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Polymorphisms in the P2X7 receptor gene are
associated with low lumbar spine bone mineral density
and accelerated bone loss in post-menopausal women

Alison Gartland*,1, Kristen K Skarratt2, Lynne J Hocking3, Claire Parsons3, Leanne Stokes2,
Niklas Rye Jørgensen4, William D Fraser5, David M Reid3, James A Gallagher6 and James S Wiley2,7

The P2X7 receptor gene (P2RX7) is highly polymorphic with five previously described loss-of-function (LOF) single-nucleotide

polymorphisms (SNP; c.151+1G4T, c.946G4A, c.1096C4G, c.1513A4C and c.1729T4A) and one gain-of-function SNP

(c.489C4T). The purpose of this study was to determine whether the functional P2RX7 SNPs are associated with lumbar spine

(LS) bone mineral density (BMD), a key determinant of vertebral fracture risk, in post-menopausal women. We genotyped 506

post-menopausal women from the Aberdeen Prospective Osteoporosis Screening Study (APOSS) for the above SNPs. Lumbar

spine BMD was measured at baseline and at 6–7 year follow-up. P2RX7 genotyping was performed by homogeneous mass

extension. We found association of c.946A (p.Arg307Gln) with lower LS-BMD at baseline (P¼0.004, b¼�0.12) and follow-up

(P¼0.002, b¼�0.13). Further analysis showed that a combined group of subjects who had LOF SNPs (n¼48) had nearly

ninefold greater annualised percent change in LS-BMD than subjects who were wild type at the six SNP positions (n¼84; rate of

loss¼�0.94%/year and �0.11%/year, respectively, P¼0.0005, unpaired t-test). This is the first report that describes association

of the c.946A (p.Arg307Gln) LOF SNP with low LS-BMD, and that other LOF SNPs, which result in reduced or no function of

the P2X7 receptor, may contribute to accelerated bone loss. Certain polymorphic variants of P2RX7 may identify women at

greater risk of developing osteoporosis.
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INTRODUCTION

Maintenance of a healthy skeleton to prevent bone disease is depen-
dent on the finely tuned balance between the amount of bone
resorption by osteoclasts and bone formation by osteoblasts. Exactly
how this is achieved is not fully understood, although several
regulatory systems are involved including the RANKL/OPG axis,
LRP5/Wnt signaling and more recently purinergic signalling. The
latter system involves extracellular nucleotides signalling via specific
cell surface P2 purinergic receptors, which consist of two sub-families
termed P2X and P2Y receptors. P2Y receptors are metabotropic,
heptahelical G protein-coupled receptors of which there are currently
eight recognised sub-types, while the P2X are ligand-gated ionotropic
channel receptors of which there are currently seven identified
sub-types.1 In bone, multiple P2X and P2Y receptors have been
demonstrated to be functionally expressed by both osteoblasts and
osteoclasts. Activation of these receptors modulates cellular activities,
such as proliferation and apoptosis, with subsequent effects on both
bone formation and resorption in the bone microenvironment.2–11

The P2X7 receptor (P2X7R), upon brief activation by ATP at a
concentration higher than is required for activation of any of the other

P2 receptors, functions as a cation channel. However, prolonged or
repeated activation of the P2X7R leads to the formation of a non-
selective pore permeable to solutes of up to 900Da that ultimately
leads to cell death.12 Transient activation of the receptor is now known
to lead to reversible pseudoapoptosis13 while longer exposure to
agonist leads to processing and release of interleukin (IL)-1b14 and
IL-18 from monocytes and macrophages.15–17 Activation of these cell
types is known to lead to an upregulation of P2X7R expression.18 This
then amplifies the production and release of IL-1b and IL-18 with
subsequent induction of IL-6, IL-8 and TNF-a. Given that osteoclasts
are derived from the same progenitor cells as macrophages and that
these inflammatory cytokines have an important role in regulating
bone remodelling19,20 the P2X7R presents as an ideal target for the
regulation of bone remodelling.
The functional expression of P2X7R by osteoclasts has been con-

clusively demonstrated. We and others have shown that human
osteoclasts both in vitro and in vivo express P2X7R protein, and
that activation of the P2X7R induced cell death,21,22 while blockade
resulted in reduced multinucleated osteoclast formation and mature
osteoclast formation.2,5 Further studies using rabbit and murine
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models have highlighted the importance of P2X7R activation in
osteoclasts via increased nuclear localisation of the transcription factor
NF-kB, an important regulator of osteoclast formation and activity,
independently of RANKL.23

