 (n¼ 2),
MPV17 (n¼ 2), RARS2 (n¼ 2), DGUOK (n¼ 2), NDUFV1 (n¼ 1),
TK2 (n¼ 1), SUCLA2 (n¼ 1), TMEM70 (n¼ 1)) (Supplementary
Table 2). Of these, 12 inherited both parental mutations, 8 of which
resulted in termination of the pregnancy, 2 pregnancies continued
resulting in the birth of affected infants (mutations confirmed on
infant blood DNA for one case) and the outcome of the remaining 2
cases is not known. There were 15 heterozygous carriers and the
familial mutations were not detected in 18 cases. Pregnancy was
terminated in one of these cases for an incidental finding of the XXY
karyotype (patient 26).
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DISCUSSION

The aim of prenatal diagnostic testing in mitochondrial disease is to
identify foetuses harbouring mutations that will cause severe disease
and offer termination at a relatively early stage of pregnancy. In our
experience, prenatal testing is usually requested as a consequence of
having had a previously affected child (57/62 requests).
CVB, usually performed at 11–14 weeks gestation, is the procedure

most commonly offered to women at risk of having a child affected by
mitochondrial disease, and particularly for those harbouring mtDNA
mutations. Amniocentesis, a procedure that relies on aspirating
cellular material (largely shed foetal epithelial cells) from the amniotic
sac, may be less reliable in detecting and quantifying mtDNA
mutations and tends to be offered to those women presenting later
in pregnancy or where a nDNA mutation is responsible for the
mitochondrial disease. Prenatal diagnostic testing procedures also
bring additional risk of miscarriage; approximately 1% and 2% higher
than spontaneous miscarriage for amniocentesis and CVB, respec-
tively.12 No spontaneous miscarriages occurred as a result of prenatal
testing in our cohort. Percutaneous umbilical blood sampling is not
routinely offered in mitochondrial disease because of the risk of
maternal contamination of the sample and the increased risk of foetal
loss (o3%) associated with the procedure.12 We do not offer a
biochemical prenatal diagnosis, although this has been performed
(rarely) at other international centres where a biochemical deficiency
has been established in a previously affected child, but no genetic
diagnosis achieved. This type of biochemical diagnosis has a number
of specific requirements and as a result worldwide experience is very
limited.16

For women known to harbour pathogenic mtDNA mutations,
interpretation of prenatal testing is complex and it is important to
consider factors such as heteroplasmy of the mtDNA mutation,
threshold levels, phenotypic expression of the mutation in maternal
relatives and the strength of association between genotype and
phenotype. Only through evaluating all of these aspects can the
clinician provide clear, accurate genetic advice regarding the likely
outcome for the foetus affected by a mtDNA mutation.13,15,16,20

Recent studies indicate that prenatal samples provide an accurate
prediction of mutation load in the postnatal period.27 In addition,
studies analysing heteroplasmy levels in blastomeres from
disaggregated eight cell stage embryos, have indicated that there is
less variation between cells than was previously considered to be the
case, implying that sampling bias in prenatal diagnosis is minimal.28

Further research to ascertain the correlation between genotype,
mutation load and phenotype is required with regards to some
mtDNA mutations. In the seven cases in which the mutation was not
detected, these families could be reassured that their child would not
be clinically affected by mitochondrial disease. Counselling mothers
with foetuses harbouring mtDNA mutations in the intermediate
range (n¼ 11) can prove more difficult particularly for mutations
where the relationship between genotype and phenotype is far less
clear (eg, m.3243A4G). In this context, information regarding levels
of heteroplasmy in affected and unaffected close relatives is very
important. This was particularly true for patient 1 (Table 1), who was
the only intermediate result to lead to termination of pregnancy.
Extensive pre- and post-result counselling included a discussion of
m.3243A4G heteroplasmy levels present in patient 1’s affected and

Table 1 Prenatal testing for mtDNA mutations

Pt Reason for CVB Screening mutation Maternal mutation and heteroplasmy level Result of CVB Clinical outcome

1 Mother known mutation carrier m.3243A4G m.3243A4G (55% urine, 12% blood) 68% m.3243A4Ga Termination of pregnancy

2 Previously affected child m.3243A4G m.3243A4G not detected in blood/urine/

buccal samples

No mutation detected Pregnancy continued

3 Mother known mutation carrier m.3243A4G m.3243A4G (1% blood, 18% urine) No mutation detected Pregnancy continued

4 Maternal grandmother and

brother affected

m.3243A4G m.3243A4G not detected in blood/urine No mutation detected Baby clinically well; no mutation detected

in blood DNA at 11 weeks

5 Previously affected child m.8344A4G m.8344A4G (35% blood, 35% urine) 46% m.8344A4Ga Data not available

6 Previously affected child m.9176T4C m.9176T4C not detected in blood/urine 98% m.9176T4Ca Termination of pregnancy

7 Previously affected child m.9176T4C m.9176T4C not detected in blood/urine 9% m.9176T4Ca Pregnancy continued

8 Previously affected child m.8993T4G m.8993T4G (73% blood) 98% m.8993T4Ga Termination of pregnancy; PM samples

confirmed mutation levels 97%

9 Previously affected child m.8993T4C m.8993T4C (79% blood, 86% urine,

82% buccal)