We have also shown that a sub-population of human osteoblasts
express functional P2X7R and that activation leads to apoptosis in
these cells.6 In addition, we and others have shown that P2X7R
activation leads to membrane blebbing in osteoblasts,6,10 a process
mediated by stimulation of PLD and PLA2 with subsequent produc-
tion of the potent lipid mediator lysophosphatidic acid (LPA), which
then acts through its G protein-coupled receptor to induce membrane
blebbing via a pathway dependent on Rho-associated kinase.10

Both LPA and Rho-associated kinase have important roles in
osteoblasts.24–26

Given the above reported roles of the P2X7R in both osteoclast and
osteoblast physiology, profound changes in the bones of P2X7R
knock-out (KO) mice would be expected. Analysis of two different
P2X7R KO mice models has revealed differences in skeletal pheno-
types,27 which may be explained by the retention of a functional splice
isoform in the Glaxo mouse model.28 In contrast, the Pfizer P2X7R
KO model shows a reduction in total and cortical bone content in the
femur, reduced periosteal bone formation, increased trabecular bone
resorption in the tibia29 and a reduced sensitivity to mechanical
loading.30 We have also demonstrated that osteoblasts constitutively
release nucleotides into the bone microenvironment and that
this release can be positively modulated by mechanical loading,3,31

supporting a role for the P2X7R in mechanotransduction and
subsequent anabolic responses in bone. If the P2X7R transduces
everyday loading into the appropriate responses within bone to help
maintain skeletal health then differences in expression and/or
activation of P2X7R will result in aberrant responses and possibly
predispose people to bone disease.
The gene for the P2X7R (P2RX7) is highly polymorphic and at

least six non-synonymous single-nucleotide polymorphisms (SNPs:
Figure 1) have been previously described as having effects on P2X7R
function.32 The most common variant c.1513A4C, produces an
amino acid change at position 496 (p.Glu496Ala) in the C terminus,
which impairs multiple P2X7R functions, including the ability of the
channel to undergo dilation and release of IL-1b, IL-18 and matrix
metalloproteinase-9 from macrophages.17,33,34 The c.1729T4Avariant
(p.I568N) abolishes trafficking of the receptor to the cell surface,35 the
c.946G4A variant (p.Arg307Gln) abolishes ATP binding to the
extracellular domain of P2X7R,36 the c.1096C4G variant
(p.Thr357Ser) results in reduced pore formation that is restored
with upregulation of P2X7R expression32 and the intronic
c.151+1G4T variant results in a null allele.37 The effect of these
variants on ATP responsiveness is additive, as heterozygosity for any
loss-of-function (LOF) variant leads to a 50% reduction in response
whereas homozygosity for a given variant or compound heterozygo-
sity for two LOF variants results in ablated ATP response.37 The
c.489C4T variant (p.His155Tyr), located in the extracellular domain
of the receptor involved in ATP binding, has been shown to be a weak
gain-of-function (GOF) P2RX7 polymorphism evidenced by increased
ATP-dependent calcium influx and ethidium uptake.38

One LOF P2RX7 polymorphism, the c.1513C allele (p.Glu496Ala) has
recently been associated with increased susceptibility to extra pulmonary
tuberculosis39 while in the context of bone, the c.1513C allele and the
c.1729A allele (p.Ile568Gln) have been shown to be associated with an
increased 10-year fracture risk in post-menopausal women.22

Given the above observations, we have investigated whether six
P2RX7 SNPs, which have been previously identified and have putative

effects on the receptor function, are associated with alterations in bone
mineral density (BMD) in post-menopausal women.

MATERIALS AND METHODS

Aberdeen Prospective Osteoporosis Screening Study (APOSS)
cohort and BMD measurements
The longitudinal APOSS is a population-based screening programme for

osteoporotic fracture risk in females.40 Participants were recruited at random

using Community Health Index records from within a 25-mile radius

of Aberdeen, a city in the North East of Scotland with a population of

B250 000.41,42 BMD measurements were made at the initial baseline

visit (V1), which took place between 1990 and 1994 when the women were

aged 45–54 years (n¼5114), and from a follow-up visit (V2) between 1997 and

1999. BMD measurements of the lumbar spine (LS; L2–L4) were performed by

dual-energy X-ray absorptiometry using one of two Norland XR26 or XR36

densitometers (Norland Corp., Fort Atkinson, WI, USA). Annualised percen-

tage change in BMD was calculated after V2. At V2, participants donated blood

samples for DNA analysis (n¼3266). Information on age at assessment, body

mass index (BMI) at assessment, previous contraceptive pill use (V1 only) and

hormone replacement therapy (HRT) use were also recorded. This study was

approved by the Grampian Research Ethics Committee (97/0106 and 97/0230).

For this study, APOSS participants at baseline who were post-menopausal, not

on HRT and not taking any other medications influencing bone turnover

(calcium supplements, sex hormones, steroid tablets, steroid inhalers, diuretics

and tamoxifen) were genotyped (n¼506).
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Figure 1 Diagrammatic representation of the protein structure of the

P2X7R. The positions of amino acid changes as a result of the five

polymorphisms included in this study are shown on the diagram. The three

C-terminal and one ATP-binding site polymorphisms confer LOF (circles)

while His155Tyr gives a weak GOF (triangle). The sixth polymorphism is

located in intron 1.
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DNA SNP analysis
DNA was extracted from peripheral blood obtained during the second visit

using standard techniques as described previously.43 Six non-synonomous

SNPs in P2RX7 with functional consequences for the receptor were analysed

in 506 samples by a homogeneous mass extension assay (HME) at

the Australian Genome Research Facility (St Lucia, Queensland, Australia).

The samples that failed HME were re-analysed using restriction enzyme

digestion of appropriate PCR products or by Taqman assay as described

previously.32,39 Polymorphisms in the coding sequence of the P2RX7 were

numbered based on the original mRNA sequence, GenBank accession number

Y09561.1.44

Statistical analysis
The statistical package SPSS version 15.0. (SPSS Inc., Chicago, IL, USA) was

used for all statistical analysis. SNP genotype categories were recoded as a

dummy variable as follows: homozygous wild type (WT)¼1, heterozygote¼2

and homozygous variant¼3. BMD differences between genotype groups were

corrected for age, BMI, contraceptive pill use and HRT use (as appropriate for

the time point examined) using linear regression analysis, and are reported as

P-values. Where P-values were o0.05, these were corrected using the Bonfer-

roni multiple test correction for six SNPs. The threshold for statistical

significance was a corrected P-value o0.05. Effect sizes are reported as

unstandardised b±SEM.

Subjects who had one or more minor allele for a LOF SNP at either c.151+

1G4T, c.946G4A, c.1096C4G, c.1513A4C or c.1729T4A while having

major alleles at the other position were categorised as the LOF group

(n¼48), those who had the c.489T GOF SNP but major alleles at all the other

positions were categorised as the GOF group (n¼144) and those subjects who

had the major alleles at all six SNPs positions were categorised as the WT group

(n¼84). Differences in annualised percentage change in BMD between two

individual groups were examined using the unpaired t-test with Welch’s

correction due to unequal variances between the groups.

RESULTS

Characteristics of genotyped subjects
Summary values for age, height, BMI, LS-BMD, contraceptive pill use,
HRT use and annualised % change in LS-BMD for the 506 genotyped
subjects are shown in Table 1. These women were slightly older
than the rest of APOSS, had lower LS-BMD at both visits and a
lower rate of bone loss.

Genotype data
Overall, SNP call rates were 97% for c.151+1G4T (rs35933842),
c.946G4A (rs28360457), c.1096C4G (rs2230911) and c.1729T4A
(rs1653624) and 95% for c.489C4T (rs208294) and c.1513A4C
(rs3751143). Table 2 shows the predicted amino-acid change
for each SNP. All six SNPs were consistent with Hardy–Weinberg
equilibrium (all P-values 40.2).