58% m.8993T4Ca Pregnancy continued

10 Previously affected child m.14453G4A m.14453G4A not detected No mutation detected Clinically unaffected baby girl born

11 Previously affected child m.13513A4G m.13513G4A (45% blood) No mutation detected Baby clinically well; no mutation detected

in blood DNA at 12 weeks

12 Maternal brother affected m.11777C4A m.11777C4A (30% blood, 36% urine,

43% buccal)

46% m.11777C4Aa Data not available

13 Mother known mutation carrier m.10191T4C m.10191T4C (2% blood, 16% urine) No mutation detected Pregnancy continued

14 Previously affected child m.10158T4C m.10158T4C (5% blood, 33% urine,

16% buccal)

52% m.10158T4Ca Data not available

15 Previously affected child m.3688G4A m.3688G4A (20% blood, 50% urine,

43% buccal)

3% m.3688G4Aa Clinically unaffected baby girl born

16 Previously affected child m.11777C4A m.11777C4A (18% blood, 32% urine,

20% buccal)

54% m.11777C4Aa Alive and well at 5 years

17 Previously affected child Single large-scale

mtDNA deletion

No deletion in mtDNA detected mtDNA deletion not

detected

Pregnancy continued

Seventeen women referred for prenatal testing because of a personal or maternal family history of mtDNA disease, results of the prenatal test and clinical outcome where known.
Reference sequence: Revised Cambridge Reference Sequence;35 GenBank Reference NC_012920.1.
aInformation submitted to the publicly available MITOMAP database (http://www.mitomap.org/MITOMAP).
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unaffected maternal relatives, who gave permission to disclose this
information for the purposes of counselling. The two women with
foetuses demonstrating high heteroplasmy levels on prenatal testing
both opted for termination of pregnancy following appropriate
counselling with both a specialist in mitochondrial disease and a
genetic counsellor. Although all families affected by mitochondrial
disease should be aware of available reproductive options, it is these
women, harbouring high levels of pathogenic mtDNA mutations,
who may wish to consider alternative options for future pregnancies.
Such options include gamete (egg or sperm) donation, or adoption as
an alternative to pregnancy. Techniques to reduce or prevent
transmission of mtDNA and nDNA mutations, such as pre-implanta-
tion genetic diagnosis, are already available.14,29,30

One of the shortfalls of this retrospective collection of data on
prenatal diagnoses in patients with mitochondrial disease is the
paucity of information available regarding follow-up on children
born after prenatal diagnosis. It appears that for mothers with low or
intermediate levels of mtDNA mutation, routine outpatient follow-up
is infrequent and therefore information regarding their children scant.
However, as a national service, we are not aware of any children
presenting with mitochondrial disease symptoms following prenatal
mtDNA diagnosis during the period April 2007–January 2013.
Interpretation of prenatal testing is relatively straightforward in

those families harbouring nDNA mutations where classic Mendelian
rules of inheritance apply. Parents can be given much clearer results
with regards as to whether or not their child will be affected. In
keeping with current UK practice, at parental request we have also
provided information on the carrier status of the foetus.31

For homoplasmic maternally transmitted mtDNA disease, where
PGD is not an option, further strategies are being developed.
Techniques such as pronuclear transfer, where male and female
pronuclei from the patient’s fertilised oocyte are transferred to an
enucleated healthy fertilised donor oocyte, and metaphase II spindle
transfer, which involves the transfer of the metaphase II spindle from
a mature affected oocyte into an enucleated healthy donor oocyte
before fertilisation, are at an advanced stage of development with
successful metaphase II spindle transfer having been performed in
Macaque monkeys.32–34 In March 2013, the Human Fertilisation and
Embryology Authority (HFEA) agreed its advice to UK Government
on the ethics and science of IVF-based techniques designed to prevent
the transmission of maternally inherited mitochondrial disease.
Further work assessing the safety, efficacy and applicability of this
technique is planned (www.hfea.gov.uk/6896.html).

CONCLUSION

We have experienced an increasing demand for prenatal diagnostic
testing from families affected by mitochondrial disease, with 62
prenatal diagnoses made since the service was first offered in 2007
and at least 11 cases of mitochondrial disease prevented.
Information on reproductive options including prenatal diagnosis

(CVB or amniocentesis), egg donation and sperm donation, techni-
ques to reduce or prevent transmission (eg, PGD), or adoption as an
alternative to pregnancy, should be presented to all families affected
by mitochondrial disease to facilitate informed reproductive choices.
Pronuclear transfer and metaphase II spindle transfer continue to be
developed, but are not yet available. The present availability of PGD
and the future possibility of nuclear transfer mark an exciting phase in
preventing the transmission of mitochondrial disease.
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