P2RX7 c.946G4A (p.Arg307Gln) SNP is associated with lower LS
BMD in post-menopausal women
Analysis of the six previously published P2RX7 SNPs revealed that
c.946G4A (p.Arg307Gln) was significantly associated with lower LS
BMD both at study enrolment (V1) and at the 6-year follow-up visit
(V2). Linear regression analysis of the individual SNP data (correcting
for age, BMI, previous contraceptive pill use (for V2 only) and HRT
status) showed that V1 LS BMD was significantly lower in hetero-
zygous individuals (GA, n¼18) compared with WT (GG, n¼474;
Pcorrected¼0.024, b¼�0.122 (Table 2)), and that this effect was main-
tained for V2 LS BMD (Pcorrected¼0.012, b¼�0.130 (Table 3)). No
individuals were homozygous for the A allele at this SNP. The average
annualised percentage change in LS-BMD did not differ significantly
by c.946G4A genotype (�0.39%/year (SEM 0.06) for GG subjects and
�0.57%/year (SEM 0.43) for GA subjects (P¼0.7)), suggesting that the
c.946G 4A may be exerting effects on bone mass at an earlier age.

LOF P2RX7 SNPs are associated with greater rate of bone loss
at the LS in post-menopausal women
Further analysis showed that compared with subjects who were WTat
all six SNP positions (n¼84), subjects who had a LOF SNP at either
c.151+1G4T, c.G946A, c.1096C4G, c.1513A4C or c.1729T4A
(n¼48) had almost ninefold greater annualised percent change from
baseline in LS BMD (�0.9354%/year for the LOF group and
�0.1057%/year for the WT group, P¼0.0005 (Figure 2)). The per-
centage change in LS BMD for a group of subjects who had the c.489T
GOF SNP but were WT at the other five LOF SNPs (n¼144) was not
statistically significantly different from subjects who were WTat all six
SNP positions (�0.3676%/year for GOF group, P¼0.1072 (Figure 2)).

Table 1 Descriptive statistics for the genotyped APOSS subjects

Subject characteristic V1 V2

Age (years) 49.7 (0.1) 56.0 (0.1)

Height (cm) 160.3 (0.5) 160.0 (0.3)

BMI (kg/m) 25.29 (0.2) 26.5 (0.2)

LS-BMD (g/cm) 1.00 (0.01) 0.97 (0.01)

Annualised change in LS-BMD (%) �0.39 (0.06)

Contraceptive pill use (no use ever, previous; %) 45.3, 54.7 —

HRT status a V2 (never, previous, present; %) — 47.6, 18.8, 33.5

Abbreviations: APOSS, Aberdeen Prospective Osteoporosis Screening Study; BMI, body mass
index; HRT, hormone replacement therapy; LS-BMD, lumbar spine bone mineral density.
Numbers are mean values with standard error in brackets. V1 is the baseline measurement,
and V2 is at the follow-up visit. NB All women were post-menopausal and not on HRT or other
medication at baseline.

Table 2 Results from linear regression analysis of individual P2RX7 SNPs and V1 LS BMD

LS-BMD V1 (±SEM) g/cm2

rs # Base (amino-acid) change MAF WT HET HOMO P-value (corrected) b-value

rs35933842 c.151+1G4T 0.01 1.00 (0.01) 0.98 (0.04) * 0.4 �0.003

rs208294 c.489C4T (p.H155Y) 0.43 0.99 (0.01) 1.01 (0.01) 1.00 (0.02) 0.3 0.042

rs28360457 c.946G4A (p.R307Q) 0.02 1.00 (0.01) 0.88 (0.03) * 0.004 (0.024) �0.122

rs2230911 c.1096C4G (p.T357S) 0.07 1.00 (0.01) 1.03 (0.02) 1.09 (0.12) 0.08 0.074

rs3751143 c.1513A4C (p.E496A) 0.17 1.00 (0.01) 1.00 (0.02) 1.01 (0.06) 0.8 0.010

rs1653624 c.1729T4A (p.I568N) 0.02 1.00 (0.01) 0.99 (0.03) 1.25** 0.9 0.006

Abbreviations: LS-BMD, lumbar spine bone mineral density; MAF, minor allele frequency; SNPs, single-nucleotide polymorphisms; WT, wild type.
Where Po0.05 (bold), the Bonferonni’s correction was applied for six SNPs and the corrected P-value is in brackets.
*n¼0.
**n¼1.

P2X7 receptor polymorphisms and bone loss
A Gartland et al

561

European Journal of Human Genetics



DISCUSSION

Previous in vitro studies from our group and others have revealed that
functional P2X7Rs have profound effects on bone cells, regulating
both formation and survival of osteoclasts,2,5,22 as well as enhancing
bone formation through an osteoblast autonomous mechanism9 and
inducing apoptosis of a sub-population of osteoblasts.6 A fine balance
between the activities of these cells is required for the maintenance of a
healthy skeleton. Any perturbations of this balance in the favour of
osteoclasts would result in increased bone resorption/bone loss and an
increased risk of developing osteoporosis. In humans, the P2RX7 is
highly polymorphic with 26 non-synonymous SNPs listed on the
NCBI database (Build 131), of which six have been functionally
characterised.32,34–38 A recent report by Ohlendorff et al22 demon-
strated that two P2RX7 SNPs, c.1513A4C (p.Glu496Ala) and
c.1729T4A (p.I568N), are associated with an increased 10-year
fracture risk in post-menopausal women.
In this study, we have found an association of a major LOF SNP in

P2RX7, the c.946G4A (p.Arg307Gln), with low BMD in the LS in
post-menopausal females, both at the initial and at the 6 year follow-
up visit. As only women who were post-menopausal at baseline, not
on HRT and not taking any other medications influencing bone
turnover (calcium supplements, sex hormones, steroid tablets, steroid
inhalers, diuretics and tamoxifen) were selected for this study, the

genotyped subset are more homogenous than the entire APOSS
cohort and are free from any confounding effects on bone loss or
baseline BMD. The c.946G4A polymorphism changes arginine to
glutamine at residue 307 and abolishes binding of ATP to the
receptor.36 The functional effect of this amino acid change is likely
to be magnified because of the trimeric nature of the receptor and the
need for three molecules of ATP to bind for the receptor to become
functional. Permeability studies of subjects heterozygous for
c.946G4A (Figure 1 in Gu et al, 200436) show complete absence of
ATP-mediated responses, which supports a dominant-negative nature
of this variant on function even in heterozygous dosage. Thus,
c.946G4A may be classified as a dominant-negative polymorphism
and this may explain its profound effects on BMD and bone turnover.
Indeed, the profound effects of the c.946G4A SNP on bone are
further highlighted and replicated in the Danish Osteoporosis Pre-
vention Study, which found that subjects who were heterozygous for
the c.946G4A (Arg307Gln variant) had 440% greater bone loss at
the hip over the 0- to10-year interval than subjects who were WT at
this position (Jørgensen et al45). Furthermore, this hypothesis is
supported by a recent study showing that rare variants causing
complete loss of P2X7R function were overrepresented among patients
with total hip replacement revision and that the c.946G4A allele
increased cumulative hazard of total hip replacement revision.46

In our study, heterozygosity for c.151+1G4T that leads to one null
allele37 had no impact on LS-BMD, while neither of the most
prevalent variants, c.1513A4C, nor c.1729T4A polymorphisms
alone showed any significant decrease in LS BMD at either the first
or the follow-up visit in our cohort, consistent with the previous
report of Ohlendorff et al22 (Tables 2 and 3).
Owing to the highly polymorphic nature of the P2RX7 and previous

studies describing the effect of compound heterozygosity on func-
tion,32 we performed further analysis by grouping the subjects based
on their status at all six functional SNP positions. We defined a WT
group that consisted of subjects who had the major allele at all six SNP
positions, a LOF group that consisted of subjects who had a minor
allele at any one of the LOF SNP positions while having the major
alleles at the other positions and a gain GOF group that had the
c.489T GOF SNP while having the major alleles at the other LOF
SNPs. Although this reduced the size of the groups, identification of
the subjects who had none of the functional P2RX7 SNP alleles
enabled us to identify a significant, almost ninefold increase in the
rate of bone loss at the LS in the group of individuals who carried a
LOF SNP allele in the P2RX7. Rate of LS-BMD in the GOF group was
not significantly different to WT, perhaps reflecting the weak func-
tional effect of this polymorphism. Interestingly, the WT group
of individuals had an almost fourfold lower average annualised

Figure 2 Difference in annualised percentage change in LS-BMD. WT

subjects (n¼84); LOF, subjects who are have any LOF SNP but are WT at

the c.489T GOF position (n¼47); GOF, subjects who have a c.489T GOF

SNP but WT at the LOF SNP positions (n¼144). Individual values plotted

with bars being the mean±SEM.

Table 3 Results from linear regression analysis of individual P2RX7 SNPs and V2 LS BMD

LS-BMD V2 (±SEM) g/cm2

rs # Base (amino-acid) change MAF WT HET HOMO P-value (corrected) b-value

rs35933842 c.151+1G4T 0.01 0.97 (0.01) 0.93 (0.03) * 0.3 �0.041

rs208294 c.489C4T (p.H155Y) 0.43 0.96 (0.01) 0.98 (0.01) 0.97 (0.02) 0.3 0.044

rs28360457 c.946G4A (p.R307Q) 0.02 0.97 (0.01) 0.84 (0.04) * 0.002 (0.012) �0.130

rs2230911 c.1096C4G (p.T357S) 0.07 0.97 (0.01) 0.98 (0.02) 1.00 (0.16) 0.38 0.037

rs3751143 c.1513A4C (p.E496A) 0.17 0.97 (0.01) 0.97 (0.01) 0.99 (0.06) 0.37 0.038

rs1653624 c.1729T4A (p.I568N) 0.02 0.97 (0.01) 0.93 (0.02) 1.22** 0.63 �0.020

Abbreviations: LS-BMD, lumbar spine bone mineral density; MAF, minor allele frequency; SNPs, single-nucleotide polymorphisms; WT, wild type.
Where Po0.05 (bold), the Bonferonni’s correction was applied for six SNPs and the corrected P-value is in brackets.
*n¼0.
**n¼1.

P2X7 receptor polymorphisms and bone loss
A Gartland et al

562

European Journal of Human Genetics



percentage change in LS-BMD than the average for the whole cohort,
although this was not statistically significant (P¼0.10, average
values¼�0.11%/year, SEM 0.16 and �0.39%/year, SEM 0.06, respec-
tively). We believe that this further highlights the importance of a fully
functional P2X7R to ensure the effective mechanotransduction
of everyday load bearing over a lifetime, which is essential to the
form and function of the skeleton.
We do not currently know precisely how the functional activity of

osteoblasts and osteoclasts are affected by either LOF or GOF P2RX7
SNPs. However, given that the P2X7R is known to mediate osteoclast
apoptosis and osteoblast bone formation any genetic changes, which
affect P2X7R function would presumably affect the fine balance of
bone loss and bone formation needed to maintain a healthy skeleton.
In addition, previous studies have demonstrated that the P2X7R forms
complexes with proteins of the cytoskeleton known to be involved in
mechanotransduction,47,48 and the P2X7R KO mouse has a disuse
phenotype29 as well as a reduced response to mechanical loading.30

Given that mechanical loading is the most anabolic stimulus known to
the skeleton and exercise is less effective after attaining peak
bone mass49 early identification of individuals with polymorphisms
conferring a major decrease in P2X7R function would help to target
alternative therapies to build and maintain bone mass.
Recent studies have suggested that the P2X7R and P2X4 receptors

may form heterotrimers when overexpressed by transfection,50 how-
ever, further data on possible heteromeric associations in native cells
are needed before the possible implications of mutations in the P2X4
receptor gene (P2XR4) on P2X7R-mediated effects can be determined.
This study is the first to demonstrate an association of LOF

polymorphisms in P2RX7 and LS-BMD, a key determinant of verteb-
ral fracture risk. As the observed effect size of the c.946G4A is quiet
large (b¼0.12) compared with previously known SNPs, one might
expect a locus of such a large effect size to be have been previously
detected in the published genome-wide association studies (GWAS) in
osteoporosis. Although the initial GWAS for osteoporosis have con-
firmed the roles for many previously suspected candidate genes such
as RANK (TNFRSF11A), RANKL (TNFSF11) and LRP551 the results
to date account for only a small amount of the genetic component of
traits such as BMD. Most GWAS studies focus on genes/markers with
top-ranking statistical significance and the current GWAS platforms
do not examine rare genetic variants, including the P2RX7 c.946G4A,
which has a population frequency of around 1.0% in Caucasians.
Moreover, this SNP is outside the haplotype block encompassing
exons 11–13 of P2RX752 thus reducing the probability that this SNP is
in linkage disequilibrium with a more common variant.
In conclusion, the result of this study, in addition to the previously

published data and that of Jørgensen et al,45 provides evidence that
P2RX7 is involved in the regulation of LS-BMD and may, in the
future, represent an early diagnostic tool for the management of
osteoporosis.
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